A Novel Approach to Pci Simulation Using Scriptsim Kevin R

Total Page:16

File Type:pdf, Size:1020Kb

A Novel Approach to Pci Simulation Using Scriptsim Kevin R University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses 1911 - February 2014 January 2008 A Novel Approach to Pci Simulation Using ScriptSim Kevin R. Andryc University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/theses Andryc, Kevin R., "A Novel Approach to Pci Simulation Using ScriptSim" (2008). Masters Theses 1911 - February 2014. 129. Retrieved from https://scholarworks.umass.edu/theses/129 This thesis is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Masters Theses 1911 - February 2014 by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. A NOVEL APPROACH TO PCI SIMULATION USING SCRIPTSIM A Thesis Presented by KEVIN R. ANDRYC Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING May 2008 Electrical and Computer Engineering © Copyright by Kevin R. Andryc 2008 All Rights Reserved A NOVEL APPROACH TO PCI SIMULATION USING SCRIPTSIM A Thesis Presented by KEVIN R. ANDRYC Approved as to style and content by: __________________________________________ Russell G. Tessier, Chair __________________________________________ Patrick A. Kelly, Member __________________________________________ Eric Polizzi, Member ________________________________________ C. V. Hollot, Department Head Electrical & Computer Engineering ABSTRACT A NOVEL APPROACH TO PCI SIMULATION USING SCRIPTSIM MAY 2008 KEVIN ANDRYC, B.S., UNIVERISTY OF MASSACHUSETTS M.S.E.C.E., UNIVERISTY OF MASSACHUSETTS Directed by: Professor Russell G. Tessier In recent years, the Peripheral Component Interconnect (PCI) has become one of the most widely used bus architectures in modern computers. Simulation of the PCI bus, however, has been limited in both research and development. Current commercial PCI simulation software is designed towards compliance and verification testing rather than accurately mimicking PCI bus systems. In addition, most PCI simulation software is inflexible and offers no graphical user interface, instead relying on text files for configuration. This paper presents a novel approach to PCI simulation using ScriptSim, an open- source PCI simulation tool that supports all the features offered by the PCI Local Specification Version 2.2. In addition to extending ScriptSim to include PCI-X functionality and a web-based graphical interface, we introduce techniques that allow us to accurately simulate real-world systems. iv TABLE OF CONTENTS Page ABSTRACT ..................................................................................................................... iv LIST OF TABLES ........................................................................................................... ix LIST OF FIGURES ......................................................................................................... xi CHAPTER 1. INTRODUCTION ........................................................................................................ 1 1.1 Motivation ...................................................................................................... 1 1.2 Contributions ................................................................................................. 5 1.3 Synopsys ......................................................................................................... 6 2. CURRENT BUS SYSTEMS ........................................................................................ 7 2.1 Bus Systems ................................................................................................... 8 2.1.1 Industry Standard Architecture Bus ............................................... 9 2.1.2 VersaModule Eurocard Bus ......................................................... 10 2.1.3 FutureBus / FutureBus+ ............................................................... 11 2.1.4 InfiniBand Architecture ................................................................ 12 2.1.5 Universal Serial Bus ..................................................................... 13 2.1.6 IEEE-1394 Serial Bus / FireWire ................................................. 15 2.1.7 Accelerated Graphics Port ............................................................ 16 2.1.8 Peripheral Component Interface Express ..................................... 18 3. RELATED WORK ..................................................................................................... 21 3.1 Using PCI-Bus Systems in Real-Time Environments .................................. 21 3.1.1 Simplified PCI-Bus Model ........................................................... 21 3.1.2 Model for Identical Devices ......................................................... 23 3.1.3 Model for Arbitrary Devices ........................................................ 26 3.1.4 Concluding Remarks .................................................................... 31 3.2 Simulation Software ..................................................................................... 31 3.2.1 JSIM: A Java-Based Simulation and Animation Environment ................................................................................ 31 3.2.2 Building a Web-Based Federated Simulation System with Jini and XML .............................................................................. 32 v 3.2.3 Design and Implementation of PCI Bus Based Systems .............. 34 4. PERIPHERAL COMPONENT INTERFACE ........................................................... 44 4.1 PCI Bus Characteristics ................................................................................ 44 4.2 Used Terms and Conventions ...................................................................... 46 4.2.1 Used Terms ................................................................................... 46 4.2.2 Document Conventions ................................................................ 48 4.3 PCI Bus Signal Descriptions ........................................................................ 49 4.3.1 Signal Types ................................................................................. 49 4.3.2 Signal Groups ............................................................................... 50 4.4 PCI Bus Commands ..................................................................................... 59 4.5 PCI Address Structure .................................................................................. 62 4.5.1 Memory Address Space ................................................................ 63 4.5.2 I/O Address Space ........................................................................ 64 4.5.3 Configuration Address Space ....................................................... 64 4.6 PCI Configuration ........................................................................................ 66 4.6.1 Configuration Header ................................................................... 66 4.7 PCI Bus Transactions ................................................................................... 77 4.7.1 Read Transaction .......................................................................... 78 4.7.2 Write Transaction ......................................................................... 79 4.8 PCI Bus Arbitration ...................................................................................... 81 5. PERIPHERAL COMPONENT INTERCONNECT EXTENDED ............................ 83 5.1 PCI-X Bus Commands ................................................................................. 84 5.2 PCI-X Bus Transactions ............................................................................... 84 5.2.1 Write Transaction ......................................................................... 85 5.3 Burst and DWORD Transactions ................................................................. 86 5.4 Allowable Disconnect Boundaries ............................................................... 87 5.5 Attributes and the Attribute Phase ............................................................... 87 5.6 Split Transactions ......................................................................................... 89 5.6.1 Split Response .............................................................................. 90 vi 5.6.2 Split Completion ........................................................................... 90 5.7 Configuration and Initialization ................................................................... 93 5.7.1 Configuration Transaction Timing ............................................... 95 5.7.2 Configuration Address ................................................................. 94 5.7.3 Configuration Attributes............................................................... 96 5.7.4 Configuration Header ................................................................... 97 5.7.5 PCI-X Capabilities List Item ........................................................ 98 6. SCRIPTSIM ............................................................................................................. 103 6.1 PCI Functional Bus Model ......................................................................... 104 6.2 PCI Bus Model Architecture ...................................................................... 104 6.3 PCI Bus Simulation...................................................................................
Recommended publications
  • RS-485: Still the Most Robust Communication Table of Contents
    TUTORIAL RS-485: Still the Most Robust Communication Table of Contents Abstract...........................................................................................................................1 RS-485 vs. RS-422..............................................................................................................................2 An In-Depth Look at RS-485...........................................................................................................3 Challenges of the Industrial Environment.....................................................................................5 Protecting Systems from Harsh Environments.........................................................................5 Conclusion......................................................................................................................10 References......................................................................................................................10 Abstract Despite the rise in popularity of wireless networks, wired serial networks continue to provide the most robust, reliable communication, especially in harsh environments. These well-engineered networks provide effective communication in industrial and building automation applications, which require immunity from noise, electrostatic discharge and voltage faults, all resulting in increased uptime. This tutorial reviews the RS-485 protocol and discusses why it is widely used in industrial applications and the common problems it solves. www.maximintegrated.com
    [Show full text]
  • What Is It and How We Use It
    Infiniband Overview What is it and how we use it What is Infiniband • Infiniband is a contraction of "Infinite Bandwidth" o can keep bundling links so there is no theoretical limit o Target design goal is to always be faster than the PCI bus. • Infiniband should not be the bottleneck. • Credit based flow control o data is never sent if receiver can not guarantee sufficient buffering What is Infiniband • Infiniband is a switched fabric network o low latency o high throughput o failover • Superset of VIA (Virtual Interface Architecture) o Infiniband o RoCE (RDMA over Converged Ethernet) o iWarp (Internet Wide Area RDMA Protocol) What is Infiniband • Serial traffic is split into incoming and outgoing relative to any port • Currently 5 data rates o Single Data Rate (SDR), 2.5Gbps o Double Data Rate (DDR), 5 Gbps o Quadruple Data Rate (QDR), 10 Gbps o Fourteen Data Rate (FDR), 14.0625 Gbps o Enhanced Data Rate (EDR) 25.78125 Gbps • Links can be bonded together, 1x, 4x, 8x and 12x HDR - High Data Rate NDR - Next Data Rate Infiniband Road Map (Infiniband Trade Association) What is Infiniband • SDR, DDR, and QDR use 8B/10B encoding o 10 bits carry 8 bits of data o data rate is 80% of signal rate • FDR and EDR use 64B/66B encoding o 66 bits carry 64 bits of data Signal Rate Latency SDR 200ns DDR 140ns QDR 100ns Hardware 2 Hardware vendors • Mellanox o bought Voltaire • Intel o bought Qlogic Infiniband business unit Need to standardize hardware. Mellanox and Qlogic cards work in different ways.
    [Show full text]
  • Interconnect Solutions Short Form Catalog
    Interconnect Solutions Short Form Catalog How to Search this Catalog This digital catalog provides you with three quick ways to find the products and information you are looking for. Just point and click on the bookmarks to the left, the linked images on the next page or the labeled sections of the table of contents. You can also use the “search” function built into Adobe Acrobat to jump directly to any text reference in this document. Acrobat “Search” function instructions: 1. Press CONTROL + F 2. When the dialog box appears, type in the word or words you are looking for and press ENTER. 3. Depending on your version of Acrobat, it will either take you directly to the first instance found, or display a list of pages where the text can be found. In the latter, click on the link to the pages provided. Interconnect Solutions Short Form Catalog Complete Solutions for the Electronics Industry 3M Electronics offers a comprehensive range of Interconnect Solutions for the electronics industry with a product portfolio that includes connectors, cables, cable assemblies and assembly tooling for a wide variety of applications. 3M is dedicated to innovation, continually developing new products that become an important part of everyday life across many diverse markets. A number of 3M solution categories are based on custom-designed products for specialized applications. 3M Electronics can help you design, modify and customize your product as well as help you to seamlessly integrate our products into your manufacturing process on a global basis. RoHS Compliant Statement “RoHS compliant” means that the product or part does not contain any of the following substances in excess of the following maximum concentration values in any homogeneous material, unless the substance is in an application that is exempt under RoHS: (a) 0.1% (by weight) for lead, mercury, hexavalent chromium, polybrominated biphenyls or polybrominated diphenyl ethers; or (b) 0.01% (by weight) for cadmium.
    [Show full text]
  • Publication Title 1-1962
    publication_title print_identifier online_identifier publisher_name date_monograph_published_print 1-1962 - AIEE General Principles Upon Which Temperature 978-1-5044-0149-4 IEEE 1962 Limits Are Based in the rating of Electric Equipment 1-1969 - IEEE General Priniciples for Temperature Limits in the 978-1-5044-0150-0 IEEE 1968 Rating of Electric Equipment 1-1986 - IEEE Standard General Principles for Temperature Limits in the Rating of Electric Equipment and for the 978-0-7381-2985-3 IEEE 1986 Evaluation of Electrical Insulation 1-2000 - IEEE Recommended Practice - General Principles for Temperature Limits in the Rating of Electrical Equipment and 978-0-7381-2717-0 IEEE 2001 for the Evaluation of Electrical Insulation 100-2000 - The Authoritative Dictionary of IEEE Standards 978-0-7381-2601-2 IEEE 2000 Terms, Seventh Edition 1000-1987 - An American National Standard IEEE Standard for 0-7381-4593-9 IEEE 1988 Mechanical Core Specifications for Microcomputers 1000-1987 - IEEE Standard for an 8-Bit Backplane Interface: 978-0-7381-2756-9 IEEE 1988 STEbus 1001-1988 - IEEE Guide for Interfacing Dispersed Storage and 0-7381-4134-8 IEEE 1989 Generation Facilities With Electric Utility Systems 1002-1987 - IEEE Standard Taxonomy for Software Engineering 0-7381-0399-3 IEEE 1987 Standards 1003.0-1995 - Guide to the POSIX(R) Open System 978-0-7381-3138-2 IEEE 1994 Environment (OSE) 1003.1, 2004 Edition - IEEE Standard for Information Technology - Portable Operating System Interface (POSIX(R)) - 978-0-7381-4040-7 IEEE 2004 Base Definitions 1003.1, 2013
    [Show full text]
  • Opening Plenary March 2021
    Opening Plenary March 2021 Glenn Parsons – IEEE 802.1 WG Chair [email protected] 802.1 plenary agenda Monday, March 8th opening Tuesday, March 16th closing • Copyright Policy • Copyright Policy • Call for Patents • Call for Patents • Participant behavior • Participant behavior • Administrative • Membership status • Membership status • Future Sessions • Future Sessions • Sanity check – current projects • 802 EC report • TG reports • Sanity check – current projects • Outgoing Liaisons • Incoming Liaisons • Motions for EC • TG agendas • Motions for 802.1 • Any other business • Any other business 2 INSTRUCTIONS FOR CHAIRS OF STANDARDS DEVELOPMENT ACTIVITIES At the beginning of each standards development meeting the chair or a designee is to: .Show the following slides (or provide them beforehand) .Advise the standards development group participants that: .IEEE SA’s copyright policy is described in Clause 7 of the IEEE SA Standards Board Bylaws and Clause 6.1 of the IEEE SA Standards Board Operations Manual; .Any material submitted during standards development, whether verbal, recorded, or in written form, is a Contribution and shall comply with the IEEE SA Copyright Policy; .Instruct the Secretary to record in the minutes of the relevant meeting: .That the foregoing information was provided and that the copyright slides were shown (or provided beforehand). .Ask participants to register attendance in IMAT: https://imat.ieee.org 3 IEEE SA COPYRIGHT POLICY By participating in this activity, you agree to comply with the IEEE Code of Ethics, all applicable laws, and all IEEE policies and procedures including, but not limited to, the IEEE SA Copyright Policy. .Previously Published material (copyright assertion indicated) shall not be presented/submitted to the Working Group nor incorporated into a Working Group draft unless permission is granted.
    [Show full text]
  • PCI-X & PCI Core User's Guide
    PCI-X & PCI Core User's Guide Version 7.1.0 27-Feb-2007 © PLD Applications, 1996-2007 PLD Applications Web: http://www.plda.com Europarc Pichaury A2 Email: [email protected] 1330, rue Guillibert USA : 1 866 513 0362 (toll free) 13856 Aix-en-Provence Intl : + 33 442 393 600 CEDEX 3 - France Fax : + 33 442 394 902 Associate Member PCI-X & PCI Core User's Guide Features General ° 32-bit/64-bit PCI-X & PCI master/target interface ° Supports bus speed up to 133 MHz ° Multi-function core can implement up to 2 independent functions ° Full support for 64-bit addressing ° PCI-X Specification 2.0a mode 1 compliant ° PCI Specification 3.0 compliant ° Supports PCI power management ° Built-in support for in-site programming through JTAG interface ° Supports Message Signalled Interrupts Customization ° Easy customization with the PCI Wizard's user interface and on-line help. ° PCI Wizard has built-in support for VHDL and Verilog. ° All features can be parameterized, removing all unused logic ° Full plug-and-play support Configuration ° Supports all required and optional type 0 configuration registers ° Up to 6 BARs plus expansion ROM can be implemented ° Up to 32 user defined configuration registers Data transfer ° Supports up to 4KB burst transfers with zero wait-state insertion. ° Supports all memory and I/O commands ° Supports interrupt acknowledge cycles in target mode ° Can insert wait-states and generate all types of terminations ° Up to two split channels and 32 outstanding split transactions DMA ° Up to 4 independent DMA channels with rotating priority ° Flexible backend interface can directly control FIFO devices.
    [Show full text]
  • PCI20EX PCI Express (Pcie)
    PCI20EX PCI Express (PCIe) Bus ARCNET® Network Interface Modules INSTALLATION GUIDE INTRODUCTION The PCI20EX series of ARCNET network interface modules (NIMs) links PCI Express (PCIe) bus compatible computers with the ARCNET local area network (LAN). Since most PC motherboards have migrated from the legacy PCI and PCI-X Bus, a PCI Express style NIM is required. The PCI20EX series is compliant to the PCI Express Card Electromechanical Specification Revision 2.0 and both standard height and low-profile brackets are provided. The PCI Express interface allows for jumperless configuration and Plug and Play operation. The module operates with either an NDIS driver or a null stack driver in a Windows® environment. The PCI20EX incorporates the COM20022 ARCNET controller chip with enhanced features over the earlier generation ARCNET chips. New features include command chaining, sequential access to internal RAM, duplicate node ID detection and variable data rates up to 10 Mbps. Bus contention problems are minimized since the module’s interrupt and I/O base address are assigned through Plug and Play. The PCI20EX exploits the new features of the COM20022 which includes 10 Mbps communications utilizing the various EIA-485 transceiver options. Each PCI20EX module has two LEDs on the board for monitoring network operation and bus access to the module. It is equipped with an 8 position, general purpose DIP switch typically used to assign the ARCNET node address. Ultimately, the node address is configured via software so the DIP switch can also indicate user-defined functions such as data rate, cable interface, or master/slave status of the system.
    [Show full text]
  • Datasheet for Onenand Power Ramp and Stabilization Times and for Onenand Boot Copy Times
    TMS320DM365 www.ti.com SPRS457E–MARCH 2009–REVISED JUNE 2011 TMS320DM365 Digital Media System-on-Chip (DMSoC) Check for Samples: TMS320DM365 1 TMS320DM365 Digital Media System-on-Chip (DMSoC) 1.1 Features 12 • Highlights – Support for 32-Bit and 16-Bit – High-Performance Digital Media (Thumb® Mode) Instruction Sets System-on-Chip (DMSoC) – DSP Instruction Extensions and Single Cycle – Up to 300-MHz ARM926EJ-S Clock Rate MAC – Two Video Image Co-processors – ARM® Jazelle® Technology (HDVICP, MJCP) Engines – Embedded ICE-RT Logic for Real-Time – Supports a Range of Encode, Decode, and Debug Video Quality Operations • ARM9 Memory Architecture – Video Processing Subsystem – 16K-Byte Instruction Cache • HW Face Detect Engine – 8K-Byte Data Cache • Resize Engine from 1/16x to 8x – 32K-Byte RAM • 16-Bit Parallel AFE (Analog Front-End) – 16K-Byte ROM Interface Up to 120 MHz – Little Endian • 4:2:2 (8-/16-bit) Interface • Two Video Image Co-processors • 8-/16-bit YCC and Up to 24-Bit RGB888 (HDVICP, MJCP) Engines Digital Output – Support a Range of Encode and Decode • 3 DACs for HD Analog Video Output Operations, up to D1 on 216-MHz device and • Hardware On-Screen Display (OSD) up to 720p on the 270- and 300-MHz parts – Capable of 720p 30fps H.264 video – H.264, MPEG4, MPEG2, MJPEG, JPEG, processing WMV9/VC1 Note: 216-MHz is only capable of D1 • Video Processing Subsystem processing – Front End Provides: – Peripherals include EMAC, USB 2.0 OTG, • HW Face Detect Engine DDR2/NAND, 5 SPIs, 2 UARTs, 2 • Hardware IPIPE for Real-Time Image MMC/SD/SDIO,
    [Show full text]
  • IPUG75 2.2 Table of Contents
    PCI Express 2.0 x1, x4 Endpoint IP Core User’s Guide October 2014 IPUG75_2.2 Table of Contents Chapter 1. Introduction .......................................................................................................................... 6 Quick Facts ........................................................................................................................................................... 7 Features ................................................................................................................................................................ 7 PHY Layer.................................................................................................................................................... 7 Data Link Layer............................................................................................................................................ 8 Transaction Layer ........................................................................................................................................ 8 Configuration Space Support....................................................................................................................... 8 Top Level IP Support ................................................................................................................................... 8 Chapter 2. Functional Description ...................................................................................................... 10 Overview ............................................................................................................................................................
    [Show full text]
  • Getting Started with Your PCI Serial Hardware and Software for Windows 95
    Serial Getting Started with Your PCI Serial Hardware and Software for Windows 95 PCI Serial for Windows 95 December 1997 Edition Part Number 321824A-01 Internet Support E-mail: [email protected] FTP Site: ftp.natinst.com Web Address: http://www.natinst.com Bulletin Board Support BBS United States: 512 794 5422 BBS United Kingdom: 01635 551422 BBS France: 01 48 65 15 59 Fax-on-Demand Support 512 418 1111 Telephone Support (USA) Tel: 512 795 8248 Fax: 512 794 5678 International Offices Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 288 3336, Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 09 725 725 11, France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186, Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 84 00, Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200, United Kingdom 01635 523545 National Instruments Corporate Headquarters 6504 Bridge Point Parkway Austin, Texas 78730-5039 USA Tel: 512 794 0100 © Copyright 1997 National Instruments Corporation. All rights reserved. Important Information Warranty The serial hardware is warranted against defects in materials and workmanship for a period of two years from the date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace equipment that proves to be defective during the warranty period.
    [Show full text]
  • LVDS Owner's Manual
    LVDS Owner’s Manual Low-Voltage Differential Signaling 3rd Edition, Spring 2004 National Semiconductor The Sight & Sound of Information LVDS Owner’s Manual Low-Voltage Differential Signaling Spring 2004 3rd Edition The last thing an engineer ever does is read the owner’s manual. An engineer expects to be able to use his or her skills and training to figure out how to use a product without ever referring to the instructions. In my experience, either through intuition or trial and error, most of us will eventually figure out the basics. However, while this may be reasonable for assembling a toy or even working on a car, it is an expensive and time consuming way to go about electrical engineering. National Semiconductor has written this LVDS Owner’s Manual to assist you. This design guide compiles the information and concepts that we think you will need to save you valuable time and money and maximize the benefit of using National's Low-Voltage Differential Signaling (LVDS) solutions. National is the premier analog semiconductor solution supplier and the innovator of LVDS. Our experi- ence with LVDS gives us the insight to be your trusted advisor. This third edition of the LVDS Owner’s Manual is an easy-to-read compendium that contains useful information for everyone. There is an intro- duction to the technology, concepts, and applications for someone just starting to design with LVDS. We offer guidance on how to select the right LVDS device and family for your application whether it is chip- to-chip, mezzanine-to-mezzanine, or box-to-box.
    [Show full text]
  • IBM Flex System IB6131 Infiniband Switch User's Guide
    IBM Flex System IB6131 InfiniBand Switch User’s Guide ii IBM Flex System IB6131 InfiniBand Switch User’s Guide IBM Flex System IB6131 InfiniBand Switch User’s Guide Note: Before using this information and the product it supports, read the general information in , ʺAppen‐ dix B: Noticesʺ on page 33, the Safety Information and Environmental Notices and Userʹs Guide docu‐ ments on the IBM Notices for Network Devices CD, and the Warranty Information document that comes with the product. First Edition February 2012 © Copyright IBM Corporation 2012. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents Safety . vii Chapter1. Introduction . 1 Related documentation. 1 Notices and statements in this document . 3 Features and specifications. 3 Specifications . 4 Major components of the switch . 5 Chapter2. Installing the switch and basic setup. 7 Installing the IBM Flex system blade . 7 CMM . 7 Serial port access (Method 1) . 7 Configuration . 9 Configuration Wizard (Method 2) . 9 Cabling the switch . 15 Chapter3. LEDs and interfaces. 17 Port LEDs . 17 Switch status lights . 17 Power LED . 18 Fault LED . 18 Unit identification switch identifier LED . 18 RS‐232 interface through mini connector. 18 RJ‐45 Ethernet connector . 19 Configuring the IBM Flex System IB6131 InfiniBand switch . 19 Rerunning the Wizard. 19 Updating the switch software . 20 Chapter4. Connecting to the switch platform . 25 Starting an SSH connection to the switch (CLI) . 25 Starting a WebUI connection to the switch . 25 Managing the IBM Flex System IB6131 InfiniBand switch . 26 Chapter5. Solving problems . 27 Running POST .
    [Show full text]