Unit 17: Samples and Surveys
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
13 Collecting Statistical Data
13 Collecting Statistical Data 13.1 The Population 13.2 Sampling 13.3 Random Sampling 1.1 - 1 • Polls, studies, surveys and other data collecting tools collect data from a small part of a larger group so that we can learn something about the larger group. • This is a common and important goal of statistics: Learn about a large group by examining data from some of its members. 1.1 - 2 Data collections of observations (such as measurements, genders, survey responses) 1.1 - 3 Statistics is the science of planning studies and experiments, obtaining data, and then organizing, summarizing, presenting, analyzing, interpreting, and drawing conclusions based on the data 1.1 - 4 Population the complete collection of all individuals (scores, people, measurements, and so on) to be studied; the collection is complete in the sense that it includes all of the individuals to be studied 1.1 - 5 Census Collection of data from every member of a population Sample Subcollection of members selected from a population 1.1 - 6 A Survey • The practical alternative to a census is to collect data only from some members of the population and use that data to draw conclusions and make inferences about the entire population. • Statisticians call this approach a survey (or a poll when the data collection is done by asking questions). • The subgroup chosen to provide the data is called the sample, and the act of selecting a sample is called sampling. 1.1 - 7 A Survey • The first important step in a survey is to distinguish the population for which the survey applies (the target population) and the actual subset of the population from which the sample will be drawn, called the sampling frame. -
Preface Chapter 1
Notes Preface 1. Alfred Pearce Dennis, “Humanizing the Department of Commerce,” Saturday Evening Post, June 6, 1925, 8. 2. Herbert Hoover, Memoirs: The Cabinet and the Presidency, 1920–1930 (New York: Macmillan, 1952), 184. 3. Herbert Hoover, “The Larger Purposes of the Department of Commerce,” in “Republi- can National Committee, Brief Review of Activities and Policies of the Federal Executive Departments,” Bulletin No. 6, 1928, Herbert Hoover Papers, Campaign and Transition Period, Box 6, “Subject: Republican National Committee,” Hoover Presidential Library, West Branch, Iowa. 4. Herbert Hoover, “Responsibility of America for World Peace,” address before national con- vention of National League of Women Voters, Des Moines, Iowa, April 11, 1923, Bible no. 303, Hoover Presidential Library. 5. Bruce Bliven, “Hoover—And the Rest,” Independent, May 29, 1920, 275. Chapter 1 1. John W. Hallowell to Arthur (Hallowell?), November 21, 1918, Hoover Papers, Pre-Com- merce Period, Hoover Presidential Library, West Branch, Iowa, Box 6, “Hallowell, John W., 1917–1920”; Julius Barnes to Gertrude Barnes, November 27 and December 5, 1918, ibid., Box 2, “Barnes, Julius H., Nov. 27, 1918–Jan. 17, 1919”; Lewis Strauss, “Further Notes for Mr. Irwin,” ca. February 1928, Subject File, Lewis L. Strauss Papers, Hoover Presidential Library, West Branch, Iowa, Box 10, “Campaign of 1928: Campaign Literature, Speeches, etc., Press Releases, Speeches, etc., 1928 Feb.–Nov.”; Strauss, handwritten notes, December 1, 1918, ibid., Box 76, “Strauss, Lewis L., Diaries, 1917–19.” 2. The men who sailed with Hoover to Europe on the Olympic on November 18, 1918, were Julius Barnes, Frederick Chatfi eld, John Hallowell, Lewis Strauss, Robert Taft, and Alonzo Taylor. -
Lesson 3: Sampling Plan 1. Introduction to Quantitative Sampling Sampling: Definition
Quantitative approaches Quantitative approaches Plan Lesson 3: Sampling 1. Introduction to quantitative sampling 2. Sampling error and sampling bias 3. Response rate 4. Types of "probability samples" 5. The size of the sample 6. Types of "non-probability samples" 1 2 Quantitative approaches Quantitative approaches 1. Introduction to quantitative sampling Sampling: Definition Sampling = choosing the unities (e.g. individuals, famililies, countries, texts, activities) to be investigated 3 4 Quantitative approaches Quantitative approaches Sampling: quantitative and qualitative Population and Sample "First, the term "sampling" is problematic for qualitative research, because it implies the purpose of "representing" the population sampled. Population Quantitative methods texts typically recognize only two main types of sampling: probability sampling (such as random sampling) and Sample convenience sampling." (...) any nonprobability sampling strategy is seen as "convenience sampling" and is strongly discouraged." IIIIIIIIIIIIIIII Sampling This view ignores the fact that, in qualitative research, the typical way of IIIIIIIIIIIIIIII IIIII selecting settings and individuals is neither probability sampling nor IIIII convenience sampling." IIIIIIIIIIIIIIII IIIIIIIIIIIIIIII It falls into a third category, which I will call purposeful selection; other (= «!Miniature population!») terms are purposeful sampling and criterion-based selection." IIIIIIIIIIIIIIII This is a strategy in which particular settings, persons, or activieties are selected deliberately in order to provide information that can't be gotten as well from other choices." Maxwell , Joseph A. , Qualitative research design..., 2005 , 88 5 6 Quantitative approaches Quantitative approaches Population, Sample, Sampling frame Representative sample, probability sample Population = ensemble of unities from which the sample is Representative sample = Sample that reflects the population taken in a reliable way: the sample is a «!miniature population!» Sample = part of the population that is chosen for investigation. -
George Gallup: Highlights of His Life and Work
George Gallup: Highlights of His Life and Work PRE-BIOGRAPHY AND PRE-HISTORY Understanding the character of creative people and the significance of their achievements requires, in the first place, a study of their pre-biography, together with the pre-history of that branch of science, art or culture where their endeavors have taken place. In other words, the person’s biography is a product of both the genealogy and the environment in which his or her professional activity has taken place. The life and work of George Gallup in this sense are exemplary. In the first place, he belonged to a large family, whose members had vigorously participated in the development of the United States, and whose accomplishments and merits are recorded in the annals of the country. Secondly, even though the modern stage of public opinion research began with the pioneering work of George Gallup in 1935 and 1936, the study of electoral attitudes in the US had a long history prior to that. Accordingly, after examining the pre-biography of George Gallup, we will also review the pre-history of public opinion research. Tenth-Generation American For generations, the large Kollop family resided in Lotharingia (Lorraine). During the Middle Ages some of its descendants moved over to England, retaining the Gollop name. It is believed to have been forged from the German words Gott and Lobe, meaning respectively “God” and “praise”. Over time various spellings of the family name emerged: Gallop, Galloup, Galloupe, Gallupe, and Gollop, with the version prevalent in America becoming Gal- lup. A historical record has been preserved in England concerning John Gollop (born about 1440), who came ‘out of the North in the fifth year of the reign of Edward IV’ (1465). -
Chapter 3: Simple Random Sampling and Systematic Sampling
Chapter 3: Simple Random Sampling and Systematic Sampling Simple random sampling and systematic sampling provide the foundation for almost all of the more complex sampling designs that are based on probability sampling. They are also usually the easiest designs to implement. These two designs highlight a trade-off inherent in all sampling designs: do we select sample units at random to minimize the risk of introducing biases into the sample or do we select sample units systematically to ensure that sample units are well- distributed throughout the population? Both designs involve selecting n sample units from the N units in the population and can be implemented with or without replacement. Simple Random Sampling When the population of interest is relatively homogeneous then simple random sampling works well, which means it provides estimates that are unbiased and have high precision. When little is known about a population in advance, such as in a pilot study, simple random sampling is a common design choice. Advantages: • Easy to implement • Requires little advance knowledge about the target population Disadvantages: • Imprecise relative to other designs if the population is heterogeneous • More expensive to implement than other designs if entities are clumped and the cost to travel among units is appreciable How it is implemented: • Select n sample units at random from N available in the population All units within the population must have the same probability of being selected, therefore each and every sample of size n drawn from the population has an equal chance of being selected. There are many strategies available for selecting a random sample. -
Has Polling Enhanced Representation? Unearthing Evidence from the Literary Digest Issue Polls
Studies in American Political Development, 21 (Spring 2007), 16–29. Has Polling Enhanced Representation? Unearthing Evidence from the Literary Digest Issue Polls David Karol, University of California, Berkeley How has representation changed over time in the Institutional reforms are not, however, the only United States? Has responsiveness to public opinion factors that can affect representation; technological waxed or waned among elected officials? What are change can also play a significant role. In fact, some the causes of such trends as we observe? Scholars scholars contend that the rise of scientific surveys have pursued these crucial questions in different since the 1930s has yielded more responsive govern- ways. Some explore earlier eras in search of the “elec- ment. According to this school of thought, polls toral connection”, i.e. the extent to which voters held provide recent cohorts of elected officials more accu- office-holders accountable for their actions and the rate assessments of public opinion than their prede- degree to which electoral concerns motivated poli- cessors enjoyed, which allows them to reflect their ticians’ behavior.1 Others explore the effects of insti- constituents’ views to a greater extent than the tutional changes such as the move to direct election politicians of yesteryear. Yet others doubt whether of senators or the “reapportionment revolution.”2 politicians were truly ignorant of public sentiment before the rise of the poll; nor is there much certainty regarding the level of current politicians’ understand- I thank Larry Bartels, Terri Bimes, Ben Bishin, Ben Fordham, ing of constituent opinion. Some also question John Geer, Brian Glenn, Susan Herbst, Mark Kayser, Brian Lawson, whether ignorance is at the root of elected officials’ Taeku Lee, Eileen McDonagh and Eric Plutzer for comments along frequent divergence from their constituents’ wishes. -
R(Y NONRESPONSE in SURVEY RESEARCH Proceedings of the Eighth International Workshop on Household Survey Nonresponse 24-26 September 1997
ZUMA Zentrum für Umfragen, Melhoden und Analysen No. 4 r(y NONRESPONSE IN SURVEY RESEARCH Proceedings of the Eighth International Workshop on Household Survey Nonresponse 24-26 September 1997 Edited by Achim Koch and Rolf Porst Copyright O 1998 by ZUMA, Mannheini, Gerinany All rights reserved. No part of tliis book rnay be reproduced or utilized in any form or by aiiy means, electronic or mechanical, including photocopying, recording, or by any inforniation Storage and retrieval System, without permission in writing froni the publisher. Editors: Achim Koch and Rolf Porst Publisher: Zentrum für Umfragen, Methoden und Analysen (ZUMA) ZUMA is a member of the Gesellschaft Sozialwissenschaftlicher Infrastruktureinrichtungen e.V. (GESIS) ZUMA Board Chair: Prof. Dr. Max Kaase Dii-ector: Prof. Dr. Peter Ph. Mohlcr P.O. Box 12 21 55 D - 68072.-Mannheim Germany Phone: +49-62 1- 1246-0 Fax: +49-62 1- 1246- 100 Internet: http://www.social-science-gesis.de/ Printed by Druck & Kopie hanel, Mannheim ISBN 3-924220-15-8 Contents Preface and Acknowledgements Current Issues in Household Survey Nonresponse at Statistics Canada Larry Swin und David Dolson Assessment of Efforts to Reduce Nonresponse Bias: 1996 Survey of Income and Program Participation (SIPP) Preston. Jay Waite, Vicki J. Huggi~isund Stephen 1'. Mnck Tlie Impact of Nonresponse on the Unemployment Rate in the Current Population Survey (CPS) Ciyde Tucker arzd Brian A. Harris-Kojetin An Evaluation of Unit Nonresponse Bias in the Italian Households Budget Survey Claudio Ceccarelli, Giuliana Coccia and Fahio Crescetzzi Nonresponse in the 1996 Income Survey (Supplement to the Microcensus) Eva Huvasi anci Acfhnz Marron The Stability ol' Nonresponse Rates According to Socio-Dernographic Categories Metku Znletel anci Vasju Vehovar Understanding Household Survey Nonresponse Through Geo-demographic Coding Schemes Jolin King Response Distributions when TDE is lntroduced Hikan L. -
Lecture 8: Sampling Methods
Lecture 8: Sampling Methods Donglei Du ([email protected]) Faculty of Business Administration, University of New Brunswick, NB Canada Fredericton E3B 9Y2 Donglei Du (UNB) ADM 2623: Business Statistics 1 / 30 Table of contents 1 Sampling Methods Why Sampling Probability vs non-probability sampling methods Sampling with replacement vs without replacement Random Sampling Methods 2 Simple random sampling with and without replacement Simple random sampling without replacement Simple random sampling with replacement 3 Sampling error vs non-sampling error 4 Sampling distribution of sample statistic Histogram of the sample mean under SRR 5 Distribution of the sample mean under SRR: The central limit theorem Donglei Du (UNB) ADM 2623: Business Statistics 2 / 30 Layout 1 Sampling Methods Why Sampling Probability vs non-probability sampling methods Sampling with replacement vs without replacement Random Sampling Methods 2 Simple random sampling with and without replacement Simple random sampling without replacement Simple random sampling with replacement 3 Sampling error vs non-sampling error 4 Sampling distribution of sample statistic Histogram of the sample mean under SRR 5 Distribution of the sample mean under SRR: The central limit theorem Donglei Du (UNB) ADM 2623: Business Statistics 3 / 30 Why sampling? The physical impossibility of checking all items in the population, and, also, it would be too time-consuming The studying of all the items in a population would not be cost effective The sample results are usually adequate The destructive nature of certain tests Donglei Du (UNB) ADM 2623: Business Statistics 4 / 30 Sampling Methods Probability Sampling: Each data unit in the population has a known likelihood of being included in the sample. -
Survey Design
1 Survey Design Target population: The scope of ACES is to capture investment by all domestic, private, non-farm businesses, including agricultural non-farm business and businesses without employees. Investment made after applying for an Employer Identification Number (EIN) from the Internal Revenue Service (IRS) but before having any payroll or receipts is also included. Major exclusions are foreign operations of U.S. businesses, businesses in the U.S. territories, government operations (including the U.S. Postal Service), agricultural production companies and private households. Sampling frame: ACES collects information at the company level. The records of how the company invests are maintained at the headquarters level, and not at the location of each physical operating location. Companies may elect to have divisions within the company report, but the sampling unit and tabulation unit will be the company. A company’s importance to the survey depends on their employment, payroll, and their business activity. The greater the number of employees or the larger the payroll, the more likely, in general, a company is to be selected in the sample. The influence that the amount of payroll has on the likelihood of selection is adjusted by the business activity such that two companies with similar payroll but in different business activities will not have the same likelihood of selection. This is done to improve the quality of the estimates from any particular ACES specific industry code for business activities. Estimates are from two distinct samples from distinct frames. The first frame collects in-scope companies with employees. Companies sampled from this frame will receive an ACE-1 form, and the frame and sample are the ACE-1 frame and sample, respectively. -
STANDARDS and GUIDELINES for STATISTICAL SURVEYS September 2006
OFFICE OF MANAGEMENT AND BUDGET STANDARDS AND GUIDELINES FOR STATISTICAL SURVEYS September 2006 Table of Contents LIST OF STANDARDS FOR STATISTICAL SURVEYS ....................................................... i INTRODUCTION......................................................................................................................... 1 SECTION 1 DEVELOPMENT OF CONCEPTS, METHODS, AND DESIGN .................. 5 Section 1.1 Survey Planning..................................................................................................... 5 Section 1.2 Survey Design........................................................................................................ 7 Section 1.3 Survey Response Rates.......................................................................................... 8 Section 1.4 Pretesting Survey Systems..................................................................................... 9 SECTION 2 COLLECTION OF DATA................................................................................... 9 Section 2.1 Developing Sampling Frames................................................................................ 9 Section 2.2 Required Notifications to Potential Survey Respondents.................................... 10 Section 2.3 Data Collection Methodology.............................................................................. 11 SECTION 3 PROCESSING AND EDITING OF DATA...................................................... 13 Section 3.1 Data Editing ........................................................................................................ -
AP Statistics
AP Statistics 1 SAMPLING C H A P 11 The idea that the examination of a relatively small number of randomly selected individuals can furnish dependable information about the characteristics of a vast unseen universe is an idea so powerful that only familiarity makes it cease to be exciting. Helen Mary Walker (1891 - 1983) What is Sampling? 2 We want to know something about a population (a mean or proportion, for example), but it isn’t possible to go out and obtain the information from every member of the population (called a census). So we take a “random sample” from the population, obtain information about the sample, and then use the sample information to estimate what we would get if we could reach the entire population. What is Sampling? 3 The information we want to know about the population is called a parameter. The information we get from the sample is called a statistic. We use the statistic to provide an estimate of the parameter. Sample Population Notation 4 Name Statistic Parameter Meany (mu) Standard Deviations (sigma) Correlationr (rho) Regression coefficientb (beta) Proportionppˆ (pi -- but we will use ) Surveys 5 A survey is a common way to get information from a population of people. Follow your favorite news source and you will hear nearly every day the phrase “In a recent survey …” A survey generally consists of questions asked of a selected group (the sample) in order to obtain an estimate of the opinions of the population (U.S. voters, for example). Sampling Variability 6 Different samples will produce different results. -
Unit 16: Census and Sampling
Unit 16: Census and Sampling Summary of Video There are some questions for which an experiment can’t help us find the answer. For example, suppose we wanted to know what percentage of Americans smoke cigarettes, or what per- centage of supermarket chicken is contaminated with salmonella bacteria. There is no experi- ment that can be done to answer these types of questions. We could test every chicken on the market, or ask every person if they smoke. This is a census, a count of each and every item in a population. It seems like a census would be a straightforward way to get the most accurate, thorough information. But taking an accurate census is more difficult than you might think. The U.S. Constitution requires a census of the U.S population every ten years. In 2010, more than 308 million Americans were counted. However, the Census Bureau knows that some people are not included in this count. Undercounting certain segments of the population is a problem that can affect the representation given to a certain region as well as the federal funds it receives. What is particularly problematic is that not all groups are undercounted at the same rate. For example, the 2010 census had a hard time trying to reach renters. The first step in the U.S. Census is mailing a questionnaire to every household in the country. In 2010 about three quarters of the questionnaires were returned before the deadline. A census taker visits those households that do not respond by mail, but still not everyone is reached.