Heck Colostate 0053A 15801.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma
Anatomy and Pathology Whole-Genome Microarray Detects Deletions and Loss of Heterozygosity of Chromosome 3 Occurring Exclusively in Metastasizing Uveal Melanoma Sarah L. Lake,1 Sarah E. Coupland,1 Azzam F. G. Taktak,2 and Bertil E. Damato3 PURPOSE. To detect deletions and loss of heterozygosity of disease is fatal in 92% of patients within 2 years of diagnosis. chromosome 3 in a rare subset of fatal, disomy 3 uveal mela- Clinical and histopathologic risk factors for UM metastasis noma (UM), undetectable by fluorescence in situ hybridization include large basal tumor diameter (LBD), ciliary body involve- (FISH). ment, epithelioid cytomorphology, extracellular matrix peri- ϩ ETHODS odic acid-Schiff-positive (PAS ) loops, and high mitotic M . Multiplex ligation-dependent probe amplification 3,4 5 (MLPA) with the P027 UM assay was performed on formalin- count. Prescher et al. showed that a nonrandom genetic fixed, paraffin-embedded (FFPE) whole tumor sections from 19 change, monosomy 3, correlates strongly with metastatic death, and the correlation has since been confirmed by several disomy 3 metastasizing UMs. Whole-genome microarray analy- 3,6–10 ses using a single-nucleotide polymorphism microarray (aSNP) groups. Consequently, fluorescence in situ hybridization were performed on frozen tissue samples from four fatal dis- (FISH) detection of chromosome 3 using a centromeric probe omy 3 metastasizing UMs and three disomy 3 tumors with Ͼ5 became routine practice for UM prognostication; however, 5% years’ metastasis-free survival. to 20% of disomy 3 UM patients unexpectedly develop metas- tases.11 Attempts have therefore been made to identify the RESULTS. Two metastasizing UMs that had been classified as minimal region(s) of deletion on chromosome 3.12–15 Despite disomy 3 by FISH analysis of a small tumor sample were found these studies, little progress has been made in defining the key on MLPA analysis to show monosomy 3. -
Caspases Switch Off M6a RNA Modification Pathway to Reactivate A
bioRxiv preprint doi: https://doi.org/10.1101/2020.11.12.377127; this version posted November 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 6 1 Caspases switch off m A RNA modification pathway to reactivate a 2 ubiquitous human tumor virus 3 Kun Zhang1,2, Yucheng Zhang3, Jun Wan3,4,5 and Renfeng Li1,2,6,7,8* 4 1Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth 5 University, Richmond, Virginia, 23298, USA 6 2Department of Oral and Craniofacial Molecular Biology, School of Dentistry, Virginia 7 Commonwealth University, Richmond, Virginia, 23298, USA 8 3Department of Medical and Molecular Genetics, Indiana University School of Medicine, 9 Indianapolis, Indiana, 46202, USA 10 4Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, 11 Indianapolis, Indiana, 46202, USA. 12 5Department of BioHealth Informatics, School of Informatics and Computing, Indiana University 13 – Purdue University at Indianapolis, Indianapolis, Indiana, 46202, USA 14 6Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth 15 University, Richmond, Virginia, 23298, USA 16 7Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, 23298, USA. 17 8Lead Contact 18 19 *Corresponding author: [email protected] (RL) 20 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.11.12.377127; this version posted November 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
CPSF6 Links Alternative Polyadenylation to Metabolism
Tan et al. Journal of Experimental & Clinical Cancer Research (2021) 40:85 https://doi.org/10.1186/s13046-021-01884-z RESEARCH Open Access CPSF6 links alternative polyadenylation to metabolism adaption in hepatocellular carcinoma progression Sheng Tan1†, Ming Zhang2†, Xinglong Shi3†, Keshuo Ding4, Qiang Zhao3, Qianying Guo4, Hao Wang4, Zhengsheng Wu4, Yani Kang3, Tao Zhu5*, Jielin Sun1* and Xiaodong Zhao1* Abstract Background: Alternative polyadenylation (APA) is an important mechanism of gene expression regulation through generation of RNA isoforms with distinct 3′ termini. Increasing evidence has revealed that APA is actively involved in development and disease, including hepatocellular carcinoma (HCC). However, how APA functions in tumor formation and progression remains elusive. In this study, we investigated the role of cleavage factor I (CFIm) subunit CPSF6 in human hepatocellular carcinoma (HCC). Methods: Expression levels of CPSF6 in clinical tissues and cell lines were determined by qRT-PCR and western blot. Functional assays, including the cell number, MTT, colony formation and transwell, were used to determine the oncogenic role of CPSF6 in HCC. Animal experiments were used to determine the role of CPSF6 in HCC tumorigenicity in vivo. Deep sequencing-based 3 T-seq was used to profile the transcriptome-wide APA sites in both HCC cells and CPSF6 knockdown HCC cells. The function of CPSF6-affected target NQO1 with distinct 3′UTRs was characterized by metabolism assays. Results: We observed CPSF6 was upregulated in HCC and the high expression of CPSF6 was associated with poor prognosis in patients. Overexpression of CPSF6 promoted proliferation, migration and invasion of HCC cells in vitro and in vivo. -
A Novel LRRK2 Variant P.G2294R in the WD40 Domain Identified in Familial Parkinson's Disease Affects LRRK2 Protein Levels
International Journal of Molecular Sciences Article A Novel LRRK2 Variant p.G2294R in the WD40 Domain Identified in Familial Parkinson’s Disease Affects LRRK2 Protein Levels Jun Ogata 1, Kentaro Hirao 2, Kenya Nishioka 3 , Arisa Hayashida 3, Yuanzhe Li 3, Hiroyo Yoshino 4, Soichiro Shimizu 2, Nobutaka Hattori 1,3,4 and Yuzuru Imai 1,* 1 Department of Research for Parkinson’s Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan; [email protected] (J.O.); [email protected] (N.H.) 2 Department of Geriatric Medicine, Tokyo Medical University, 6-7-1 Nishishinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; [email protected] (K.H.); [email protected] (S.S.) 3 Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; [email protected] (K.N.); [email protected] (A.H.); [email protected] (Y.L.) 4 Research Institute for Diseases of Old Age, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-3-6801-8332 Abstract: Leucine-rich repeat kinase 2 (LRRK2) is a major causative gene of late-onset familial Parkin- son’s disease (PD). The suppression of kinase activity is believed to confer neuroprotection, as most pathogenic variants of LRRK2 associated with PD exhibit increased kinase activity. We herein report a novel LRRK2 variant—p.G2294R—located in the WD40 domain, detected through targeted gene- Citation: Ogata, J.; Hirao, K.; panel screening in a patient with familial PD. -
CLIP-Seq and Massively Parallel Functional Analysis of the CELF6
bioRxiv preprint doi: https://doi.org/10.1101/401604; this version posted August 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. CLIP-Seq and massively parallel functional analysis of the CELF6 RNA binding protein reveals a role in destabilizing synaptic gene mRNAs through interaction with 3’UTR elements in vivo Michael A. Rieger1,2, Dana M. King1, Barak A. Cohen1, Joseph D. Dougherty1,2 1Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA 2Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA Contact: Dr. Joseph D. Dougherty Washington University School of Medicine Department of Genetics Campus Box 8232 4566 Scott Ave. St. Louis, Mo. 63110-1093 (314) 286-0752 [email protected] bioRxiv preprint doi: https://doi.org/10.1101/401604; this version posted August 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract CELF6 is an RNA-binding protein in a family of proteins with roles in human health and disease, however little is known about the mRNA targets or in vivo function of this protein. We utilized HITS-CLIP/CLIP-Seq to identify, for the first time, in vivo targets of CELF6 and identify hundreds of transcripts bound by CELF6 in the brain. We found these are disproportionately mRNAs coding for synaptic proteins. We then conducted extensive functional validation of these targets, testing greater than 400 CELF6 bound sequence elements for their activity, applying a massively parallel reporter assay framework to evaluation of the CLIP data. -
Multiple MYO18A-PDGFRB Fusion Transcripts in a Myeloproliferative
Sheng et al. Molecular Cytogenetics (2017) 10:4 DOI 10.1186/s13039-017-0306-8 CASEREPORT Open Access Multiple MYO18A-PDGFRB fusion transcripts in a myeloproliferative neoplasm patient with t(5;17)(q32;q11) Guangying Sheng1†, Zhao Zeng1†, Jinlan Pan1, Linbing Kou1, Qinrong Wang1, Hong Yao1, Lijun Wen1, Liang Ma1, Depei Wu1,2, Huiying Qiu1 and Suning Chen1,2* Abstract Background: Myeloproliferative neoplasms (MPNs), typically defined by myeloid proliferation and eosinophilia, and are only rarely caused by platelet-derived growth factor receptor beta (PDGFRB) gene rearrangements. Case presentation: Here, we report a unique case of MPN that is negative for eosinophilia and characterized by a novel PDGFRB rearrangement. After cytogenetic analysis revealed a karyotype of t(5;17) (q32;q11), we used fluorescence in situ hybridization to specifically identify the PDGFRB gene at 5q31-q33 as the gene that had been translocated. Subsequently, RNA sequencing identified a new MYO18A-PDGFRB gene fusion. This fusion presented a previously undescribed breakpoint composed of exon 37 of MYO18A and exon 13 of PDGFRB. Furthermore, both RT-PCR and Bi-directional Sanger sequencing confirmed this out-of-frame fusion. Interestingly, we simultaneously identified the presence of another three PDGFRB transcripts, all of which were in-frame fusions. After treating the patient with imatinib, the t(5;17) translocation was no longer detected by conventional cytogenetics or by FISH, and at the time of the last follow-up, the patient had been in complete remission for 26 months. Conclusion: We prove that MYO18A-PDGFRB fusions are recurrent genetic aberrations involved in MPNs, and identify multiple fusion transcripts with novel breakpoints. -
A Case of Acute Myeloid Leukemia with Promyelocytic Features Characterized by Expression of a Novel RARG-CPSF6 Fusion Christopher A
Washington University School of Medicine Digital Commons@Becker Open Access Publications 2018 A case of acute myeloid leukemia with promyelocytic features characterized by expression of a novel RARG-CPSF6 fusion Christopher A. Miller Washington University School of Medicine in St. Louis Christopher Tricarico Washington University School of Medicine in St. Louis Zachary L. Skidmore Washington University School of Medicine in St. Louis Geoffrey L. Uy Washington University School of Medicine in St. Louis Yi-Shan Lee Washington University School of Medicine in St. Louis See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Miller, Christopher A.; Tricarico, Christopher; Skidmore, Zachary L.; Uy, Geoffrey L.; Lee, Yi-Shan; Hassan, Anjum; O'Laughlin, Michelle D.; Schmidt, Heather; Tian, Ling; Duncavage, Eric J.; Griffith,al M achi; Griffith, Obi L.; Welch, John S.; and Wartman, Lukas D., ,"A case of acute myeloid leukemia with promyelocytic features characterized by expression of a novel RARG-CPSF6 fusion." Blood Advances.2,11. 1295-1299. (2018). https://digitalcommons.wustl.edu/open_access_pubs/7234 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. Authors Christopher A. Miller, Christopher Tricarico, Zachary L. Skidmore, Geoffrey L. Uy, Yi-Shan Lee, Anjum Hassan, Michelle D. O'Laughlin, Heather Schmidt, Ling Tian, Eric J. Duncavage, Malachi Griffith, Obi L. Griffith,o J hn S. Welch, and Lukas D. Wartman This open access publication is available at Digital Commons@Becker: https://digitalcommons.wustl.edu/open_access_pubs/7234 EXCEPTIONAL CASE REPORT A case of acute myeloid leukemia with promyelocytic features characterized by expression of a novel RARG-CPSF6 fusion Christopher A. -
Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement. -
Spermatozoal Gene KO Studies for the Highly Present Paternal Transcripts
Spermatozoal gene KO studies for the highly present paternal Potential maternal interactions Conclusions of the KO studies on the maternal gene transcripts detected by GeneMANIA candidates for interaction with the paternal Fbxo2 Selective cochlear degeneration in mice lacking Cul1, Fbxl2, Fbxl3, Fbxl5, Cul-1 KO causes early embryonic lethality at E6.5 before Fbxo2 Fbxo34, Fbxo5, Itgb1, Rbx1, the onset of gastrulation http://www.jneurosci.org/content/27/19/5163.full Skp1a http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3641602/. Loss of Cul1 results in early embryonic lethality and Another KO study showed the following: Loss of dysregulation of cyclin E F-box only protein 2 (Fbxo2) disrupts levels and http://www.ncbi.nlm.nih.gov/pubmed/10508527?dopt=Abs localization of select NMDA receptor subunits, tract. and promotes aberrant synaptic connectivity http://www.ncbi.nlm.nih.gov/pubmed/25878288. Fbxo5 (or Emi1): Regulates early mitosis. KO studies shown lethal defects in preimplantation embryo A third KO study showed that Fbxo2 regulates development http://mcb.asm.org/content/26/14/5373.full. amyloid precursor protein levels and processing http://www.jbc.org/content/289/10/7038.long#fn- Rbx1/Roc1: Rbx1 disruption results in early embryonic 1. lethality due to proliferation failure http://www.pnas.org/content/106/15/6203.full.pdf & Fbxo2 has been found to be involved in http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2732615/. neurons, but it has not been tested for potential decreased fertilization or pregnancy rates. It Skp1a: In vivo interference with Skp1 function leads to shows high expression levels in testis, indicating genetic instability and neoplastic transformation potential other not investigated functions http://www.ncbi.nlm.nih.gov/pubmed/12417738?dopt=Abs http://biogps.org/#goto=genereport&id=230904 tract. -
Novel Candidate Genes of Thyroid Tumourigenesis Identified in Trk-T1 Transgenic Mice
Endocrine-Related Cancer (2012) 19 409–421 Novel candidate genes of thyroid tumourigenesis identified in Trk-T1 transgenic mice Katrin-Janine Heiliger*, Julia Hess*, Donata Vitagliano1, Paolo Salerno1, Herbert Braselmann, Giuliana Salvatore 2, Clara Ugolini 3, Isolde Summerer 4, Tatjana Bogdanova5, Kristian Unger 6, Gerry Thomas6, Massimo Santoro1 and Horst Zitzelsberger Research Unit of Radiation Cytogenetics, Helmholtz Zentrum Mu¨nchen, Ingolsta¨dter Landstr. 1, 85764 Neuherberg, Germany 1Istituto di Endocrinologia ed Oncologia Sperimentale del CNR, c/o Dipartimento di Biologia e Patologia Cellulare e Molecolare, Universita` Federico II, Naples 80131, Italy 2Dipartimento di Studi delle Istituzioni e dei Sistemi Territoriali, Universita` ‘Parthenope’, Naples 80133, Italy 3Division of Pathology, Department of Surgery, University of Pisa, 56100 Pisa, Italy 4Institute of Radiation Biology, Helmholtz Zentrum Mu¨nchen, 85764 Neuherberg, Germany 5Institute of Endocrinology and Metabolism, Academy of Medical Sciences of the Ukraine, 254114 Kiev, Ukraine 6Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London W12 0HS, UK (Correspondence should be addressed to H Zitzelsberger; Email: [email protected]) *(K-J Heiliger and J Hess contributed equally to this work) Abstract For an identification of novel candidate genes in thyroid tumourigenesis, we have investigated gene copy number changes in a Trk-T1 transgenic mouse model of thyroid neoplasia. For this aim, 30 thyroid tumours from Trk-T1 transgenics were investigated by comparative genomic hybridisation. Recurrent gene copy number alterations were identified and genes located in the altered chromosomal regions were analysed by Gene Ontology term enrichment analysis in order to reveal gene functions potentially associated with thyroid tumourigenesis. In thyroid neoplasms from Trk-T1 mice, a recurrent gain on chromosomal bands 1C4–E2.3 (10.0% of cases), and losses on 3H1–H3 (13.3%), 4D2.3–E2 (43.3%) and 14E4–E5 (6.7%) were identified. -
Investigation of the Protein-Protein Interaction Between PCBP1 and Y -Synuclein Amanda Hunkele Seton Hall University
Seton Hall University eRepository @ Seton Hall Seton Hall University Dissertations and Theses Seton Hall University Dissertations and Theses (ETDs) 2010 Investigation of the Protein-Protein Interaction Between PCBP1 and y -synuclein Amanda Hunkele Seton Hall University Follow this and additional works at: https://scholarship.shu.edu/dissertations Part of the Biology Commons Recommended Citation Hunkele, Amanda, "Investigation of the Protein-Protein Interaction Between PCBP1 and y -synuclein" (2010). Seton Hall University Dissertations and Theses (ETDs). 685. https://scholarship.shu.edu/dissertations/685 Investigation of the protein-protein interaction between PCBPl and y-synuclein Amanda Hunkeie Submitted in partial fulfiient of the requiremenk for the Degree of Master of Science in Biology from the Department of Biology of Seton HaU University September 2010 APPROVED BY I I Jane L. K0,'Ph.D. Mentor &2_3 -kfeping Zhou, Pb. D. Committee Member Tin-Chun C~U,Ph.D. Committee Member - ~arrohhawn,Ph.D. Director of Graduate Studies Chairperson, Department of Biological Sciences Acknowledgements I first want to thank my mentor, Dr. Jane KO, for her continued support and encouragement throughout my research project. Her patience and enthusiasm made this a very rewarding experience. I would also like to thank my committee members, Dr. Zhou and Dr. Chu, for their time and contribution to this project. Also, I would like to thank the Biology department faculty for all their guidance and contributions to my academic development. Additionally I would like to thank the other members of Dr. KO's lab for all their help academically and their f?iendship. Their support tmly helped me through this research experience. -
Characterization of Poly (Rc) Binding Protein (Pcbp2) and Frataxin Sudipa Ghimire-Rijal Wayne State University
Wayne State University Wayne State University Theses 1-1-2011 Characterization of poly (rc) binding protein (pcbp2) and frataxin Sudipa Ghimire-Rijal Wayne State University Follow this and additional works at: http://digitalcommons.wayne.edu/oa_theses Part of the Biochemistry Commons Recommended Citation Ghimire-Rijal, Sudipa, "Characterization of poly (rc) binding protein (pcbp2) and frataxin" (2011). Wayne State University Theses. Paper 71. This Open Access Thesis is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in Wayne State University Theses by an authorized administrator of DigitalCommons@WayneState. CHARACTERIZATION OF POLY (rC) BINDING PROTEIN (PCBP2) AND FRATAXIN by SUDIPA GHIMIRE-RIJAL THESIS Submitted to the Graduate School of Wayne State University, Detroit, Michigan in partial fulfillment of the requirements for the degree of MASTERS IN SCIENCE 2011 MAJOR: BIOCHEMISTRY AND MOLECULAR BIOLOGY Approved by: Advisor Date ACKNOWLEDGMENTS My deepest gratitude goes to my adviser Dr. Timothy L. Stemmler for all his support, encouragement and enthusiasm for the research. He has been very supportive and encouraging through the times which helped me to grow as a budding scientist. I will be forever grateful to you for all the support and guidance that I received while pursuing my MS degree. I am also thankful to my committee members Dr. Brian F. P. Edwards and Dr. Bharati Mitra for their encouragement and constructive comments which helped me to develop a passion for research. I am thankful to my former and present lab members; Jeremy, Swati, Madhusi, Poorna, Andrea, April, Yogapriya for creating a friendly lab environment.