Ephemeral Wetlands and Their Turfs in New Zealand
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Volume 73, Number
New Zealand Science Review Vol 73 (3–4) 2016 Symposium on Systematics and Biodiversity in honour of Dr Dennis P. Gordon Official Journal of the New Zealand Association of Scientists ISSN 0028-8667 New Zealand Science Review Vol 73 (3–4) 2016 Official Journal of the New Zealand Association of Scientists P O Box 1874, Wellington www.scientists.org.nz A forum for the exchange of views on science and science policy Managing Editor: Allen Petrey Contents Guest Editor: Daniel Leduc Production Editor: Geoff Gregory Editorial .....................................................................................................................................................61 Proceedings of a Symposium on Systematics and Biodiversity: Past, Present and Future, National Institute of Water & Atmospheric Research, Wellington, April 2016 Bryozoa—not a minor phylum – Dennis P. Gordon and Mark J. Costello ..................................................63 The contribution of Dennis P. Gordon to the understanding of New Zealand Bryozoa – Abigail M Smith, Philip Bock and Peter Batson ................................................................................67 The study of taxonomy and systematics enhances ecological and conservation science – Ashley A. Rowden ............................................................................................................................72 Taxonomic research, collections and associated databases – and the changing science scene in New Zealand – Wendy Nelson .............................................................................79 -
Land-Use Intensification in Grazing Systems: Plant Trait Responses
Land-Use Intensification in Grazing Systems: Plant Trait Responses and Feedbacks to Ecosystem Functioning and Resilience A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in the University of Canterbury by Etienne Laliberté School of Forestry University of Canterbury 2011 To Ludovic and Sofia, the most significant results that emerged from this research. Table of Contents List of Figures v List of Tables vii Abstract vii Acknowledgments x Chapter 1: Introduction 1 1.1 Human Domination of the Biosphere . 1 1.2 Land-Use Change in Grazing Systems . 3 1.2.1 The Ecological Footprint of Grazing Systems . 3 1.2.2 Land-Use Intensification in Grazing Systems: An Un- avoidable Reality? . 3 1.3 Biodiversity and Ecosystem Functioning in Grazing Systems . 5 1.3.1 Does Species Richness Matter to Ecosystem Functioning? 5 1.3.2 The Response-Effect Functional Trait Framework . 8 1.4 Biodiversity and Ecosystem Resilience . 9 1.5 Thesis Outline . 12 Chapter 2: Measuring Functional Diversity 14 2.1 Summary . 14 2.2 Introduction . 15 2.3 A Flexible Distance-Based Framework . 16 2.4 Weighting the Traits . 19 2.5 Functional Dispersion . 20 2.6 Bridging the Gap Between Theory and Practice . 27 2.7 Conclusions . 29 Chapter 3: Comparison of Vegetation Sampling Methods 31 3.1 Summary . 31 3.2 Introduction . 32 3.3 Materials and Methods . 34 3.3.1 Study Area and Site . 34 3.3.2 Experimental Design . 34 3.3.3 Vegetation Sampling . 38 3.3.4 Statistical Analyses . 40 3.4 Results . -
Common Spikerush Eleocharis Acuta
Eleocharis acuta CYPERACEAE Common spikerush Inflorescence Avon Catchment Council Eleocharis acuta Common spikerush Plant features Growth form Perennial, spreading sedge, up to 0.7m high, with slender creeping rhizomes from which new stems arise. It often forms extensive colonies across shallow waterbodies. CYPERACEAE Leaves The stems are light to medium green, 1-3mm wide, circular in cross section and up to 0.7m in length. The leaves are reduced to one or more purplish sheaths around the base, with the upmost leaf having a needle-like blade. Flowers The inflorescence is at the top of stems and is a single spikelet 10-30mm long and 3-7mm wide, making the stem and inflorescence look somewhat like a spear. The spikelet contains several small flowers. Flowers brown and occur from Sep-Dec. Fruits The nut is smooth, brown, slightly compressed and 1mm wide by 1.5-2mm long. Distribution An common wetland species from Carnarvon to east of Esperance and Floodfringe Kalgoorlie with scattered populations Floodway in the Avon catchment. Occurs in all Normal winter level other states. Prefered habitat of Eleocharis acuta Zone, habitat Occurs in fresh, seasonally waterlogged waterways including creek banks, swamps, floodways, seeps, clay pans and lake edges. Found in most soil types. Additional information It is an excellent soil stabiliser and nutrient stripper for winter wet waterbodies due to its network of roots and dense foliage at the soil surface. It often forms dense colonies around waterbodies and can be the dominant species. Tolerates a wide range of water levels. Also has the ability to pump oxygen into the sediment, which assists with essential microbial activity. -
The Smut Fungi (Ustilaginomycetes) of Restionaceae S. Lat
MYCOLOGIA BALCANICA 3: 19–46 (2006) 19 Th e smut fungi (Ustilaginomycetes) of Restionaceae s. lat. Kálmán Vánky Herbarium Ustilaginales Vánky (H.U.V.), Gabriel-Biel-Str. 5, D-72076 Tübingen, Germany (e-mail: [email protected]) Received 2 October 2005 / Accepted 25 October 2005 Abstract. Smut fungi of Restionaceae s. lat. were studied. Th ey are classifi ed into two genera, Restiosporium and Websdanea. Problems of species delimitation in these smuts are discussed. In addition to the nine known smut fungi, thirteen new species are described and illustrated: Restiosporium anarthriae, R. apodasmiae, R. chaetanthi, R. desmocladii, R. eurychordae, R. fl exuosum, R. hypolaenae, R. lepyrodiae, R. pallentis, R. patei, R. proliferum, R. spathacei, and R. sphacelatum. Key words: new species, Restionaceae s. lat., Restiosporium, smut fungi, taxonomy, Websdanea Introduction and stained in 1 % aqueous uranyl acetate for 1 h in the dark. After fi ve washes in distilled water, the material was Th e monocotyledonous Restionaceae is a remarkable family dehydrated in acetone series, embedded in Spurr’s plastic, of Southern Hemisphere, evergreen, rush-like plants. Th ey and sectioned with a diamond knife. Semi-thin sections are concentrated mainly in SW Africa and in SW Australia. were stained with new fuchsin and crystal violet, mounted Th e c. 320 species of African Restionaceae, in 19 genera, were in ‘Entellan’ and studied in a light microscope. revised by Linder (1985, 1991). Th e 170 species of Australian Spore ball and spore morphology was studied using Restionaceae s. lat. were published by Meney & Pate (1999) a light microscope (LM) with an oil immersion lens at a in a beautifully illustrated monograph. -
Low Risk Aquarium and Pond Plants
Plant Identification Guide Low-risk aquarium and pond plants Planting these in your pond or aquarium is environmentally-friendly. Glossostigma elatinoides, image © Sonia Frimmel. One of the biggest threats to New Zealand’s waterbodies is the establishment and proliferation of weeds. The majority of New Zealand’s current aquatic weeds started out as aquarium and pond plants. To reduce the occurrence of new weeds becoming established in waterbodies this guide has been prepared to encourage the use of aquarium and pond plants that pose minimal risk to waterbodies. Guide prepared by Dr John Clayton, Paula Reeves, Paul Champion and Tracey Edwards, National Centre of Aquatic Biodiversity and Biosecurity, NIWA with funding from the Department of Conservation. The guides will be updated on a regular basis and will be available on the NIWA website: www.niwa.co.nz/ncabb/tools. Key to plant life-forms Sprawling marginal plants. Grow across the ground and out over water. Pond plants Short turf-like plants. Grow in shallow water on the edges of ponds and foreground of aquariums. Includes very small plants (up to 2-3 cm in height). Most species can grow both submerged (usually more erect) and emergent. Pond and aquarium plants Tall emergent plants. Can grow in water depths up to 2 m deep depending on the species. Usually tall reed-like plants but sometimes with broad leaves. Ideal for deeper ponds. Pond plants Free floating plants. These plants grow on the water surface and are not anchored to banks or bottom substrates. Pond and aquarium plants Floating-leaved plants. Water lily-type plants. -
Resupinate Fungi (Basidiomycetes, Aphyllophoraies) of Macquarie Island, Australia
Hikobia 13: 745-750, 2002 Resupinate fungi (Basidiomycetes, Aphyllophoraies) of Macquarie Island, Australia GARY A. LAURSEN, HAROLD H. BURDSALL AND RODNEY D. SEPPELT LAURSEN, G. A., BURDSALL, H. H. & SEPPELT, R. D. 2002. Resupinate fungi (Basidiomycetes, Aphyllophorales) of Macquarie Island, Australia. Hikobia 13: 745-750. Fourteen collections of resupinate higher fungi in the order Aphyllophorales (Basidiomycetes) were made on Subantarctic Macquarie Island (54°30'S, 158°57' E) in 1995. Of the 14, three proved to lack species-determining characteristic basidiospores and 12 were determined to belong to three species in two genera; Athelopsis lembospora (Bourdot) Oberwinkler, Athelopsis subinconspicua (Lirschauer) Julich, the first report of this species from the Southern Hemisphere, and Epithele galzinii Bres., the first reportr of E. galzinii from an Australian territory and also representing a southern range extension by several hundred kilometers. None are endemic and all are suspected to have reached the Island by long-distance transoceanic wind dispersal from other southern continental sources. Their habitats are restricted to old and clustered culms, frond bracts, and leaf petioles of the fern Polystichum vestitum (G. Forst.) C. Presl, the raised pedestals of old giant russock grass stem bases of Poa foliosa (Hook. f-) Hook. f., and the woody, but thin, stems of Acaena magellanica (Lam.) Vahl (Rosaceae) and Coprosma perpusilla Colenso ssp. subantarcrica Orchard (Rubiaceae). Gary A. Laursen. University of Alaska Fairbanks, Institute of Arctic Biology, Fairbanks, AK 99775-6100, USA. Harold H. Burdrall, Jr.. retired Center for Forest Mycology Research, Forest Products Laboratory, Forest Service, USDA, Madison, WI 53705 USA. Rodney D. Seppelt, Australian Antarctic Division, Channel Highway, Kingston, 7050 Tasmania. -
Phenotypic Landscape Inference Reveals Multiple Evolutionary Paths to C4 Photosynthesis
RESEARCH ARTICLE elife.elifesciences.org Phenotypic landscape inference reveals multiple evolutionary paths to C4 photosynthesis Ben P Williams1†, Iain G Johnston2†, Sarah Covshoff1, Julian M Hibberd1* 1Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom; 2Department of Mathematics, Imperial College London, London, United Kingdom Abstract C4 photosynthesis has independently evolved from the ancestral C3 pathway in at least 60 plant lineages, but, as with other complex traits, how it evolved is unclear. Here we show that the polyphyletic appearance of C4 photosynthesis is associated with diverse and flexible evolutionary paths that group into four major trajectories. We conducted a meta-analysis of 18 lineages containing species that use C3, C4, or intermediate C3–C4 forms of photosynthesis to parameterise a 16-dimensional phenotypic landscape. We then developed and experimentally verified a novel Bayesian approach based on a hidden Markov model that predicts how the C4 phenotype evolved. The alternative evolutionary histories underlying the appearance of C4 photosynthesis were determined by ancestral lineage and initial phenotypic alterations unrelated to photosynthesis. We conclude that the order of C4 trait acquisition is flexible and driven by non-photosynthetic drivers. This flexibility will have facilitated the convergent evolution of this complex trait. DOI: 10.7554/eLife.00961.001 Introduction *For correspondence: Julian. The convergent evolution of complex traits is surprisingly common, with examples including camera- [email protected] like eyes of cephalopods, vertebrates, and cnidaria (Kozmik et al., 2008), mimicry in invertebrates and †These authors contributed vertebrates (Santos et al., 2003; Wilson et al., 2012) and the different photosynthetic machineries of equally to this work plants (Sage et al., 2011a). -
ACT, Australian Capital Territory
Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations. -
Germination Studies Showed a Warm Day/Cold Night Regime to Be the Most Effective
SOME STUDIES ON THE GENUS ACAENA A thesis presented to the Faculty of Science and Engineering in the University of Birmingham by DAVID WINSTON HARRIS WALTON in supplication for the degree of Doctor of Philosophy. September, 1974. University of Birmingham Research Archive e-theses repository This unpublished thesis/dissertation is copyright of the author and/or third parties. The intellectual property rights of the author or third parties in respect of this work are as defined by The Copyright Designs and Patents Act 1988 or as modified by any successor legislation. Any use made of information contained in this thesis/dissertation must be in accordance with that legislation and must be properly acknowledged. Further distribution or reproduction in any format is prohibited without the permission of the copyright holder. 09CC/.6 "The inner parts of the Country South Georgia was not less savage and horrible: the Wild rocks raised their lofty summits till they were lost in the Clouds and the Vallies laid buried in everlasting Snow. Not a tree or shrub was to be seen, no not even big enough to make a toothpick. I landed in three different places, displayed our Colours and took possession of the Country in his Majestys name under a descharge of small arms. Our Botanists found here only three plants, the one is a coarse strong bladed grass which grows in tufts, Wild Burnet and a Plant like Moss which grows on the rocks". The Journals of Captain Cook : vol. 2 - The Voyage of the Resolution and Adventure in 1772-1775. Cambridge University Press (1961). -
Crown Pastoral-Tenure Review-Beaumont-Conservation
Crown Pastoral Land Tenure Review Lease name : BEAUMONT STATION Lease number : PO 362 Conservation Resources Report - Part 2 As part of the process of Tenure Review, advice on significant inherent values within the pastoral lease is provided by Department of Conservation officials in the form of a Conservation Resources Report. This report is the result of outdoor survey and inspection. It is a key piece of information for the development of a preliminary consultation document. Note: Plans which form part of the Conservation Resources Report are published separately. These documents are all released under the Official information Act 1982. December 10 RELEASED UNDER THE OFFICIAL INFORMATION ACT APPENDIX 5: Plant Species List – Beaumont Pastoral Lease Scientific name Plant type Family Abundance Localities Threat ranking Common at site name Abrotanella caespitosa DICOTYLEDONOUS HERBS Asteraceae Local Wetlands Not threatened Abrotanella inconspicua DICOTYLEDONOUS HERBS Asteraceae Local Ridgetops Not threatened Abrotanella patearoa DICOTYLEDONOUS HERBS Asteraceae Local Tops Naturally Uncommon Acaena anserinifolia DICOTYLEDONOUS HERBS Rosaceae Occasional Throughout Not threatened bidibid Acaena caesiiglauca DICOTYLEDONOUS HERBS Rosaceae Occasional Tussockland Not threatened bidibid Acaena inermis DICOTYLEDONOUS HERBS Rosaceae Rare Gravels Not threatened bidibid Acaena novae-zelandiae DICOTYLEDONOUS HERBS Rosaceae Rare Lower altitudes Not threatened bidibid Acaena tesca DICOTYLEDONOUS HERBS Rosaceae Rare Rock outcrops Naturally Uncommon bidibid -
ABSTRACTS 117 Systematics Section, BSA / ASPT / IOPB
Systematics Section, BSA / ASPT / IOPB 466 HARDY, CHRISTOPHER R.1,2*, JERROLD I DAVIS1, breeding system. This effectively reproductively isolates the species. ROBERT B. FADEN3, AND DENNIS W. STEVENSON1,2 Previous studies have provided extensive genetic, phylogenetic and 1Bailey Hortorium, Cornell University, Ithaca, NY 14853; 2New York natural selection data which allow for a rare opportunity to now Botanical Garden, Bronx, NY 10458; 3Dept. of Botany, National study and interpret ontogenetic changes as sources of evolutionary Museum of Natural History, Smithsonian Institution, Washington, novelties in floral form. Three populations of M. cardinalis and four DC 20560 populations of M. lewisii (representing both described races) were studied from initiation of floral apex to anthesis using SEM and light Phylogenetics of Cochliostema, Geogenanthus, and microscopy. Allometric analyses were conducted on data derived an undescribed genus (Commelinaceae) using from floral organs. Sympatric populations of the species from morphology and DNA sequence data from 26S, 5S- Yosemite National Park were compared. Calyces of M. lewisii initi- NTS, rbcL, and trnL-F loci ate later than those of M. cardinalis relative to the inner whorls, and sepals are taller and more acute. Relative times of initiation of phylogenetic study was conducted on a group of three small petals, sepals and pistil are similar in both species. Petal shapes dif- genera of neotropical Commelinaceae that exhibit a variety fer between species throughout development. Corolla aperture of unusual floral morphologies and habits. Morphological A shape becomes dorso-ventrally narrow during development of M. characters and DNA sequence data from plastid (rbcL, trnL-F) and lewisii, and laterally narrow in M. -
Wenderholm 2015/16 Seed Collection
Wenderholm 2015/16 Seed Collection Table of Contents Introduction 1 Apodasmia similis 2 Carex virgata 3 Coprosma macrocarpa subsp. macrocarpa 4 Coprosma robusta 5 Cordyline australis 6 Cyperus ustulatus 7 Dacrycarpus dacrydioides 8 Hebe stricta var. stricta 9 Juncus kraussii subsp. australiensis 10 Kunzea robusta 11 Leptospermum scoparium var. scoparium 12 Melicytus ramiflorus 13 Metrosideros excelsa 14 Phormium tenax 15 Plagianthus divaricatus 16 Glossary 17 Made on the New Zealand Plant Conservation Network website – www.nzpcn.org.nz Copyright All images used in this book remain copyright of the named photographer. Any reproduction, retransmission, republication, or other use of all or part of this book is expressly prohibited, unless prior written permission has been granted by the New Zealand Plant Conservation Network ([email protected]). All other rights reserved. © 2015 New Zealand Plant Conservation Network Introduction About the Network This book was compiled from information stored on the The Network has more than 800 members worldwide and is website of the New Zealand Plant Conservation Network New Zealand's largest nongovernmental organisation solely (www.nzpcn.org.nz). devoted to the protection and restoration of New Zealand's indigenous plant life. This website was established in 2003 as a repository for information about New Zealand's threatened vascular The vision of the New Zealand Plant Conservation Network is plants. Since then it has grown into a national database of that 'no indigenous species of plant will become extinct nor be information about all plants in the New Zealand botanic placed at risk of extinction as a result of human action or region including both native and naturalised vascular indifference, and that the rich, diverse and unique plant life of plants, threatened mosses, liverworts and fungi.