Balkan Endemic Nephropathy and the Causative Role of Aristolochic Acid

Total Page:16

File Type:pdf, Size:1020Kb

Balkan Endemic Nephropathy and the Causative Role of Aristolochic Acid Balkan Endemic Nephropathy and the Causative Role of Aristolochic Acid †,‡ § Bojan Jelakovic, MD, PhD * Zivka Dika, MD, PhD * Volker M. Arlt, PhD Marie Stiborova, PhD Nikola M. Pavlovic, MD, PhD jj Jovan Nikolic, MD ¶ Jean-Marie Colet, PhD # Jean-Louis Vanherweghem, MD, PhD ** and Joelle€ L. Nortier, MD, PhD**,†† Summary: Balkan endemic nephropathy is a chronic tubulointerstitial disease with insidious onset, slowly progressing to end-stage renal disease and frequently associated with urothelial carcinoma of the upper urinary tract (UTUC). It was described in South-East Europe at the Balkan peninsula in rural areas around tributaries of the Danube River. After decades of intensive investigation, the causative factor was identified as the environmental phytotoxin aristolochic acid (AA) contained in Aristolochia clematitis, a common plant growing in wheat fields that was ingested through home- baked bread. AA initially was involved in the outbreak of cases of rapidly progressive renal fibrosis reported in Belgium after intake of root extracts of Aristolochia fangchi imported from China. A high prevalence of UTUC was found in these patients. The common molecular link between Balkan and Belgian nephropathy cases was the detection of aristolac- tam-DNA adducts in renal tissue and UTUC. These adducts are not only biomarkers of prior exposure to AA, but they also trigger urothelial malignancy by inducing specific mutations (A:T to T:A transversion) in critical genes of carcino- genesis, including the tumor-suppressor TP53. Such mutational signatures are found in other cases worldwide, particu- larly in Taiwan, highlighting the general public health issue of AA exposure by traditional phytotherapies. Semin Nephrol 39:284−296 Ó 2019 Elsevier Inc. All rights reserved. Keywords: Balkan endemic nephropathy, aristolochic acid nephropathy, upper tract urothelial carcinoma, aristolo- chic acid, Aristolochia species *School of Medicine, University of Zagreb, Department of Nephrology, n 1993, the occurrence of a rapidly progressive form Hypertension, Dialysis and Transplantation, University Hospital of renal interstitial fibrosis associated with a weight Centre Zagreb, Zagreb, Croatia loss diet that included the ingestion of pulverized y I Department of Analytical, Environmental and Forensic Sciences, Medi- plant extracts used in traditional Chinese medicine led to cal Research Council-Public Health England Centre for Environment the description of a new toxic nephropathy.1 The identifi- and Health, King’s College London, London, United Kingdom zNational Institute for Health Research Unit, Health Impact of Envi- cation of aristolochic acid (AA) in these powders ronmental Hazards, King’s College London, in partnership with brought to attention the severe toxicity of certain species Public Health England and Imperial College London, London, of Aristolochia.2 Since then, secondary nephropathies United Kingdom resulting from the toxicity of plants containing AA have x Department of Biochemistry, Faculty of Science, Charles University, been described worldwide.3 The similarity between the Prague 2, Czech Republic jjSerbian Medical Society, Branch Nis,̌ Nis,̌ Serbia histologic aspects of this particular nephropathy and the {Clinical Centre Serbia, Belgrade, Serbia so-called Balkan endemic nephropathy (BEN) proved #Department of Human Biology and Toxicology, Faculty of Medicine instrumental in reviving an old hypothesis of the etiology and Pharmacy, University of Mons, Mons, Belgium of BEN.1,4 In 1969, Ivic5 suggested that the latter, occur- **Nephrology Department, Erasme Hospital, Universite Libre de ring in certain villages throughout the Danube Valley, Bruxelles, Brussels, Belgium yyLaboratory of Experimental Nephrology, Faculty of Medicine, might be caused by the chronic ingestion of the seeds of Universite Libre de Bruxelles, Brussels, Belgium Aristolochia clematitis, a common plant growing in the Financial support: Work at Charles University was supported by the wheat fields of these endemic regions. This hypothesis Grant Agency of the Czech Republic (GACR 17−12816S); work at now has been confirmed by the discovery of specific King’s College London was supported by the Wellcome Trust DNA adducts that are formed by the metabolites of AA (101126/Z/13/Z and 101126/B/13/Z), and in part by the National Institute for Health Research, Health Protection Research Unit, (aristolactams) in the renal tissue and the urothelial Health Impact of Environmental Hazards at King’s College Lon- tumors of those patients suffering from BEN, as well as don, in partnership with Public Health England and Imperial Col- in the initial cohort of Belgian patients.6-9 lege London. The views expressed are those of the authors and not Today, the term aristolochic acid nephropathy (AAN) necessarily those of the National Health Service, the National Insti- is used to include any form of toxic interstitial nephropa- tute for Health Research, the Department of Health and Social Care, or Public Health England. thy that is caused either by the ingestion of plants con- Conflict of interest statement: none. taining AA as part of traditional phytotherapies Correspondence to be addressed to Joelle€ Nortier, MD, PhD, (formerly known as Chinese herb nephropathy), or by Nephrology Department, Erasme Hospital, Route de Lennik 808, the environmental contaminants in food (BEN).10 1070 Brussels, Belgium. E-mail: [email protected] Although the initial Belgian cohort included more 0270-9295/ - see front matter than 100 patients, it is estimated that exposure to AA © 2019 Elsevier Inc. All rights reserved. https://doi.org/10.1016/j.semnephrol.2019.02.007 affects 100,000 people in the Balkans (where the total 284 Seminars in Nephrology, Vol 39, No 3, May 2019, pp 284−296 Balkan endemic nephropathy and aristolochic acid 285 number of patients with kidney disease amounts to were recognized in the middle of the 20th century. Dis- approximately 25,000), 8 million people in Taiwan, and ease was observed only in harvesting farmers and more than 100 million in mainland China.3,11 Given the affected only certain villages. Family, or, more precisely, fact that the nephrotoxic effects of AA are irreversible household aggregation, was reported in all BEN coun- and that its carcinogenic effects may be very slow in tries (Bosnia and Herzegovina, Bulgaria, Croatia, Roma- manifesting itself after the patient’s initial exposure, nia, and Serbia) (Fig. 1A). An inherited pattern of the AAN and associated cancers are likely to become a disease was ruled out by the fact that BEN often affected major public health issue in the years to come.12 several members of the same household who were not The Aristolochia species is a genus of herbaceous, necessarily blood-related. At the World Health Organi- perennial plants that include more than 500 species. zation meeting that was held in 1964 in Dubrovnik, Cro- They are widespread in the warm regions of the Mediter- atia, the disease was named endemic nephropathy. The ranean, Africa, and Asia. In France, A clematitis or birth- average prevalence of diseased subjects in the past years wort, Aristolochia rotunda, and Aristolochia pistolochia has ranged between 2% and 5%. However, the preva- grow mainly in limestone soil and can be found on road- lence of farmers suspected to have BEN is much higher sides, in coppices, vineyards, and other agricultural and was reported to be 10% to 15%. There were no gen- areas. Furthermore, A clematitis is a parasitic plant that der differences, although a slight insignificant female grows alongside wheat in the local wheat fields in the predominance was found (1:1.2). Importantly, it was warm and humid regions of the Danube Valley.13 never reported in children, indicating that a long period The accidental ingestion of these species of Aristolo- of exposure to the environmental agent is needed. In past chia not only explains the existence of BEN, but also decades, the age when BEN patients started to receive clarifies incidents of severe livestock poisoning, occur- dialysis was shifted to older ages, raising the question of ring among horses in the Balkans and goats in Africa, whether the etiologic agent is still present or active. This respectively.5,14 In Spain, moreover, the regular con- is in concordance with the results obtained in Croatian sumption of an infusion with A pistolochia led to a case field surveys conducted between 2005 and 2015, when of chronic interstitial nephritis.15 neither new BEN nor new UTUC patients were detected In the past, Aristolochia were widely used in Western in some previously established BEN villages.21 Similar medicine.13 In fact, their first use to stimulate the expul- trends were observed in Serbia.22,23 sion of the placenta during childbirth was responsible for An early hallmark of BEN is proximal tubule damage, coining the name “Aristos lokos” or “excellent deliv- which is manifested as low-molecular-weight (tubular) ery.”16 Because the plants also were recommended for proteinuria and enzymuria that are in line with the patho- treating snake bites, Aristolochia were included in the logic findings: good preservation of glomeruli and a gradi- preparation of theriac. As a result, they were prescribed ent of tubular atrophy with severe interstitial fibrosis that for treating gout (Dutchman’s pipe). decreases in severity from outer-to-inner cortex. Two tar- In addition to the dramatic history of AA environmen- get tissues were identified in BEN patients: proximal renal tal exposure in the Balkans that
Recommended publications
  • Aristolochic Acids As Persistent Soil Pollutants: Determination of Risk for Human Exposure and Nephropathy from Plant Uptake
    Aristolochic Acids as Persistent Soil Pollutants: Determination of Risk for Human Exposure and Nephropathy from Plant Uptake The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Li, Weiwei et al. “Aristolochic Acids as Persistent Soil Pollutants: Determination of Risk for Human Exposure and Nephropathy from Plant Uptake.” Journal of agricultural and food chemistry 66 (2018): 11468-11476 © 2018 The Author(s) As Published 10.1021/acs.jafc.8b04770 Publisher American Chemical Society (ACS) Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/124829 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author J Agric Manuscript Author Food Chem. Author Manuscript Author manuscript; available in PMC 2019 October 31. Published in final edited form as: J Agric Food Chem. 2018 October 31; 66(43): 11468–11476. doi:10.1021/acs.jafc.8b04770. Aristolochic Acids as Persistent Soil Pollutants: Determination of Risk for Human Exposure and Nephropathy from Plant Uptake Weiwei Li†, Chi-Kong Chan†, Yushuo Liu‡, Jing Yao§, Branka Mitić∥, Emina N. Kostić∥, Biljana Milosavljević┴, Ivana Davinić#, William H. Orem∇, Calin A. Tatuο, Peter C. Dedon¶,*, Nikola M. Pavlović#,*, and Wan Chan†,‡,* †Dept. of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong ‡Division of Environment & Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong §Dept.
    [Show full text]
  • European Journal of Biomedical and Pharmaceutical Sciences
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/341894994 A Review on Pharmacological Activities of Aristolochia Species Article · June 2020 CITATIONS READS 6 328 3 authors: Subbiah Latha Palanisamy Selvamani Anna University, Chennai Anna University, BIT Campus, Tiruchirappalli 107 PUBLICATIONS 510 CITATIONS 125 PUBLICATIONS 634 CITATIONS SEE PROFILE SEE PROFILE Dhivya Sundaram Anna University of Technology, Tiruchirappalli 6 PUBLICATIONS 13 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Natural Polymers View project All content following this page was uploaded by Palanisamy Selvamani on 15 July 2020. The user has requested enhancement of the downloaded file. ejbps, 2015, Volume 2, Issue 5, 160-167. Review Article SJIF Impact Factor 2.062 ISSN 2349-8870 Latha et al. European European Journal Journal of Biomedical of Biomedical and Pharmac eutical Sciences Volume: 2 AND Issue: 5 Pharmaceutical sciences 160-167 http://www.ejbps.com Year: 2015 A REVIEW ON PHARMACOLOGICAL ACTIVITIES OF ARISTOLOCHIA SPECIES S. Latha*, P. Selvamani, P. S. Dhivya and R. Benaseer Begam Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli– 24, Tamil Nadu, India. Article Received on 27/07/2015 Article Revised on 18/08/2015 Article Accepted on 09/09/2015 *Correspondence for ABSTRACT Author Aristolochia is a significant genus in the family of Aristolochiaceae. S. Latha The genus Aristolochia includes about 400 species of herbaceous Department of perennials, under shrubs or shrubs bearing essential oils and is Pharmaceutical Technology, Anna University, BIT extensive across Tropical Asia, Africa and South America. Campus, Tiruchirappalli–24, Aristolochia species has been used widely in the traditional Chinese Tamil Nadu, India.
    [Show full text]
  • Aristolochia Serpentaria L
    New England Plant Conservation Program Aristolochia serpentaria L. Virginia Snakeroot Conservation and Research Plan for New England Prepared by: Dorothy J. Allard, Ph.D. Analytical Resources, LLC P.O. Box 279 East Montpelier, VT 05651 For: New England Wild Flower Society 180 Hemenway Road Framingham, MA 01701 508/877-7630 e-mail: [email protected] • website: www.newfs.org Approved, Regional Advisory Council, 2002 SUMMARY Aristolochia serpentaria L., commonly known as Virginia Snakeroot, is a perennial herb in the Aristolochiaceae. Several varieties have been described in the past, but they are no longer recognized in most taxonomic manuals. Aristolochia serpentaria occurs in 26 eastern states and is common in the southern and central part of its range, while becoming rare along its northern periphery. It is listed as a Division 2 species in Flora Conservanda (Brumback and Mehrhoff et al. 1996). Connecticut is the only New England state in which it is found, where it occurs at 12 known sites in ten towns. It grows in a variety of upland forest communities, but is more likely to be found in dry, somewhat rich, rocky, deciduous or mixed deciduous-coniferous woods in Connecticut. Farther south, it also has broad environmental requirements, occupying many upland soil and forest types. Population trends for the species in Connecticut are unclear. One new population was discovered in 2001. Monitoring in 2001 of eight extant sites found that two populations had decreased, three had increased, and one had stayed the same. Several known populations are threatened by habitat modification, invasive species, or site fragility. Two extant populations have not been surveyed for several years.
    [Show full text]
  • Aromatic Amines and Aristolochic Acids Frederick A
    part 1 . PART 1 concordance between cancer in humans and in experimental CHAPTER 2 animals chapter 2. Aromatic amines and aristolochic acids Frederick A. Beland and M. Matilde Marques Carcinogenicity in humans uation for these dyes was raised to can be attributed to 4-aminobiphe- Group 1 based on this mechanistic nyl, o-toluidine, 2-naphthylamine, or Exposure to 4-aminobiphenyl, o-tolu- information, although at present the other aromatic amines. Hair dyes idine, 2-naphthylamine, and benzi- corresponding epidemiological data are an additional source of expo- dine (Fig. 2.1) has been consisten- are considered to provide inade- sure to 4-aminobiphenyl and o-tolu- tly associated with the induction quate evidence for the carcinogeni- idine (IARC, 2010, 2012a; Lizier and of cancer of the urinary bladder in city of these dyes in humans (IARC, Boldrin Zanoni, 2012). humans. This association is based 2010, 2012a). Exposure to phenacetin (Fig. 2.1), upon occupational exposures, pri- Cigarette smoke contains 4-amino- through its use as an analgesic, marily of workers in the rubber and biphenyl, o-toluidine, and 2-naphthyl- causes cancer of the kidney and dye industries (IARC, 2010, 2012a). amine, and tobacco smoking caus- ureter in humans (IARC, 2012c). Similarly, occupational exposure to es cancer of the bladder in humans Chlornaphazine (Fig. 2.1), a chemo- 4,4′-methylenebis(2-chloroaniline) (IARC, 1986, 2004, 2010, 2012a, b). therapeutic agent that has been used (MOCA; Fig. 2.1), a curing agent for The contribution of 4-aminobiphenyl, for the treatment of Hodgkin lympho- polyurethane pre-polymers, causes o-toluidine, and 2-naphthylamine ma and for the control of polycythae- cancer of the bladder in humans, al- to the induction of smoking-related mia vera, causes cancer of the though the epidemiological data are cancer of the bladder is confounded bladder in humans, presum ably due not as strong as those for the other by the presence of numerous other to metabolism to 2-naph thylamine agents (IARC, 2010, 2012a).
    [Show full text]
  • Aristolochic Acid Exposure in Romania and Implications for Renal Cell Carcinoma
    SHORT COMMUNICATION British Journal of Cancer (2016) 114, 76–80 | doi: 10.1038/bjc.2015.402 Keywords: aristolochic acid; renal cell carcinoma; mutational signatures; DNA adducts; environment Aristolochic acid exposure in Romania and implications for renal cell carcinoma Robert J Turesky*,1, Byeong Hwa Yun1, Paul Brennan2, Dana Mates3, Viorel Jinga4, Patricia Harnden5, Rosamonde E Banks5, Helene Blanche6, Marie-Therese Bihoreau7, Priscilia Chopard2, Louis Letourneau8, G Mark Lathrop8 and Ghislaine Scelo*,2 1Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA; 2International Agency for Research on Cancer (IARC), 150 Cours Albert Thomas, Lyon 69008, France; 3National Institute of Public Health, 1-3 Doctor Leonte Anastasievici, Sector 5, Bucharest 050463, Romania; 4Carol Davila University of Medicine and Pharmacy, Th. Burghele Hospital, 20 Panduri Street, Bucharest 050659, Romania; 5Leeds Institute of Cancer and Pathology, University of Leeds, Cancer Research Building, St James’s University Hospital, Leeds LS9 7TF, UK; 6Fondation Jean Dausset–Centre d’Etude du Polymorphisme Humain, 27 Rue Juliette Dodu, Paris 75010, France; 7Centre National de Genotypage, Institut de Genomique, Centre de l’Energie Atomique et aux Energies Alternatives, 2 Rue Gaston Cremieux, Evry 91000, France and 8McGill University and Genome Quebec Innovation Centre, 740 Doctor Penfield Avenue, Montreal, Quebec H3A 0G1, Canada Background: Aristolochic acid (AA) is a nephrotoxicant associated with AA nephropathy (AAN) and upper urothelial tract cancer (UUTC). Whole-genome sequences of 14 Romanian cases of renal cell carcinoma (RCC) recently exhibited mutational signatures consistent with AA exposure, although RCC had not been previously linked with AAN and AA exposure was previously reported only in localised rural areas.
    [Show full text]
  • Aristolochic Acid-Induced Nephrotoxicity: Molecular Mechanisms and Potential Protective Approaches
    International Journal of Molecular Sciences Review Aristolochic Acid-Induced Nephrotoxicity: Molecular Mechanisms and Potential Protective Approaches Etienne Empweb Anger, Feng Yu and Ji Li * Department of Clinical Pharmacy, School of Basic Medical Sciences and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China; [email protected] (E.E.A.); [email protected] (F.Y.) * Correspondence: [email protected]; Tel.: +86-139-5188-1242 Received: 25 November 2019; Accepted: 5 February 2020; Published: 10 February 2020 Abstract: Aristolochic acid (AA) is a generic term that describes a group of structurally related compounds found in the Aristolochiaceae plants family. These plants have been used for decades to treat various diseases. However, the consumption of products derived from plants containing AA has been associated with the development of nephropathy and carcinoma, mainly the upper urothelial carcinoma (UUC). AA has been identified as the causative agent of these pathologies. Several studies on mechanisms of action of AA nephrotoxicity have been conducted, but the comprehensive mechanisms of AA-induced nephrotoxicity and carcinogenesis have not yet fully been elucidated, and therapeutic measures are therefore limited. This review aimed to summarize the molecular mechanisms underlying AA-induced nephrotoxicity with an emphasis on its enzymatic bioactivation, and to discuss some agents and their modes of action to reduce AA nephrotoxicity. By addressing these two aspects, including mechanisms of action of AA nephrotoxicity and protective approaches against the latter, and especially by covering the whole range of these protective agents, this review provides an overview on AA nephrotoxicity. It also reports new knowledge on mechanisms of AA-mediated nephrotoxicity recently published in the literature and provides suggestions for future studies.
    [Show full text]
  • TAXON:Aristolochia Trilobata L. SCORE:3.0 RATING:Evaluate
    TAXON: Aristolochia trilobata L. SCORE: 3.0 RATING: Evaluate Taxon: Aristolochia trilobata L. Family: Aristolochiaceae Common Name(s): Dutchman's pipe Synonym(s): Aristolochia caracasana Spreng. Aristolochia macroura Gomes Aristolochia trifida Lam. Howardia surinamensis (Willd.) HowardiaKlotzsch trifida (Lam.) Klotzsch Howardia trilobata (L.) Klotzsch Assessor: Chuck Chimera Status: Assessor Approved End Date: 2 Mar 2017 WRA Score: 3.0 Designation: EVALUATE Rating: Evaluate Keywords: Tropical, Vine, Shade-Tolerant, Unarmed, Gravity-Dispersed Qsn # Question Answer Option Answer 101 Is the species highly domesticated? y=-3, n=0 n 102 Has the species become naturalized where grown? 103 Does the species have weedy races? Species suited to tropical or subtropical climate(s) - If 201 island is primarily wet habitat, then substitute "wet (0-low; 1-intermediate; 2-high) (See Appendix 2) High tropical" for "tropical or subtropical" 202 Quality of climate match data (0-low; 1-intermediate; 2-high) (See Appendix 2) High 203 Broad climate suitability (environmental versatility) y=1, n=0 n Native or naturalized in regions with tropical or 204 y=1, n=0 y subtropical climates Does the species have a history of repeated introductions 205 y=-2, ?=-1, n=0 y outside its natural range? 301 Naturalized beyond native range y = 1*multiplier (see Appendix 2), n= question 205 n 302 Garden/amenity/disturbance weed n=0, y = 1*multiplier (see Appendix 2) n 303 Agricultural/forestry/horticultural weed n=0, y = 2*multiplier (see Appendix 2) n 304 Environmental weed n=0, y = 2*multiplier (see Appendix 2) n 305 Congeneric weed n=0, y = 1*multiplier (see Appendix 2) y 401 Produces spines, thorns or burrs y=1, n=0 n 402 Allelopathic 403 Parasitic y=1, n=0 n 404 Unpalatable to grazing animals 405 Toxic to animals 406 Host for recognized pests and pathogens Creation Date: 2 Mar 2017 (Aristolochia trilobata L.) Page 1 of 17 TAXON: Aristolochia trilobata L.
    [Show full text]
  • Recent Developments in Detoxication Techniques for Aristolochic Acid-Containing Traditional Chinese Cite This: RSC Adv., 2020, 10,1410 Medicines
    RSC Advances View Article Online REVIEW View Journal | View Issue Recent developments in detoxication techniques for aristolochic acid-containing traditional Chinese Cite this: RSC Adv., 2020, 10,1410 medicines Yang Fan, Zongming Li and Jun Xi * Aristolochic acids (AAs) have attracted significant attention because they have been proven to be the culprits in the mass incidents of AA nephropathy that occurred in Belgium in 1993. From then on, the door to sales of medicines containing AAs has been closed. As aristolochic acid (AA)-containing traditional Chinese medicine (TCM) has a potent therapeutic effect on some diseases, research into detoxication techniques for AA-containing traditional Chinese medicines (TCMs) should be considered to be absolutely essential. Therefore, in this paper, the use of AA-containing TCMs has been investigated and detoxication techniques, such as, processing (Paozhi, Chinese name), compatibility (Peiwu, Chinese name), pressurized liquid extraction (PLE) and supercritical fluid extraction (SFE), have been reviewed in Creative Commons Attribution-NonCommercial 3.0 Unported Licence. detail. A large number of relevant studies have been reviewed and it was found that processing with honey or alkaline salts is the most widely used method in practical production. As the AAs are a group of weak acids, relatively speaking, processing with alkaline salts can achieve a high rate of reduction of the AAs. Meanwhile, it is necessary to consider the compatibility of AA-containing TCMs and other herbal Received 12th October 2019 medicines. In addition, PLE and SFE can also achieve an excellent reducing rate for AAs in a much Accepted 16th December 2019 shorter processing time.
    [Show full text]
  • Aristolochic Acids Tract Urothelial Cancer Had an Unusually High Incidence of Urinary- Bladder Urothelial Cancer
    Report on Carcinogens, Fourteenth Edition For Table of Contents, see home page: http://ntp.niehs.nih.gov/go/roc Aristolochic Acids tract urothelial cancer had an unusually high incidence of urinary- bladder urothelial cancer. CAS No.: none assigned Additional case reports and clinical investigations of urothelial Known to be human carcinogens cancer in AAN patients outside of Belgium support the conclusion that aristolochic acids are carcinogenic (NTP 2008). The clinical stud- First listed in the Twelfth Report on Carcinogens (2011) ies found significantly increased risks of transitional-cell carcinoma Carcinogenicity of the urinary bladder and upper urinary tract among Chinese renal- transplant or dialysis patients who had consumed Chinese herbs or Aristolochic acids are known to be human carcinogens based on drugs containing aristolochic acids, using non-exposed patients as sufficient evidence of carcinogenicity from studies in humans and the reference population (Li et al. 2005, 2008). supporting data on mechanisms of carcinogenesis. Evidence of car- Molecular studies suggest that exposure to aristolochic acids is cinogenicity from studies in experimental animals supports the find- also a risk factor for Balkan endemic nephropathy (BEN) and up- ings in humans. per-urinary-tract urothelial cancer associated with BEN (Grollman et al. 2007). BEN is a chronic tubulointerstitial disease of the kidney, Cancer Studies in Humans endemic to Serbia, Bosnia, Croatia, Bulgaria, and Romania, that has The evidence for carcinogenicity in humans is based on (1) findings morphology and clinical features similar to those of AAN. It has been of high rates of urothelial cancer, primarily of the upper urinary tract, suggested that exposure to aristolochic acids results from consump- among individuals with renal disease who had consumed botanical tion of wheat contaminated with seeds of Aristolochia clematitis (Ivic products containing aristolochic acids and (2) mechanistic studies 1970, Hranjec et al.
    [Show full text]
  • Abstracts from the Division of Chemical Toxicology for the American Chemical Society National Meeting in Boston, August, 2010
    Abstracts from the Division of Chemical Toxicology for the American Chemical Society National Meeting in Boston, August, 2010. NIEHS Director's Perspective: Opportunities and Challenges Linda S. Birnbaum(1), [email protected], PO Box 12233, Mail Drop B2-01, Research Triangle Park North Carolina 27709, United States . (1) National Institute of Environmental Health Sciences, NIH, Research Triangle Park North Carolina 27709, United States In science, opportunity and challenge are often two sides of the same coin. Current challenges for environmental health include increased awareness of changing patterns of exposure and disease, and emerging exposures. Opportunities for environmental health include the ability to advance the research framework by promoting integrated scientific solutions, building on scientific developments, adding life-cycle analysis to environmental health research, and capitalizing on technological advances to find new solutions. Additional opportunities include new, expanded federal partnerships with non-traditional public health partners, such as the Departments of Transportation, Interior, and Housing and Urban Development. But we must remember to “close the loop” by changing how we think about environmental health, encouraging new paradigms, and translating basic science into human health protection. NIEHS is notably positioned to tackle these challenges and opportunities given our unique programs, including the Superfund Research Program and the National Toxicology Program, and the addition of new staff. 1. Structure and stability of duplex DNA bearing an aristolactam II-dA adduct: Insights into lesion mutagenesis and repair Carlos R De los Santos(1), [email protected], BST 7-147, Stony Brook New York 11794-8651, United States ; Mark Lukin(1); Tanya Zaliznyak(1).
    [Show full text]
  • Convergent Evolution of Deceptive Pollination Syndrome in Ceropegia and Aristolochia
    International Emerging Action 2019 - CNRS Convergent evolution of deceptive pollination syndrome in Ceropegia and Aristolochia Franco-Thai project STATE OF THE ART Although often neglected by ecologists, Diptera is one of the most important groups of pollinators for biodiversity but also for crop production (Ssymank et al. 2008). They were probably the main pollinators of early angiosperms. The long evolutionary history between Diptera and Angiosperms has produced a great diversity of pollination syndromes, which are less well known than those involving other insects such as Lepidoptera and Hymenoptera. Among these syndromes, deceptive pollination has appeared independently in various plant families, with flowers mimicking food resources, nesting sites, or mating sites. Although deceptive pollination does not involve coevolution between plants and pollinators - since pollinators do not get the expected benefits - this type of pollination has led to a great diversification and sometimes specialization of plant lineages, as for example orchid species (Cozzolino & Widmer 2005). The genera Ceropegia (Gentianales: Apocynaceae) and Aristolochia (Piperales: Aristolochiaceae) are good examples, each with several hundred species deceiving Diptera for their pollination. Deception in both genera has long been suspected (Vogel 1961, 1978), but is still poorly understood. For example, the very nature of deception (food resource, nesting site or mating site) is generally inferred from the scent and colour of the flowers, but rarely studied in detail. The lack of knowledge on the biology of the dipteran pollinators blurs further the understanding of deceptive pollination. Aristolochia and Ceropegia attract a great diversity of Dipteran families at the genus level. However, it seems increasingly evident that many species are each specialized on a few pollinator species (e.g.
    [Show full text]
  • Mutational Signatures in Upper Tract Urothelial Carcinoma Define Etiologically Distinct
    bioRxiv preprint doi: https://doi.org/10.1101/735324; this version posted August 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Mutational signatures in upper tract urothelial carcinoma define etiologically distinct 2 subtypes with prognostic relevance 3 Xuesong Li1†, Huan Lu2,3†, Bao Guan 1,2,4,5†, Zhengzheng Xu2,3, Yue Shi2, Juan Li2,3, Wenwen 4 Kong2,3, Jin Liu6, Dong Fang1,5, Libo Liu1,4,5, Qi Shen1,4,5, Yanqing Gong1,4,5, Shiming He1,4,5, Qun 5 He1,4,5, Liqun Zhou 1,4,5* and Weimin Ci 2,3,7* 6 Affiliations: 7 1Department of Urology, Peking University First Hospital, Beijing 100034, China. 8 2Key Laboratory of Genomics and Precision Medicine, Beijing Institute of Genomics, Chinese 9 Academy of Sciences, Beijing 100101, China; 10 3University of Chinese Academy of Sciences, Beijing 100049, China. 11 4Institute of Urology, Peking University, Beijing 100034, China. 12 5National Urological Cancer Center, Beijing, 100034, China. 13 6Department of Urology, The Third Hospital of Hebei Medical University, Hebei 050051, China. 14 7Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China. 15 16 *Correspondence to: [email protected]; and [email protected]. 17 † These authors contributed equally to this work. 18 19 Keywords: 20 Upper tract urothelial carcinoma; Whole-genome sequencing; Mutational signature; Aristolochic 21 acid. 22 23 1 bioRxiv preprint doi: https://doi.org/10.1101/735324; this version posted August 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]