Interval Estimation Statistics (OA3102)

Total Page:16

File Type:pdf, Size:1020Kb

Interval Estimation Statistics (OA3102) Module 5: Interval Estimation Statistics (OA3102) Professor Ron Fricker Naval Postgraduate School Monterey, California Reading assignment: WM&S chapter 8.5-8.9 Revision: 1-12 1 Goals for this Module • Interval estimation – i.e., confidence intervals – Terminology – Pivotal method for creating confidence intervals • Types of intervals – Large-sample confidence intervals – One-sided vs. two-sided intervals – Small-sample confidence intervals for the mean, differences in two means – Confidence interval for the variance • Sample size calculations Revision: 1-12 2 Interval Estimation • Instead of estimating a parameter with a single number, estimate it with an interval • Ideally, interval will have two properties: – It will contain the target parameter q – It will be relatively narrow • But, as we will see, since interval endpoints are a function of the data, – They will be variable – So we cannot be sure q will fall in the interval Revision: 1-12 3 Objective for Interval Estimation • So, we can’t be sure that the interval contains q, but we will be able to calculate the probability the interval contains q • Interval estimation objective: Find an interval estimator capable of generating narrow intervals with a high probability of enclosing q Revision: 1-12 4 Why Interval Estimation? • As before, we want to use a sample to infer something about a larger population • However, samples are variable – We’d get different values with each new sample – So our point estimates are variable • Point estimates do not give any information about how far off we might be (precision) • Interval estimation helps us do inference in such a way that: – We can know how precise our estimates are, and – We can define the probability we are right Revision: 1-12 5 Terminology • Interval estimators are commonly called confidence intervals • Interval endpoints are called the upper and lower confidence limits • The probability the interval will enclose q is called the confidence coefficient or confidence level – Notation: 1-a or 100(1-a)% – Usually referred to as “100(1-a)” percent CIs Revision: 1-12 6 Confidence Intervals: The Main Idea • Via the CLT, we know that Y is within 2 std errors ( Y n ) of m 95% of the time • So, m must be within 2 SEs of 95% of the time (Unobserved) sampling distribution of the mean y 95% confidence (Unobserved) mY interval for mY (Unobserved) population distribution (pdf of Y) 7 mYY 2 n In General • A two-sided confidence interval: Lower confidence Upper confidence limit limit ˆˆ PrqLU q q 1 a Target Confidence parameter coefficient • A lower one-sided confidence interval: ˆ PrqL q 1 a • An upper one-sided confidence interval: ˆ Prq qU 1 a Revision: 1-12 8 Pivotal Method: A Strategy for Constructing CIs • Pivotal method approach – Find a “pivotal quantity” that has following two characteristics: • It is a function of the sample data and q, where q is the only unknown quantity • Probability distribution of pivotal quantity does not depend on q (and you know what it is) • Now, write down an appropriate probability statement for the pivotal quantity and then rearrange terms… Revision: 1-12 9 Example: Constructing a 95% CI for m, known (1) • Let Y1, Y2, …, Yn be a random sample from a normal population with unknown mean mY and known standard deviation Y • Create a CI for mY based on the sampling distribution of the mean: 2 Y~ NmYY , / n • To start, we know that (via standardizing): Y m Y ~N (0,1) Y / n Revision: 1-12 10 Example: Constructing a 95% CI for m, known (2) • Now for Z ~ N(0,1) we know Pr( 1.96 Z 1.96) 0.95 – That is, there is a 95% probability that the random variable Z lies in this fixed interval • Thus Y -mY Pr -1.96 1.96 0.95 Y / n • So, let’s derive a 95% confidence interval… Revision: 1-12 11 Example: Constructing a 95% CI for m, known (3) Y -mY Pr -1.96 1.96 0.95 Y / n Revision: 1-12 12 Example: Constructing a 95% CI for m, known (4) • So, If Y1 = y1, Y2 = y2, …, Yn = yn are observed values of a random sample from a N m , 2 with known, then Y y m1.96 is a 95% confidence interval for Y n • We can be 95% confident that the interval covers the population mean – Interpretation: In the long run, 19 times out of 20 the interval will cover the true mean and 1 time out of 20 it will not Revision: 1-12 13 Calculating a Specific CI • Consider an experiment with sample size n=40, y 5.426 and Y=0.1 • Calculate a 95% confidence interval for mY Revision: 1-12 14 Example 8.4 • Suppose we obtain a single observation Y from an exponential distribution with mean q. Use Y to form a confidence interval for q with confidence level 0.9. • Solution: Revision: 1-12 15 Example 8.4 (continued) Revision: 1-12 16 Example 8.5 • Suppose we take a sample of size n=1 from a uniform distribution on [0,q ], were q is unknown. Find a 95% lower confidence bound for q. • Solution: Revision: 1-12 17 Example 8.5 (continued) Revision: 1-12 18 Large-Sample Confidence Intervals • If q ˆ is an unbiased statistic, then via the CLT qˆ q Z qˆ has an approximate standard normal distribution for large samples • So, use it as an (approximate) pivotal quantity to develop (approximate) confidence intervals for q Revision: 1-12 19 Example 8.6 • Let qˆ ~ N ( q , ) . Find a confidence interval qˆ for q with confidence level 1-a. • Solution: Revision: 1-12 20 Example 8.6 (continued) Revision: 1-12 21 One-Sided Limits • Similarly, we can determine the 100(1-a)% one-sided confidence limits (aka confidence bounds): 100(1a )% lower bound for q qˆ z – a qˆ – 100(1 a )% upper bound for q qˆ z a qˆ • What if you use both bounds to construct a two-sided confidence interval? – Each bound has confidence level 1-a, so resulting interval has a 1-2a confidence level Revision: 1-12 22 Example 8.7 • The shopping times of n=64 randomly selected customers were recorded with y 33 2 minutes and s y 256 . Estimate m, the true average shopping time per customer with confidence level 0.9. • Solution: Revision: 1-12 23 Example 8.7 (continued) Revision: 1-12 24 Example 8.8 • Two brands of refrigerators, A and B, are each guaranteed for a year. Out of a random sample of nA=50 refrigerators, 12 failed before one year. And out of an independent random sample of nB=60 refrigerators, 12 failed before one year. Give a 98% CI for pA-pB. • Solution Revision: 1-12 25 Example 8.8 (continued) Revision: 1-12 26 Example 8.8 (continued) Revision: 1-12 27 What is a Confidence Interval? • Before collecting data and calculating it, a confidence interval is a random interval – Random because it is a function of a random variable (e.g., Y ) • The confidence level is the long-run percentage of intervals that will “cover” the population parameter – It is not the probability a particular interval contains the parameter! • This statement implies that the parameter is random • After collecting the data and calculating the CI the interval is fixed – It then contains the parameter with probability 0 or 1 Revision: 1-12 28 A CI Simulation • Simulated 20 95% confidence intervals with samples of size n=10 drawn from N(40,1) distribution • One failed to cover the true (unknown) parameter, which is what is expected on average Revision: 1-12 29 Another CI Simulation • Simulated 100 95% confidence intervals with samples of size n=10 drawn from N(40,1) distribution • 6 failed to cover the true (unknown) parameter – Close to the expected number: 5 Revision: 1-12 30 Illustrating Confidence Intervals This is a demonstration showing confidence intervals for a proportion. TO DEMO Applets created by Prof Gary McClelland, University of Colorado, Boulder You can access them at www.thomsonedu.com/statistics/book_content/0495110817_wackerly/applets/seeingstats/index.html Revision: 1-12 31 Summary: Constructing a Two-sided Large-Sample Confidence Interval • For an unbiased statistic q ˆ , determine qˆ • Choose the confidence level: 1-a • Find z a /2 – E.g., for a = 0.05, z 0.025 1.96 • Given data, calculate and • Then the 100(1-a)% confidence interval for q is qˆˆzz , q aa/2qqˆˆ /2 Revision: 1-12 32 E.g., Constructing a Two-sided Large-Sample 95% CI for m • Y is an unbiased estimator for m, and we know Y Y n The confidence level is 1-a = 0.95 • So zza /2 0.025 1.96 • Given data, calculate y and the 95% CI for m is y1.96 n , y 1.96 n YY Revision: 1-12 33 E.g., Constructing a Two-sided Large-Sample 95% CI for p • For Y, the number of successes out of n trials, an unbiased estimator for p is pˆ Y/ n • Then note that pˆ p(1 p ) / n – Follows from: Var(Y / n ) Var( Y ) / n22 np (1 p ) / n zza /2 0.025 1.96 – And, since we don’t know p, ˆpˆ p ˆ(1 p ˆ ) / n • As before, for a confidence level of 1-a = 0.95, • So, the 95% CI for m is pˆ1.96 p ˆ 1 p ˆ n , p ˆ 1.96 p ˆ 1 p ˆ n Revision: 1-12 34 How Confidence Intervals Behave • Width of CI’s: wz2 Y a /2 n Y • Margin of error: Ez a /2 n – Bigger s.d.
Recommended publications
  • Confidence Interval Estimation in System Dynamics Models: Bootstrapping Vs
    Confidence Interval Estimation in System Dynamics Models: Bootstrapping vs. Likelihood Ratio Method Gokhan Dogan* MIT Sloan School of Management, 30 Wadsworth Street, E53-364, Cambridge, Massachusetts 02142 [email protected] Abstract In this paper we discuss confidence interval estimation for system dynamics models. Confidence interval estimation is important because without confidence intervals, we cannot determine whether an estimated parameter value is significantly different from 0 or any other value, and therefore we cannot determine how much confidence to place in the estimate. We compare two methods for confidence interval estimation. The first, the “likelihood ratio method,” is based on maximum likelihood estimation. This method has been used in the system dynamics literature and is built in to some popular software packages. It is computationally efficient but requires strong assumptions about the model and data. These assumptions are frequently violated by the autocorrelation, endogeneity of explanatory variables and heteroskedasticity properties of dynamic models. The second method is called “bootstrapping.” Bootstrapping requires more computation but does not impose strong assumptions on the model or data. We describe the methods and illustrate them with a series of applications from actual modeling projects. Considering the empirical results presented in the paper and the fact that the bootstrapping method requires less assumptions, we suggest that bootstrapping is a better tool for confidence interval estimation in system dynamics
    [Show full text]
  • WHAT DID FISHER MEAN by an ESTIMATE? 3 Ideas but Is in Conflict with His Ideology of Statistical Inference
    Submitted to the Annals of Applied Probability WHAT DID FISHER MEAN BY AN ESTIMATE? By Esa Uusipaikka∗ University of Turku Fisher’s Method of Maximum Likelihood is shown to be a proce- dure for the construction of likelihood intervals or regions, instead of a procedure of point estimation. Based on Fisher’s articles and books it is justified that by estimation Fisher meant the construction of likelihood intervals or regions from appropriate likelihood function and that an estimate is a statistic, that is, a function from a sample space to a parameter space such that the likelihood function obtained from the sampling distribution of the statistic at the observed value of the statistic is used to construct likelihood intervals or regions. Thus Problem of Estimation is how to choose the ’best’ estimate. Fisher’s solution for the problem of estimation is Maximum Likeli- hood Estimate (MLE). Fisher’s Theory of Statistical Estimation is a chain of ideas used to justify MLE as the solution of the problem of estimation. The construction of confidence intervals by the delta method from the asymptotic normal distribution of MLE is based on Fisher’s ideas, but is against his ’logic of statistical inference’. Instead the construc- tion of confidence intervals from the profile likelihood function of a given interest function of the parameter vector is considered as a solution more in line with Fisher’s ’ideology’. A new method of cal- culation of profile likelihood-based confidence intervals for general smooth interest functions in general statistical models is considered. 1. Introduction. ’Collected Papers of R.A.
    [Show full text]
  • A Framework for Sample Efficient Interval Estimation with Control
    A Framework for Sample Efficient Interval Estimation with Control Variates Shengjia Zhao Christopher Yeh Stefano Ermon Stanford University Stanford University Stanford University Abstract timates, e.g. for each individual district or county, meaning that we need to draw a sufficient number of We consider the problem of estimating confi- samples for every district or county. Another diffi- dence intervals for the mean of a random vari- culty can arise when we need high accuracy (i.e. a able, where the goal is to produce the smallest small confidence interval), since confidence intervals possible interval for a given number of sam- producedp by typical concentration inequalities have size ples. While minimax optimal algorithms are O(1= number of samples). In other words, to reduce known for this problem in the general case, the size of a confidence interval by a factor of 10, we improved performance is possible under addi- need 100 times more samples. tional assumptions. In particular, we design This dilemma is generally unavoidable because concen- an estimation algorithm to take advantage of tration inequalities such as Chernoff or Chebychev are side information in the form of a control vari- minimax optimal: there exist distributions for which ate, leveraging order statistics. Under certain these inequalities cannot be improved. No-free-lunch conditions on the quality of the control vari- results (Van der Vaart, 2000) imply that any alter- ates, we show improved asymptotic efficiency native estimation algorithm that performs better (i.e. compared to existing estimation algorithms. outputs a confidence interval with smaller size) on some Empirically, we demonstrate superior perfor- problems, must perform worse on other problems.
    [Show full text]
  • STATS 305 Notes1
    STATS 305 Notes1 Art Owen2 Autumn 2013 1The class notes were beautifully scribed by Eric Min. He has kindly allowed his notes to be placed online for stat 305 students. Reading these at leasure, you will spot a few errors and omissions due to the hurried nature of scribing and probably my handwriting too. Reading them ahead of class will help you understand the material as the class proceeds. 2Department of Statistics, Stanford University. 0.0: Chapter 0: 2 Contents 1 Overview 9 1.1 The Math of Applied Statistics . .9 1.2 The Linear Model . .9 1.2.1 Other Extensions . 10 1.3 Linearity . 10 1.4 Beyond Simple Linearity . 11 1.4.1 Polynomial Regression . 12 1.4.2 Two Groups . 12 1.4.3 k Groups . 13 1.4.4 Different Slopes . 13 1.4.5 Two-Phase Regression . 14 1.4.6 Periodic Functions . 14 1.4.7 Haar Wavelets . 15 1.4.8 Multiphase Regression . 15 1.5 Concluding Remarks . 16 2 Setting Up the Linear Model 17 2.1 Linear Model Notation . 17 2.2 Two Potential Models . 18 2.2.1 Regression Model . 18 2.2.2 Correlation Model . 18 2.3 TheLinear Model . 18 2.4 Math Review . 19 2.4.1 Quadratic Forms . 20 3 The Normal Distribution 23 3.1 Friends of N (0; 1)...................................... 23 3.1.1 χ2 .......................................... 23 3.1.2 t-distribution . 23 3.1.3 F -distribution . 24 3.2 The Multivariate Normal . 24 3.2.1 Linear Transformations . 25 3.2.2 Normal Quadratic Forms .
    [Show full text]
  • Likelihood Confidence Intervals When Only Ranges Are Available
    Article Likelihood Confidence Intervals When Only Ranges are Available Szilárd Nemes Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden; [email protected] Received: 22 December 2018; Accepted: 3 February 2019; Published: 6 February 2019 Abstract: Research papers represent an important and rich source of comparative data. The change is to extract the information of interest. Herein, we look at the possibilities to construct confidence intervals for sample averages when only ranges are available with maximum likelihood estimation with order statistics (MLEOS). Using Monte Carlo simulation, we looked at the confidence interval coverage characteristics for likelihood ratio and Wald-type approximate 95% confidence intervals. We saw indication that the likelihood ratio interval had better coverage and narrower intervals. For single parameter distributions, MLEOS is directly applicable. For location-scale distribution is recommended that the variance (or combination of it) to be estimated using standard formulas and used as a plug-in. Keywords: range, likelihood, order statistics, coverage 1. Introduction One of the tasks statisticians face is extracting and possibly inferring biologically/clinically relevant information from published papers. This aspect of applied statistics is well developed, and one can choose to form many easy to use and performant algorithms that aid problem solving. Often, these algorithms aim to aid statisticians/practitioners to extract variability of different measures or biomarkers that is needed for power calculation and research design [1,2]. While these algorithms are efficient and easy to use, they mostly are not probabilistic in nature, thus they do not offer means for statistical inference. Yet another field of applied statistics that aims to help practitioners in extracting relevant information when only partial data is available propose a probabilistic approach with order statistics.
    [Show full text]
  • Pivotal Quantities with Arbitrary Small Skewness Arxiv:1605.05985V1 [Stat
    Pivotal Quantities with Arbitrary Small Skewness Masoud M. Nasari∗ School of Mathematics and Statistics of Carleton University Ottawa, ON, Canada Abstract In this paper we present randomization methods to enhance the accuracy of the central limit theorem (CLT) based inferences about the population mean µ. We introduce a broad class of randomized versions of the Student t- statistic, the classical pivot for µ, that continue to possess the pivotal property for µ and their skewness can be made arbitrarily small, for each fixed sam- ple size n. Consequently, these randomized pivots admit CLTs with smaller errors. The randomization framework in this paper also provides an explicit relation between the precision of the CLTs for the randomized pivots and the volume of their associated confidence regions for the mean for both univariate and multivariate data. This property allows regulating the trade-off between the accuracy and the volume of the randomized confidence regions discussed in this paper. 1 Introduction The CLT is an essential tool for inferring on parameters of interest in a nonpara- metric framework. The strength of the CLT stems from the fact that, as the sample size increases, the usually unknown sampling distribution of a pivot, a function of arXiv:1605.05985v1 [stat.ME] 19 May 2016 the data and an associated parameter, approaches the standard normal distribution. This, in turn, validates approximating the percentiles of the sampling distribution of the pivot by those of the normal distribution, in both univariate and multivariate cases. The CLT is an approximation method whose validity relies on large enough sam- ples.
    [Show full text]
  • 32. Statistics 1 32
    32. Statistics 1 32. STATISTICS Revised September 2007 by G. Cowan (RHUL). This chapter gives an overview of statistical methods used in High Energy Physics. In statistics, we are interested in using a given sample of data to make inferences about a probabilistic model, e.g., to assess the model’s validity or to determine the values of its parameters. There are two main approaches to statistical inference, which we may call frequentist and Bayesian. In frequentist statistics, probability is interpreted as the frequency of the outcome of a repeatable experiment. The most important tools in this framework are parameter estimation, covered in Section 32.1, and statistical tests, discussed in Section 32.2. Frequentist confidence intervals, which are constructed so as to cover the true value of a parameter with a specified probability, are treated in Section 32.3.2. Note that in frequentist statistics one does not define a probability for a hypothesis or for a parameter. Frequentist statistics provides the usual tools for reporting objectively the outcome of an experiment without needing to incorporate prior beliefs concerning the parameter being measured or the theory being tested. As such they are used for reporting most measurements and their statistical uncertainties in High Energy Physics. In Bayesian statistics, the interpretation of probability is more general and includes degree of belief (called subjective probability). One can then speak of a probability density function (p.d.f.) for a parameter, which expresses one’s state of knowledge about where its true value lies. Bayesian methods allow for a natural way to input additional information, such as physical boundaries and subjective information; in fact they require as input the prior p.d.f.
    [Show full text]
  • Stat 3701 Lecture Notes: Bootstrap Charles J
    Stat 3701 Lecture Notes: Bootstrap Charles J. Geyer April 17, 2017 1 License This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License (http: //creativecommons.org/licenses/by-sa/4.0/). 2 R • The version of R used to make this document is 3.3.3. • The version of the rmarkdown package used to make this document is 1.4. • The version of the knitr package used to make this document is 1.15.1. • The version of the bootstrap package used to make this document is 2017.2. 3 Relevant and Irrelevant Simulation 3.1 Irrelevant Most statisticians think a statistics paper isn’t really a statistics paper or a statistics talk isn’t really a statistics talk if it doesn’t have simulations demonstrating that the methods proposed work great (at least in some toy problems). IMHO, this is nonsense. Simulations of the kind most statisticians do prove nothing. The toy problems used are often very special and do not stress the methods at all. In fact, they may be (consciously or unconsciously) chosen to make the methods look good. In scientific experiments, we know how to use randomization, blinding, and other techniques to avoid biasing the results. Analogous things are never AFAIK done with simulations. When all of the toy problems simulated are very different from the statistical model you intend to use for your data, what could the simulation study possibly tell you that is relevant? Nothing. Hence, for short, your humble author calls all of these millions of simulation studies statisticians have done irrelevant simulation.
    [Show full text]
  • Confidence Intervals in Analysis and Reporting of Clinical Trials Guangbin Peng, Eli Lilly and Company, Indianapolis, IN
    Confidence Intervals in Analysis and Reporting of Clinical Trials Guangbin Peng, Eli Lilly and Company, Indianapolis, IN ABSTRACT for more frequent use of confidence Regulatory agencies around the world intervals (Simon, 1993). have recommended reporting confidence There is a close relationship between intervals for treatment differences along confidence intervals and significance with the results of significance tests. tests (Hahn and Meeker, 1991); in fact, a SAS provides easy and convenient ways confidence interval can often be used to to produce confidence intervals using test a hypothesis. If the 100(1-α)% procedures such as PROC GLM and confidence interval for the mean PROC UNIVARIATE in conjunction treatment difference in a clinical trial with ODS (output delivery system). In does not contain zero, there is evidence this paper, I will discuss the relationship to indicate a treatment difference at the between significance tests and 100 α % significance level. This strategy confidence intervals, summarize the is equivalent to the hypothesis test that types of confidence intervals used in rejects the null hypothesis of no mean clinical study reports, and provide treatment difference at the level of α. examples from clinical trials to illustrate Compared to p-values, confidence the computation of distribution- intervals are generally more informative. dependent confidence intervals for the They provide quantitative bounds that mean treatment difference and express the uncertainty inherent in distribution-free confidence intervals for estimation, instead of merely an accept the median response within each or reject statement. The length of a treatment group using SAS. confidence interval depends on the sample size; this influence of sample INTRODUCTION size is evident from observing the length Confidence interval estimation and of the interval, while this is not the case significance testing (hypothesis testing) for a significance test.
    [Show full text]
  • Interval Estimation for Drop-The-Losers Designs
    Biometrika (2010), 97,2,pp. 405–418 doi: 10.1093/biomet/asq003 C 2010 Biometrika Trust Advance Access publication 14 April 2010 Printed in Great Britain Interval estimation for drop-the-losers designs BY SAMUEL S. WU Department of Epidemiology and Health Policy Research, University of Florida, Gainesville, Florida 32610, U.S.A. [email protected]fl.edu WEIZHEN WANG Downloaded from Department of Mathematics and Statistics, Wright State University, Dayton, Ohio 45435, U.S.A. [email protected] AND MARK C. K. YANG Department of Statistics, University of Florida, Gainesville, Florida 32610, U.S.A. http://biomet.oxfordjournals.org [email protected]fl.edu SUMMARY In the first stage of a two-stage, drop-the-losers design, a candidate for the best treatment is selected. At the second stage, additional observations are collected to decide whether the candidate is actually better than the control. The design also allows the investigator to stop the trial for ethical reasons at the end of the first stage if there is already strong evidence of futility or superiority. Two types of tests have recently been developed, one based on the combined means and the other based on the combined p-values, but corresponding inter- at University of Florida on May 27, 2010 val estimators are unavailable except in special cases. The problem is that, in most cases, the interval estimators depend on the mean configuration of all treatments in the first stage, which is unknown. In this paper, we prove a basic stochastic ordering lemma that enables us to bridge the gap between hypothesis testing and interval estimation.
    [Show full text]
  • Interval Estimation, Point Estimation, and Null Hypothesis Significance Testing Calibrated by an Estimated Posterior Probability of the Null Hypothesis David R
    Interval estimation, point estimation, and null hypothesis significance testing calibrated by an estimated posterior probability of the null hypothesis David R. Bickel To cite this version: David R. Bickel. Interval estimation, point estimation, and null hypothesis significance testing cali- brated by an estimated posterior probability of the null hypothesis. 2020. hal-02496126 HAL Id: hal-02496126 https://hal.archives-ouvertes.fr/hal-02496126 Preprint submitted on 2 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Interval estimation, point estimation, and null hypothesis significance testing calibrated by an estimated posterior probability of the null hypothesis March 2, 2020 David R. Bickel Ottawa Institute of Systems Biology Department of Biochemistry, Microbiology and Immunology Department of Mathematics and Statistics University of Ottawa 451 Smyth Road Ottawa, Ontario, K1H 8M5 +01 (613) 562-5800, ext. 8670 [email protected] Abstract Much of the blame for failed attempts to replicate reports of scientific findings has been placed on ubiquitous and persistent misinterpretations of the p value. An increasingly popular solution is to transform a two-sided p value to a lower bound on a Bayes factor. Another solution is to interpret a one-sided p value as an approximate posterior probability.
    [Show full text]
  • Statistical Inference II: Interval Estimation and Hypotheses Tests
    Statistical Inference II: The Principles of Interval Estimation and Hypothesis Testing The Principles of Interval Estimation and Hypothesis Testing 1. Introduction In Statistical Inference I we described how to estimate the mean and variance of a population, and the properties of those estimation procedures. In Statistical Inference II we introduce two more aspects of statistical inference: confidence intervals and hypothesis tests. In contrast to a point estimate of the population mean β, like b = 17.158, a confidence interval estimate is a range of values which may contain the true population mean. A confidence interval estimate contains information not only about the location of the population mean but also about the precision with which we estimate it. A hypothesis test is a statistical procedure for using data to check the compatibility of a conjecture about a population with the information contained in a sample of data. Continuing the example from Statistical Inference I, suppose airplane designers have been basing seat designs based on the assumption that the average hip width of U.S. passengers is 16 inches. Is the information contained in the random sample of 50 hip measurements compatible with this conjecture, or not? These are the issues we consider in Statistical Inference II. 2. Interval Estimation for Mean of Normal Population When σ2 is Known Let Y be a random variable from a normal population. That is, assume YN~,()β σ2 . Assume that we have a random sample of size T from this population, YY12,,, YT . The least squares estimator of the population mean is T = bYT∑ i (2.1) i=1 This estimator has a normal distribution if the population is normal, bN~,()βσ2 T (2.2) For the present, let us assume that the population variance σ2 is known.
    [Show full text]