Information Resources on the Care and Use of Molluscs"

Total Page:16

File Type:pdf, Size:1020Kb

Information Resources on the Care and Use of Molluscs NATIONAL AGRICULTURAL LIBRARY ARCHIVED FILE Archived files are provided for reference purposes only. This file was current when produced, but is no longer maintained and may now be outdated. Content may not appear in full or in its original format. All links external to the document have been deactivated. For additional information, see http://pubs.nal.usda.gov. "Information resources on the care and use of molluscs" United States Department of Agriculture Information Resources on the Care Agricultural and Use of Molluscs Research Service AWIC Resource Series No. 22 May 2003 National Agricultural Library Animal Welfare Information Center Compiled by: Gregg B. Goodman, M.S. Animal Welfare Information Center National Agricultural Library U.S. Department of Agriculture Published by: U. S. Department of Agriculture molluscs.htm[3/31/2015 9:00:20 AM] "Information resources on the care and use of molluscs" Agricultural Research Service National Agricultural Library Animal Welfare Information Center Beltsville, Maryland 20705 E-mail: [email protected] Web site: www.nal.usda.gov/awic Policies and Links CONTENTS Acknowledgments How to Use This Guide Laboratory Care / Research Aquaculture Related Resources World Wide Web Resources Acknowledgments The author gratefully acknowledges the staff members of the Animal Welfare Information Center (AWIC): Barbara Buchanan for her assistance in editing/ formatting/ the web publication, D’Anna Jensen for guidance/ editing/ formatting the print version of this publication (available by request), Tim Allen for help developing the search strategy, Michael Kreger (former staff) also for help developing the search stragegy, and Jean Larson for overall guidance/ support. How to Use This Guide* Invertebrates are playing an increasingly important role in biomedical research. Because many of their biological processes are temperature dependant, they have allowed us to view biochemical pathways and intermediate steps in ways that would be impossible with birds or mammals. Some have cells or organs similar to those found in man but greatly enlarged. The giant axon in the squid and the muscle cells in barnacles are the largest in the animal kingdom. Octopuses have the most complex brain of all invertebrates; which include long and short-term memories. Aplysia are used in many different types of nervous system studies. Sea squirts have been used to study kidney stones and squid are used in multiple sclerosis research. From scallop to sea slug, invertebrates have served as models of human and animal disease. Invertebrates are relatively easy to maintain, less expensive, and less labor intensive than more traditional laboratory animals. From a societal standpoint, invertebrates may be more acceptable as laboratory animals than vertebrates. Many researchers, either by law or policy, are required to consider ways to reduce the number of animals proposed for an experiment, refine their techniques to minimize pain and distress to the animals, and replace the animal model with a non-animal model or a taxonomically lower species. Use of the invertebrate is considered a replacement alternative to the use of vertebrates. Since research has not yet shown invertebrate cognition of what would be considered pain in mammals and birds, their use is also a refinement alternative. molluscs.htm[3/31/2015 9:00:20 AM] "Information resources on the care and use of molluscs" This guide, Information Resources on the Care and Use of Molluscs, provides a snap shot of how Molluscs are being used in research and, just as important, how they are cultured, reared, and housed in the laboratory and elsewhere. The bibliographic citations cover the publication years 2002 to approximately 1973. The bibliographic citations resulted from searching numerous scientific and technical databases. The call number is included for materials in the National Agricultural Library’s (NAL) collection. NAL’s document delivery policies can be found at http:/www.nal.usda.gov/ddsb/. The websites and organizations at the end of some sections are current through April 2003. They were found by running general searches on the World Wide Web. As sites can become outdated or relocated and new sites emerge, a general search on one of the commercial search engines should help locate address changes or new sites if the addresses included in this document no longer function. *Information included in this portion of this publication and other web-resources sections were adapted from Information Resources for the Care and Use of Invertebrates (published previously in AWIC by Michael D. Kreger, Ph.D.) and included with his permission. Laboratory Care / Research Bivalves Cephalopods Gastropods Miscellaneous Bivalves 2002 Kreeger, D.A.; Gatenby, C.M.; Raksany, D. (2002) Variability in condition index and tissue biochemistry of Elliptio complanata held in the field and laboratory. Journal of Shellfish Research 21 (1): 378 379, ISSN: 0730 8000. NAL call no: SH365.A1J6 Descriptors: freshwater ecology, environmental sciences, nutrition, Elliptio complanata, freshwater mussel, adult, microalgae, food, lab cultured, animals, nonvascular plants, tissue, biochemistry, carbohydrate, lipid, protein, continuous flow chambers, laboratory equipment, ash, environmental conditions, field conditions, food quality, laboratory conditions, natural seston, physiological condition index, reproductive cycling, seasonal variation, sediment conditions, water quality. Piano, A.; Asirelli, C.; Caselli, F.; Fabbri, E. (2002) Hsp70 expression in thermally stressed Ostrea edulis, a commercially important oyster in Europe. Cell Stress and Chaperones 7 (3): 250-257, ISSN: 1355-8145. Descriptors: Ostrea edulis, animal model, commercial importance, thermal stress, Heat shock protein-70, heat induced thermally stressed oyster gill, expression, heat induced thermally stressed oyster mantle expression, Europe. 2001 Barfield, M.L.; Farris, J.L.; Black, M.C. (2001) Biomarker and bioaccumulation responses of Asian clams exposed to aqueous cadmium. J Toxicol Environ Health A 63(7): 495 510, ISSN: 1528 7394. Abstract: Measured responses of biochemical or physiological indicators have been suggested to reflect thresholds where pollutants exert their initial effect. Responses in cellulolytic enzyme activity and DNA strand breakage of the Asian clam Corbicula fluminea exposed to cadmium in the laboratory were measured and metal body burdens were determined concurrently. Clams were exposed to aqueous cadmium concentrations of 3, 6, 12, or 25 ppb for 23 and 28 molluscs.htm[3/31/2015 9:00:20 AM] "Information resources on the care and use of molluscs" d. Cadmium concentrations in clam tissue were highest in lower cadmium treatments, and body burdens increased with length of exposure in only the 28 d experiment. Cellulolytic enzyme activity decreased with increasing cadmium concentrations for clams in the 28 d experiment. Induced enzyme activities were observed in cadmium treatments for both experiments and are thought to precede declines in activity through the length of exposure. Significant reductions in DNA strand lengths of cadmium exposed clams were observed by wk 3 in the 23 d exposure and by wk 2 in the 28 d exposure. Reduced DNA strand lengths in these cadmium treatments for the 28 d exposure precede significant declines in cellulolytic activity at subsequent sampling events. Combining these data with observations of mortality in higher cadmium treatments suggests that impairment of DNA structural integrity and reduced digestive enzyme activity may indicate metal induced stress in clams. Descriptors: cadmium pharmacokinetics, cellulose metabolism, water pollutants, chemical pharmacokinetics, analysis of variance, biological markers, body burden, cadmium toxicity, clams, DNA, single stranded drug effects, dose response relationship, drug, tissue distribution, water pollutants, chemical toxicity, biological markers, DNA, single stranded, chemical, cadmium. Borcherding, J.; Wolf, J. (2001) The influence of suspended particles on the acute toxicity of 2 chloro 4 nitro aniline, cadmium, and pentachlorophenol on the valve movement response of the zebra mussel (Dreissena polymorpha). Arch Environ Contam Toxicol 40(4): 497 504, ISSN: 0090 4341. NAL call no: TD172.A7 Abstract: The Dreissena Monitor is a biological early warning system for the continuous monitoring of river water quality, based on the valve movements of two groups of 42 zebra mussels (Dreissena polymorpha). Laboratory experiments with Cd, PCP, and 2 chloro 4 nitro aniline were conducted in combination with suspended particles (a mixture of stinging nettle powder, bentonite, and quartz powder). An increase of suspended particles up to a nominal concentration of 540 mg/L within 5 min did not evoke any reactions by the mussels significantly different from normal. The distribution between water and solids was analyzed for Cd and 2 chloro 4 nitroaniline, with the result that the former quickly adsorbed to the particles, whereas the latter did not bind to the particles at all. The behavior of the zebra mussels revealed that the detection of 2 chloro 4 nitro aniline was not affected by the presence of suspended matter. In the cases of Cd and PCP, D. polymorpha was able to detect these substances when they were particle associated at least as well or better as when they were dissolved in the water. The results are discussed with respect to the physiology of the organisms and the bioavailability of toxicants, as well as to the consequences these results may have
Recommended publications
  • Snail Production in Bayelsa State, Nigeria: Technologies, Productivity and Enhancement Measures
    SNAIL PRODUCTION IN BAYELSA STATE, NIGERIA: TECHNOLOGIES, PRODUCTIVITY AND ENHANCEMENT MEASURES BY SUWARI, GOD’STIME SAMUEL PG/Ph.D/04/35563 DEPARTMENT OF VOCATIONAL TEACHER EDUCATION (AGRICULTURAL UNIT) UNIVERSITY OF NIGERIA, NSUKKA SUPERVISOR: DR. R.O. MAMA OCTOBER, 2010. 2 TITLE PAGE SNAIL PRODUCTION IN BAYELSA STATE, NIGERIA: TECHNOLOGIES, PRODUCTIVITY AND ENHANCEMENT MEASURES BY SUWARI, GOD’STIME SAMUEL PG/Ph.D/04/35563 A THESIS REPORT SUBMITTED TO THE DEPARTMENT OF VOCATIONAL TEACHER EDUCATION, UNIVERSITY OF NIGERIA, NSUKKA; IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE AWARD OF Ph.D DEGREE IN AGRICULTURAL EDUCATION SUPERVISOR: DR. R.O. MAMA OCTOBER, 2010. 2 3 APPROVAL PAGE This thesis has been approved for the Department of Vocational Teacher Education, University of Nigeria, Nsukka. By ………………………….. ………………………… Dr. R.O. Mama (Supervisor) Internal Examiner ………………………… ………………………. Prof. E.E. Agomuo External Examiner (Head of Department) …………………………… Prof. S.A. Ezeudu (Dean, Faculty of Education) 3 4 CERTIFICATION SUWARI, GOD’STIME SAMUEL, a postgraduate student in the Department of Vocational Teacher Education (Agriculture) with Registration Number PG/Ph.D/04/35563, has satisfactorily completed the requirements for the research work for the degree of Doctor of Philosophy in Agricultural Education. The work embodied in this thesis is original and has not been submitted in part or full for any Diploma or Degree of this University or any other University. ………………………………….. ……………………… SUWARI, GOD’STIME SAMUEL DR. R.O. MAMA Student Supervisor 4 5 DEDICATION To: Almighty God from whom mercy, knowledge, wisdom and understanding come and who has made me what I am today. 5 6 ACKNOWLEDGEMENTS The researcher wishes to express his profound gratitude to the project supervisor, Dr.
    [Show full text]
  • 249 Heliciculture As a Tool for Rural Development In
    HELICICULTURE AS A TOOL FOR RURAL DEVELOPMENT IN SOUTHERN TRANSYLVANIA 1 2 VOICHITA GHEOCA , LETI ȚIA OPREAN 1“Lucian Blaga” University of Sibiu, Faculty of Sciences, 2“Lucian Blaga” University of Sibiu, Faculty of Agricultural Sciences, Food Industry and Environmental Protection , 5-7 Dr. I Ra ţiu St., RO – 550012, Sibiu, Romania [email protected] ABSTRACT In Romania there is no tradition as regards the consumption of snails. After several decades of land snails populations’ exploitation for international trade, in the last decade the farming of edible snails has evolved in Romania. The expansion of this practice was encouraged by the SAPARD Program and several foreign companies, promising a quick and easily obtained benefit. About 650 snail farms were established in Romania between the years 2004-2008, most of them using the Italian method, with Helix aspersa in pastures. However, this method had proved its deficiency in the given environmental conditions, leading to high mortality rates. An autochthonous method was developed using H. pomatia , applied by farmers organized in a cooperative, and which have invested in their own processing factory in southern Transylvania, aiming to obtain valuable biologic products. Both the individual farmers and the cooperative were not able to sustain the losses registered during the first years, and find a market for their products, a situation that lead to the collapse of heliciculture in Romania. Despite the unfortunate experience, this new agricultural activity has the potential of a profitable practice in Romania, and especially in Transylvania, not just due to the demand of the European market, but also to the climatic conditions, which make possible the snail farming.
    [Show full text]
  • Squid Giant Axon (Glia/Neurons/Secretion)
    Proc. Nat. Acad. Sci. USA Vol. 71, No. 4, pp. 1188-1192, April 1974 Transfer of Newly Synthesized Proteins from Schwann Cells to the Squid Giant Axon (glia/neurons/secretion) R. J. LASEK*, H. GAINERt, AND R. J. PRZYBYLSKI* Marine Biological Laboratory, Woods Hole, Massachusetts 02543 Communicated by Walle J. H. Nauta, November 28, 1973 ABSTRACT The squid giant axon is presented as a teins synthesized in the Schwann cells surrounding the axon model for the study of macromolecular interaction be- tween cells in the nervous system. When the isolated giant are subsequently transferred into the axoplasm. axon was incubated in sea water containing [3Hjleucine MATERIALS AND METHODS for 0.5-5 hr, newly synthesized proteins appeared in the sheath and axoplasm as demonstrated by: (i) radioautogra- Protein synthesis was studied in squid giant axons obtained phy, (ii) separation of the -sheath and axoplasm by extru- from live squid which were kept in a sea tank and used within sion, and (iii) perfusion of electrically excitable axons. hr of obtained The absence of ribosomal RNA in the axoplasm [Lasek, 48 capture. The giant axons were by decapitat- R. J. et al. (1973) Nature 244, 162-165] coupled with other ing the squid and dissecting the axons under a stream of run- evidence indicates that the labeled proteins that are found ning sea water. The axons, 4-6 cm long, were tied with thread in the axoplasm originate in the Schwann cells surrounding at both ends, removed from the mantle, and cleaned of ad- the axon. Approximately 50%70 of the newly synthesized hering connective tissue in a petri dish filled with sea water Schwann cell proteins are transferred to the giant axon.
    [Show full text]
  • Effects of Temperature on Escape Jetting in the Squid Loligo Opalescens
    The Journal of Experimental Biology 203, 547–557 (2000) 547 Printed in Great Britain © The Company of Biologists Limited 2000 JEB2451 EFFECTS OF TEMPERATURE ON ESCAPE JETTING IN THE SQUID LOLIGO OPALESCENS H. NEUMEISTER*,§, B. RIPLEY*, T. PREUSS§ AND W. F. GILLY‡ Hopkins Marine Station of Stanford University, Department of Biological Science, 120 Ocean View Boulevard, Pacific Grove, 93950 CA, USA *Authors have contributed equally ‡Author for correspondence (e-mail: [email protected]) §Present address: Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA Accepted 19 November 1999; published on WWW 17 January 2000 Summary In Loligo opalescens, a sudden visual stimulus (flash) giant and non-giant motor axons in isolated nerve–muscle elicits a stereotyped, short-latency escape response that is preparations failed to show the effects seen in vivo, i.e. controlled primarily by the giant axon system at 15 °C. We increased peak force and increased neural activity at low used this startle response as an assay to examine the effects temperature. Taken together, these results suggest that of acute temperature changes down to 6 °C on behavioral L. opalescens is able to compensate escape jetting and physiological aspects of escape jetting. In free- performance for the effects of acute temperature reduction. swimming squid, latency, distance traveled and peak A major portion of this compensation appears to occur in velocity for single escape jets all increased as temperature the central nervous system and involves alterations in the decreased. In restrained squid, intra-mantle pressure recruitment pattern of both the giant and non-giant axon transients during escape jets increased in latency, duration systems.
    [Show full text]
  • Fauna of New Zealand Website Copy 2010, Fnz.Landcareresearch.Co.Nz
    aua o ew eaa Ko te Aiaga eeke o Aoeaoa IEEAE SYSEMAICS AISOY GOU EESEAIES O ACAE ESEAC ema acae eseac ico Agicuue & Sciece Cee P O o 9 ico ew eaa K Cosy a M-C aiièe acae eseac Mou Ae eseac Cee iae ag 917 Aucka ew eaa EESEAIE O UIESIIES M Emeso eame o Eomoogy & Aima Ecoogy PO o ico Uiesiy ew eaa EESEAIE O MUSEUMS M ama aua Eiome eame Museum o ew eaa e aa ogaewa O o 7 Weigo ew eaa EESEAIE O OESEAS ISIUIOS awece CSIO iisio o Eomoogy GO o 17 Caea Ciy AC 1 Ausaia SEIES EIO AUA O EW EAA M C ua (ecease ue 199 acae eseac Mou Ae eseac Cee iae ag 917 Aucka ew eaa Fauna of New Zealand Ko te Aitanga Pepeke o Aotearoa Number / Nama 38 Naturalised terrestrial Stylommatophora (Mousca Gasooa Gay M ake acae eseac iae ag 317 amio ew eaa 4 Maaaki Whenua Ρ Ε S S ico Caeuy ew eaa 1999 Coyig © acae eseac ew eaa 1999 o a o is wok coee y coyig may e eouce o coie i ay om o y ay meas (gaic eecoic o mecaica icuig oocoyig ecoig aig iomaio eiea sysems o oewise wiou e wie emissio o e uise Caaoguig i uicaio AKE G Μ (Gay Micae 195— auase eesia Syommaooa (Mousca Gasooa / G Μ ake — ico Caeuy Maaaki Weua ess 1999 (aua o ew eaa ISS 111-533 ; o 3 IS -7-93-5 I ie 11 Seies UC 593(931 eae o uIicaio y e seies eio (a comee y eo Cosy usig comue-ase e ocessig ayou scaig a iig a acae eseac M Ae eseac Cee iae ag 917 Aucka ew eaa Māoi summay e y aco uaau Cosuas Weigo uise y Maaaki Weua ess acae eseac O o ico Caeuy Wesie //wwwmwessco/ ie y G i Weigo o coe eoceas eicuaum (ue a eigo oaa (owe (IIusao G M ake oucio o e coou Iaes was ue y e ew eaIa oey oa ue oeies eseac
    [Show full text]
  • 2,3-Bisphosphoglycerate (2,3-BPG)
    11-cis retinal 5.4.2 achondroplasia 19.1.21 active transport, salt 3.4.19 2,3-bisphosphoglycerate 11.2.2 acid-base balance 18.3.34 activity cycle, flies 2.2.2 2,4-D herbicide 3.3.22, d1.4.23 acid coagulation cheese 15.4.36 activity rhythms, locomotor 7.4.2 2,6-D herbicide, mode of action acid growth hypothesis, plant cells actogram 7.4.2 3.2.22 3.3.22 acute mountain sickness 8.4.19 2-3 diphosphoglycerate, 2-3-DPG, acid hydrolases 15.2.36 acute neuritis 13.5.32 in RBCs 3.2.25 acid in gut 5.1.2 acute pancreatitis 9.3.24 2C fragments, selective weedkillers acid rain 13.2.10, 10.3.25, 4.2.27 acyltransferases 11.5.39 d1.4.23 1.1.15 Adams, Mikhail 12.3.39 3' end 4.3.23 acid rain and NO 14.4.18 adaptation 19.2.26, 7.2.31 3D formula of glucose d16.2.15 acid rain, effects on plants 1.1.15 adaptation, chemosensory, 3-D imaging 4.5.20 acid rain, mobilization of soil in bacteria 1.1.27 3-D models, molecular 5.3.7 aluminium 3.4.27 adaptation, frog reproduction 3-D reconstruction of cells 18.1.16 acid rain: formation 13.2.10 17.2.17 3-D shape of molecules 7.2.19 acid 1.4.16 adaptations: cereals 3.3.30 3-D shapes of proteins 6.1.31 acid-alcohol-fast bacteria 14.1.30 adaptations: sperm 10.5.2 3-phosphoglycerate 5.4.30 acidification of freshwater 1.1.15 adaptive immune response 5' end 4.3.23 acidification 3.4.27 19.4.14, 18.1.2 5-hydroxytryptamine (5-HT) 12.1.28, acidification, Al and fish deaths adaptive immunity 19.4.34, 5.1.35 3.4.27 d16.3.31, 5.5.15 6-aminopenicillanic acid 12.1.36 acidification, Al and loss of adaptive radiation 8.5.7 7-spot ladybird
    [Show full text]
  • Effect of Fmrfamide on Voltage-Dependent Currents In
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.29.318691; this version posted October 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A. Chrachri 1 Effect of FMRFamide on voltage-dependent currents in identified centrifugal 2 neurons of the optic lobe of the cuttlefish, Sepia officinalis 3 4 Abdesslam Chrachri 5 University of Plymouth, Dept of Biological Sciences, Drake Circus, Plymouth, PL4 6 8AA, UK and the Marine Biological Association of the UK, Citadel Hill, Plymouth 7 PL1 2PB, UK 8 Phone: 07931150796 9 Email: [email protected] 10 11 Running title: Membrane currents in centrifugal neurons 12 13 Key words: cephalopod, voltage-clamp, potassium current, calcium currents, sodium 14 current, FMRFamide. 15 16 Summary: FMRFamide modulate the ionic currents in identified centrifugal neurons 17 in the optic lobe of cuttlefish: thus, FMRFamide could play a key role in visual 18 processing of these animals. 19 - 1 - bioRxiv preprint doi: https://doi.org/10.1101/2020.09.29.318691; this version posted October 1, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. A. Chrachri 20 Abstract 21 Whole-cell patch-clamp recordings from identified centrifugal neurons of the optic 22 lobe in a slice preparation allowed the characterization of five voltage-dependent 23 currents; two outward and three inward currents. The outward currents were; the 4- 24 aminopyridine-sensitive transient potassium or A-current (IA), the TEA-sensitive 25 sustained current or delayed rectifier (IK).
    [Show full text]
  • Carbon Footprint of Heliciculture: a Case Study from an Italian Experimental Farm
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/284929489 Carbon footprint of heliciculture: A case study from an Italian experimental farm ARTICLE in AGRICULTURAL SYSTEMS · FEBRUARY 2016 Impact Factor: 2.91 · DOI: 10.1016/j.agsy.2015.11.010 READS 24 4 AUTHORS: Annachiara Forte Amalia Zucaro University of Naples Federico II University of Naples Federico II 9 PUBLICATIONS 24 CITATIONS 27 PUBLICATIONS 155 CITATIONS SEE PROFILE SEE PROFILE Gionata De Vico Angelo Fierro University of Naples Federico II University of Naples Federico II 99 PUBLICATIONS 989 CITATIONS 24 PUBLICATIONS 189 CITATIONS SEE PROFILE SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Gionata De Vico letting you access and read them immediately. Retrieved on: 10 January 2016 Agricultural Systems 142 (2016) 99–111 Contents lists available at ScienceDirect Agricultural Systems journal homepage: www.elsevier.com/locate/agsy Carbon footprint of heliciculture: A case study from an Italian experimental farm Annachiara Forte a,⁎, Amalia Zucaro a,GionataDeVicoa, Angelo Fierro a,b a Dipartimento di Biologia, Università di Napoli Federico II, Italy b Laboratorio di Urbanistica e di Pianificazione del Territorio (LUPT), Università di Napoli Federico II, Italy article info abstract Article history: Heliciculture for food production has huge potential and new opportunities for rural development and young en- Received 18 March 2015 trepreneurs in Italy. No studies have yet been performed on the environmental performance of snail rearing Received in revised form 10 November 2015 which also might be a beneficial tool for producers. The aim of the present paper is to evaluate the impact of Accepted 18 November 2015 snail meat by a cradle-to-farm gate life cycle assessment centred on the carbon footprint (CF).
    [Show full text]
  • NEUROMECHANICAL CHARACTERIZATION of BRAIN DAMAGE in RESPONSE to HEAD IMPACT and PATHOLOGICAL CHANGES Zolochevsky O
    Series «Medicine». Issue 39 Fundamental researches UDC: 617.3:57.089.67:539.3 DOI: 10.26565/2313-6693-2020-39-01 NEUROMECHANICAL CHARACTERIZATION OF BRAIN DAMAGE IN RESPONSE TO HEAD IMPACT AND PATHOLOGICAL CHANGES Zolochevsky O. O., Martynenko O. V. Traumatic injuries to the central nervous system (brain and spinal cord) have received special attention because of their devastating socio-economical cost. Functional and morphological damage of brain is the most intricate phenomenon in the body. It is the major cause of disability and death. The paper involves constitutive modeling and computational investigations towards an understanding the mechanical and functional failure of brain due to the traumatic (head impact) and pathological (brain tumor) events within the framework of continuum damage mechanics of brain. Development of brain damage has been analyzed at the organ scale with the whole brain, tissue scale with white and gray tissue, and cellular scale with an individual neuron. The mechanisms of neurodamage growth have been specified in response to head impact and brain tumor. Swelling due to electrical activity of nervous cells under electrophysiological impairments, and elastoplastic deformation and creep under mechanical loading of the brain have been analyzed. The constitutive laws of neuromechanical behavior at large strains have been developed, and tension-compression asymmetry, as well as, initial anisotropy of brain tissue was taken into account. Implementation details of the integrated neuromechanical constitutive model including the Hodgkin-Huxley model for voltage into ABAQUS, ANSYS and in-house developed software have been considered in a form of the computer-based structural modeling tools for analyzing stress distributions over time in healthy and diseased brains, for neurodamage analysis and for lifetime predictions of diseased brains.
    [Show full text]
  • Raising Snails
    NATIONAL AGRICULTURAL LIBRARY ARCHIVED FILE Archived files are provided for reference purposes only. This file was current when produced, but is no longer maintained and may now be outdated. Content may not appear in full or in its original format. All links external to the document have been deactivated. For additional information, see http://pubs.nal.usda.gov. Update: Visit AFSIC's Snail Culture Web site. Raising Snails Special Reference Briefs Series no. SRB 96-05 Updates SRB 88-04 ISSN: 1052-536X Compiled by: Rebecca Thompson, Information Centers Branch and Sheldon Cheney, Reference Section U.S. Department of Agriculture Agricultural Research Service National Agricultural Library Beltsville, Maryland 20705-2351 Compiled for: The Alternative Farming Systems Information Center, National Agricultural Library July 1996 Web sites revised May 2008 Acknowledgement Mary Gold, Alternative Farming Systems Information Center, NAL/ARS, and Karl Schneider, Reference and User Services Branch, NAL/ARS, assisted with database searching. Ray Stevens, Alternative Farming Systems Information Center, reviewed this publication. The authors appreciate their valuable input and assistance. For additional reference sources on the many issues and techniques involved in sustainable agriculture, you may request AFSIC's List of Information Products. For a copy of this list, or for answers to questions, please contact: Alternative Farming Systems Information Center National Agricultural Library 10301 Baltimore Ave., Room 132 Beltsville MD 20705-2351 Telephone: (301) 504-6559, FAX: (301) 504-6409 Contents Introduction Edible Species Mating and Egg Laying Growth Farming Snails Farming Snails Introduction Pens and Enclosures Cannibalism by Hatchlings Gathering Snails Feeding Diseases and Pests Population Density Shipping Turning Snails into Escargot Restrictions and Regulations U.S.
    [Show full text]
  • An Assessment of Snail-Farm Systems Based on Land Use and Farm Components
    Article An Assessment of Snail-Farm Systems Based on Land Use and Farm Components Konstantinos Apostolou 1,* , Alexandra Staikou 2 , Smaragda Sotiraki 3 and Marianthi Hatziioannou 1,* 1 Department of Ichthyology & Aquatic Environment, Faculty of Agricultural Sciences, University of Thessaly, Fytoko Street, 38 445 Nea Ionia Magnesia, Greece 2 Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; [email protected] 3 Veterinary Research Institute, Hellenic Agricultural Organization DEMETER, HAO Campus, 57001 Thermi, Greece; [email protected] * Correspondence: [email protected] (K.A.); [email protected] (M.H.); Tel.: +30-24210-93269 (M.H.) Simple Summary: This study’s goal was a thorough analysis and a detailed characterization of commercial snail farms in Greece, considering the unstructured development of the snail-farming sector over recent years. Additionally, the characterization of snail farms in Greece could help Southern European countries improve heliciculture. This study classifies 29 farms in five snail farming systems: elevated sections (7%), net-covered greenhouse (38%), a mixed system with a net-covered greenhouse (10%), open field (38%), and mixed system with an open field (7%). Results showed the impact of various parameters (farming system, region, equipment, and facilities) on annual production. Snail farms were dispersed in six different regions (Thrace, Central Macedonia, West Macedonia, Thessaly, Western Greece, and the Attica Islands). The location affected productivity, but also influenced the duration of operation during an annual cycle. Abstract: In this study, the structural and management characteristics of snail farms in Greece were analyzed to maximize sustainable food production. Objectives, such as the classification of farming systems and assessing the effects of various annual production parameters, were investigated.
    [Show full text]
  • October, 2018 Edition
    A newsletter published by the Sarasota Shell Club The Look for us at www.Sarasotashellclub.com We meet on the 2nd Thursday, 7:00 pm (September to April) Beauii at Fire Station #2, 2070 Waldemere St., Sarasota, FL October, 2018 Edition From the Prez Field Trips, 2018-2019 Greetings! 10/27/18 Boca Grande 11/10/18 Blackthorne Park, Sunshine Skywy We’ve had a great start 1/19/19 Cedar Key to the new season. If you 1/22/19 Carefree Learner attended the September 2/05/19 Carefree Learner meeting, you saw lots of 2/20/19 Carefree Learner lovely shells collected by 4/20/19 Peanut Island, West Palm Beach members over the summer. Whats in this Issue: I hope many of you will attend our field trips this President’s Message Page 1 year so you can have your own shells to show off! Featured Mollusk Page 2 Speaking of field trips, our first big trip this sea- Meet your Member Page 3 son is down to Boca Grande. Red tide should recede Article: Florida’s Land Snails Page 4-5 with the advent of cooler weather and Boca Grande Raising Snails Page 6 always boasts good shelling. I’ve found several “Slime” Page 7 beautiful Florida cones and orange scallops there and October Meeting’s Speaker Page 8 I know others have found alphabet cones and even a Historian’s Report Page 8 deer cowrie! Reserve the date now and plan to go. Shelling for Live Shells Page 9 The sign-up sheet will be at the meeting on the 11th.
    [Show full text]