Biometrika (2010), 97,2,pp. 405–418 doi: 10.1093/biomet/asq003 C 2010 Biometrika Trust Advance Access publication 14 April 2010 Printed in Great Britain Interval estimation for drop-the-losers designs BY SAMUEL S. WU Department of Epidemiology and Health Policy Research, University of Florida, Gainesville, Florida 32610, U.S.A.
[email protected]fl.edu WEIZHEN WANG Downloaded from Department of Mathematics and Statistics, Wright State University, Dayton, Ohio 45435, U.S.A.
[email protected] AND MARK C. K. YANG Department of Statistics, University of Florida, Gainesville, Florida 32610, U.S.A. http://biomet.oxfordjournals.org
[email protected]fl.edu SUMMARY In the first stage of a two-stage, drop-the-losers design, a candidate for the best treatment is selected. At the second stage, additional observations are collected to decide whether the candidate is actually better than the control. The design also allows the investigator to stop the trial for ethical reasons at the end of the first stage if there is already strong evidence of futility or superiority. Two types of tests have recently been developed, one based on the combined means and the other based on the combined p-values, but corresponding inter- at University of Florida on May 27, 2010 val estimators are unavailable except in special cases. The problem is that, in most cases, the interval estimators depend on the mean configuration of all treatments in the first stage, which is unknown. In this paper, we prove a basic stochastic ordering lemma that enables us to bridge the gap between hypothesis testing and interval estimation.