Output Orientált Digitális Kartográfia (MTA

Total Page:16

File Type:pdf, Size:1020Kb

Output Orientált Digitális Kartográfia (MTA Zentai László OUTPUT ORIENTÁLT DIGITÁLIS KARTOGRÁFIA doktori értekezés Budapest 2003 Szükség szüli a tudományokat! Amint a szükség beáll, az eszmék a köd homályából jegeczesedni kezdenek és egységes egészszé igyekeznek sorakozni; a tevékenységében soha nem nyugvó emberi szellem felkarolja a tárgyat, rendez, rostál és tisztít, logikai alapelvek szerint szervezi a gyakorlatból merített adatokat, és az előzményekből követ- keztetve, megmutatja az irányt, mely szerint kell haladni. Tóth Ágoston, 1868 Tartalomjegyzék Előszó 7 1. Digitális kartográfia: előzmények 9 1.1. A digitális térképek előállítása 9 1.2. Számítástechnikai előzmények 12 1.2.1. Számítógépes grafika 13 1.2.2. Térinformatika 14 1.3. Térinformatika és térképészet 15 1.4. A számítógépes térképészet fejlődése 17 1.5. A számítógépes térképészet aktuális problémái és a fejlődés irányai 18 1.6. A számítógépes és a hagyományos térkép-előállítás összevetése 19 1.6.1. A digitális térkép-előállítás előnyei 19 1.6.2. A digitális kartográfia hátrányai és néhány ábrázolási problémája 20 1.7. A hagyományos és a digitális kartográfia jellegzetességei és különbségei 21 1.8. Előkészítés (előkészítő szerkesztés) 21 1.9. Adatbevitel (input) 22 1.9.1. A térképek szkennelése 23 1.9.2. Digitalizálás digitalizáló táblával 24 1.9.3. Digitalizálás a képernyőn 25 1.10. Térképtervezés 25 1.11. Grafikai kivitelezés, a térkép kialakítása 26 1.12. Nyomdai előkészítés 27 1.13. Sokszorosítás, közzététel 27 1.13.1. Ofszetnyomtatás 28 1.13.2. Digitális nyomdatechnika 28 2. A raszteres és vektoros térképészet alapjai 30 2.1. Vektoradatmodell, a topológia elve 30 2.1.1. Vektoralapú térképek 32 2.2. Raszteradatmodell 33 2.2.1. Raszteralapú térképek 34 2.3. A különböző adatmodellek együttes használata és egymásba alakíthatósága 35 2.3.1. A vektor- és raszteradatmodell együttes alkalmazása 35 2.3.2. Konverzió az eltérő adatmodellek között 37 3. Az asztali kiadványszerkesztés szerepe a digitális kartográfia 39 kialakulásában 3.1. Bézier-görbék 39 3.2. A DTP kialakulása 41 3.3 Postscript 43 3.3.1. Lapleíró nyelv 43 3.3.2. A Postscript állomány szerkezete 46 3.3.3. AI (Adobe Illustrator) formátum 47 3 Tartalomjegyzék 4. A szoftverek szerepe a digitális kartográfiában 49 4.1. Általános célú grafikus szoftverek 49 4.2. Speciális térképészeti szoftverek 54 4.3. CAD programok 56 4.4. A GIS szoftverek térképészeti lehetőségei 59 4.5. Egyszerű desktop mapping szoftverek 62 4.6. Ideális kompromisszum 63 5. Állományformátumok a digitális kartográfiában és a térinformatikában 65 5.1. Raszteres formátumok 65 5.1.1. TIFF (Tagged Image File Format) 66 5.1.2. BMP 67 5.1.3. PCX (Zsoft Paintbrush) 68 5.1.4. GIF (Compuserve Graphic Interchange Format) 68 5.1.5. JPG (Joint Photographics Experts Group) 69 5.1.6. PNG (Portable Network Graphics) 70 5.1.7. MAC Paint 70 5.1.8. TGA (Truevision Targa) 70 5.1.9. RAW 71 5.1.10. PHOTO CD (Eastman Kodak) 71 5.1.11. FPX (FlashPix) 71 5.1.12. MrSID (Multi-resolution Seamless Image Database) 71 5.2. Vektoros formátumok 72 5.2.1. DXF (Autodesk Drawing Exchange Format), DWG 73 5.2.2. HPGL (Hewlett-Packard Graphic Language), HPPCL 74 (Hewlett-Packard Printer Control Language) 5.2.3. MicroStation DGN formátum 74 5.3. Metafájl formátumok 75 5.3.1. CGM (Computer Graphics Metafile) 75 5.3.2. WMF (Windows Metafile), EMF (Enhanced Metafile) 75 5.3.3. Mac PICT 76 5.3.4. Postscript 76 5.3.5. PDF (Adobe Acrobat) 76 5.4. Fontosabb térinformatikai formátumok 77 5.4.1. MapInfo MIF/MID 77 5.4.2. E00: ArcView export 77 5.4.3. ArcView SHP (shape) 77 5.5. Konverziós műveletek 78 6. Hardver 81 6.1. Az operációs rendszerek szerepe 88 6.2. A számítógépek fajtái 92 6.3. Adatbeviteli (input) eszközök 94 6.3.1. Digitalizáló tábla 94 6.3.2. Egér 95 4 Tartalomjegyzék 6.3.3. Szkenner 95 6.3.4. Digitális kamera 97 6.3.5. Billentyűzet 97 6.4. Kimeneti (output) eszközök 98 6.4.1. Képernyők (monitorok) 98 6.4.2. Nyomtatók 100 6.4.2.1. Mátrixnyomtatók 100 6.4.2.2. Tintasugaras nyomtatók 101 6.4.2.3. Lézernyomtatók 102 6.4.2.4. Különleges típusú színes nyomtatók 103 6.4.3. Plotterek, rajzgépek 104 6.4.4. Levilágítók 104 6.4.5. Próbanyomat (proof) készítése 106 7. Térképi megírások 108 7.1. Tipográfiai alapismeretek 108 7.2. Betűtípusok, betűfajták 109 7.2.1. Írásrendszerek, speciális karakterek 109 7.2.2. Unicode 111 7.2.3. A betűtípusok hagyományos csoportosítása 112 7.3. A számítógépes betűtípus-állományok formátumai 116 7.3.1. Raszterfontok 116 7.3.2. Vektorfontok 117 7.3.2.1. TrueType 118 7.3.2.2. Postscript Type1, Type3, Type5 118 7.3.2.3. OpenType 119 7.4. Térképi megírások attribútumai 120 8. A színek szerepe a digitális kartográfiában 123 8.1. A szín érzékelése 123 8.2. Fiziológiai színjellemzés: színmérés (színmetrika) 124 8.3. Színrendszerek 124 8.3.1. Nemzetközi Színmérő Rendszer 124 8.3.2. Munsell-féle színrendszer, színatlasz (1915) 125 8.3.3. Ostwald (1915) 126 8.3.4. A Nemcsics-féle Coloroid színrendszer 126 8.4. A színkeverés elvei 126 8.4.1. Additív (összeadó) színkeverés 126 8.4.2. Szubtraktív (kivonó) színkeverés 127 8.5. Színmodellek a számítógépes szoftverekben 128 8.5.1. RGB 129 8.5.2. HSL, HSB, HSI, HSV, HSI, HVC, TSD 129 8.5.3. YIQ, YUV, YCbCr, YCC 130 8.5.4. CMYK (cyan, magenta, yellow, black) 130 8.5.5. Lab 130 8.5.6. Webes színpaletta (web safe colors) 131 8.5.7. Direkt színek 131 5 Tartalomjegyzék 8.5.7.1. PMS (Pantone Matching System) 133 8.5.7.2. Focoltone színrendszer 133 8.5.7.3. Trumatch színmintarendszer 133 8.5.7.4. Toyo színrendszer 133 8.6. Konverzió az egyes színmodellek között 133 8.7. Színrebontás 134 8.7.1. Raszter (nyomdai rács) 134 8.7.2. Frekvenciamodulált rács 135 8.7.3. A levilágítás technológiája és a színrebontás hibalehetőségei 136 9. Webkartográfia 138 9.1. Az internet és a web története 138 9.2. A térképészet és az internet 141 9.3. Raszteres megoldások 142 9.3.1. Wavelet 143 9.4. Egyszerű vektoros megoldások 144 9.5. Vektoros megoldások térinformatikai háttérrel 147 9.5.1. ESRI ArcIMS 148 9.5.2. GeoMedia WebMap 149 9.5.3. AutoDesk MapGuide 150 9.5.4. MapInfo MapXtreme 152 9.6. Vegyes megoldások 152 9.7. Térképek a webre 153 9.7.1. A térképek szerepe egy weboldalon 154 9.7.2. Digitális térképek raszteres formátumban 154 9.7.3. Vektoros térképek a weben, adatbázis alapú webtérképek 155 9.7.4. Wapos lehetőségek 156 9.8. Mit hoz a jövő? 156 10. A számítógépes térképészet és a térinformatika hazai története 158 10.1. A kezdetek 158 10.2. A magáncégek megjelenése 161 10.3. Digitális topográfiai térképek 163 10.3.1. Katonai topográfiai térképek 164 10.3.2. Polgári topográfiai térképek 165 Összefoglalás 166 6 Elõszó ELŐSZÓ A számítógépes térképészet megjelenése a kartográfia teljes eddigi történetében az egyik leg- nagyobb változást jelentette. Ez a fejlõdés teljes egészében megváltoztatta a térképkészítés hosszú évszázadok alatt kialakult folyamatát. Igaz a kartográfia elméleti tudományát, alapjait nem érintette jelentősen ez a forradalmi változás. Sokkal lassabban, de valószínűleg lényeg- bevágóbban hat a térképészetre a térinformatika fejlődése és széles körű elterjedése. Ennek a hatásnak a jelentőségét az is bizonyítja, hogy a Nemzetközi Térképészeti Társulás (ICA — International Cartographic Association) 2003-as kongresszusán valószínűleg megváltoztat- ja, kibővíti a nevét azonos súlyúvá téve tevékenységében a térinformatikát is. A dolgozat címe zömmel idegen szavakat tartalmaz, mert magyar szakkifejezésekkel a dol- gozat pontos témája csak sokkal körülményesebben írható le. A számítógépes térképészetet vizsgálom olyan aspektusból, ahol a végtermék (az output) az alapvető fontosságú — legyen ez akár papírtérkép, akár képernyőkép. Véleményem szerint a „számítógépes kartográfia” kifejezés sem tekinthető teljes mértékben a „digitális kartográfia” szakkifejezés szinonimájának. A digitális jelző sokkal inkább magában foglal perifériákat: mint a digitalizáló tábla, a szkenner, a levilágító, s ezek az eszközök nagyon fontosak az új technológia számára. Egy viszonylag új témáról írni, átfogó módon, részletesen nagy felelősség. Nem könnyű olyan gyakorlatias és gyorsan változó témáról írni, mint a digitális kartográfia. A nehézséget elsősorban az jelenti, hogy azokat az információkat kell kiemelni, amelyek „szavatossága” in- formatikai mércével tekintve is időt álló. A számítástechnika és a térinformatika rendkívül gyors fejlődése nem könnyíti a szakem- berek munkáját. Ha végiggondoljuk, mi is történt ezen a szakterületen akár csak az elmúlt tíz évben, megérthetjük, hogy nem is olyan könnyű ezen a szakterületen a gyors változások átfogó követése, illetve a jellemző tendenciák felismerése, kiemelése. A személyi számítógépek rendkívül gyors elterjedése hazánkban néhány év alatt teljesen át- alakította a térképkészítés gyakorlati folyamatát. 1990 végén jelent meg az első olyan térkép, melynek nyomdakész filmjei már számítógéppel készültek, és mára szinte egyeduralkodóvá vált ez a módszer. A térképészeknek meg kellett ismerkedniük a számítógépekkel, hiszen ezek szakszerű alkalmazásával a teljes technológiai folyamat irányítható és ellenõrizhetõ. Olyan tökéletes technikai minőség érhető el, ami az adatfelvétel, adatfeldolgozás és a kiértékelés területén is jobb munkára ösztönzi a térképkészítőket. Hasonló fontosságú a térinformatikai térhódítása. Itt azonban sokkal szélesebb szakterüle- teket érint a változás: informatika, adatbázis-kezelés, ingatlan- és földnyilvántartás, közigazga- tás, közművek. Napjainkban a térinformatika alkalmazása már ipari méreteket öltött: minél nagyobb egy gazdálkodó szervezet vagy intézmény, annál valószínűbb, hogy térinformatikai alkalmazásokat használ. Tudományos oldalról kevesen ismerik és kutatják a térinformatikát, hiszen alapvetően alkalmazott tudományról van szó. Itt a komoly szakértelem a leggyakrab- ban konkrét szoftverkörnyezethez köthető. Mára a számítástechnika, az internet használata egyre inkább természetessé válik: ilyen ismeretek magabiztos felhasználása, alkalmazása ugyanolyan fontosságúvá vált már hazánk- ban is, mint a nyelvismeret. Ez a dolgozat meg sem születhetett volna a webes lehetősé- gek igen intenzív használata nélkül, legalábbis nem lehetett volna annyira naprakész, hogy akár a megszületésének évében keletkezett tudományos kutatások eredményeit is a kutató fejlesztésbe beillessze.
Recommended publications
  • Sketchup in Digital Archives
    SketchUp in digital archives Software and file format analysis and exploration of the options for digital preservation 1 SKETCHUP SOFTWARE AND FILE FORMAT SketchUp software and file format: exploration of the options Title fordigital preservation Author(s) Henk Vanstappen, Datable Date September 2019 This document is licensed under the Attribution-ShareAlike License 4.0 Unported (CC BY-SA 4.0) license. Copyright may apply on third party images 2 SKETCHUP SOFTWARE AND FILE FORMAT Contents p5 1. Executive Summary p6 2. Introduction p7 3. SketchUp software p8 3.1. SketchUp products and product suites p8 Product suites p8 SketchUp for Web p8 SketchUp Pro (Desktop) p9 SketchUp LayOut p9 SketchUp Viewers p9 3D Warehouse p9 Extensions Warehouse p10 Trimble Connect p11 3.2. Developer tools p11 Ruby API p11 SketchUp SDK p12 3.3. Software license p13 3.4. System requirements p14 3.5. Software features and tools p14 Features history p16 Drawing, Extrusion tool (push/pull) and Follow Me p16 3.5.3. Smoothed edges and sandbox p17 Dynamic components p17 Style Builder p18 Solid modeling tools p18 Geolocation and display in Google Earth p19 BIM support p19 Extensions or plugins p20 4. SketchUp model and file format p20 4.1. SketchUp model hierarchy p21 4.2. SketchUp model entities p21 Edges, arcs, curves and polylines p22 Faces, circles and polygons p22 Shapes and solids p23 Color, texture and materials p24 Groups and Components p24 Section Plane p25 Layers p25 Visualization entities: fog, lightning, scenes, camera and views p26 Supporting entities: text, dimensions, guidelines p26 Metadata p27 4.3.
    [Show full text]
  • Cheap Tricks Index 1990-2000
    Cheap Tricks Index 1990-2000 ?, Wildcards Oct 91 4 3D CAD Shootout Apr 98 1 $, Dollar Sign, Keyboard Macro Apr 91 4 3D cars & people Nov 98 2 $ Dec 99 1 3D Cars & Trucks Feb 99 8 $$$ Marker file Feb 99 6 3D Construction Drawing Apr 95 1 *, Wildcards Oct 91 4 3D CAD Design Shootout, observations Dec 97 3 %1 to %10, DOS Replaceable Parameters Dec 91 5 3D CAD Design Shootout, playoff-caliber teams Dec 97 3 0, Alt-0 keyboard interrupt Apr 93 4 3D Cursor Dec 94 2 1.25 Million Questions May 99 7 3D Cursor Aug 95 4 10-Base-2; 10-Base-T Dec 97 4 3D Cursor Mar 95 3 16 bit processing Sep 96 2 3D Cursor, undocumented features Jun 97 4 16-bit processing May 93 3 3D Cylinder stretching Jan 98 8 3D Design & Presentation Dec 94 1 2 ½ D 3D Design Models, DC Viewer Mar 97 1 3D Designer's CADD Shootout Sep 99 2 2 1/2 D, vs. 3D for sections Jun 96 1 3D Designers CAD Shootout Dec 98 1 2 1/2D Modeling May 94 1 3D Designers CAD Shootout Nov 98 8 2 1/2 D massing model Jan 99 6 3D Drawings, As Construction Drawings Dec 91 2 2 line trim for stretching Jul 96 4 3D, Easy Method, Neal Mortenson Jan 94 3 2 1/2D vs. 3D, chart of differences Apr 00 3 3D Edit Menu May 94 3 2 1/2D vs. 3D Apr 00 2 3D Edit Plane Dec 94 4 2 1/2D, defined Apr 00 2 3D Edit, Won't work May 91 5 20/20 rule Feb 95 2 3D Editing Jan 98 8 286, 386, 486, with DOS 5.0 Aug 91 4 3D, Elevation save Mar 99 5 3D Elevation View Jun 91 2 3D Entity Menu May 94 3 2D 3D Framing macro Oct 94 8 3D, from 2D Transformations May 97 1 2D vs.
    [Show full text]
  • Sketchup in Digital Archives
    SketchUp in digital archives Software and file format analysis and exploration of the options for digital preservation SketchUp software and file format 2 Title SketchUp software and file format: exploration of the options for digital preservation Author(s) Henk Vanstappen, Datable Date September 2019 License This document is licensed under the Attribution-ShareAlike 4.0 ​ Unported (CC BY-SA 4.0) license. Copyright may apply on third party ​ images SketchUp software and file format 3 Contents 1. Executive Summary 5 ​ ​ 2. Introduction 6 ​ ​ 3. SketchUp software 7 ​ ​ 3.1. Sketchup products and product suites 7 ​ ​ 3.1.1. Product suites 7 ​ ​ 3.1.2. SketchUp for Web 8 ​ ​ 3.1.3. Sketchup Pro (Desktop) 8 ​ ​ 3.1.4. Sketchup LayOut 8 ​ ​ 3.1.5. SketchUp Viewers 8 ​ ​ 3.1.6. 3D Warehouse 9 ​ ​ 3.1.7. Extensions Warehouse 9 ​ ​ 3.1.8. Trimble Connect 9 ​ ​ 3.2. Developer tools 9 ​ ​ 3.2.1. Ruby API 9 ​ ​ 3.2.2. Sketchup SDK 9 ​ ​ 3.3. Software license 10 ​ ​ 3.4. System requirements 10 ​ ​ 3.5. Software features and tools 11 ​ ​ 3.5.1. Features history 11 ​ ​ 3.5.2. Drawing, Extrusion tool (push/pull) and Follow Me 13 ​ ​ 3.5.3. Smoothed edges and sandbox 13 ​ ​ 3.5.4. Dynamic components 14 ​ ​ 3.5.5. Style Builder 15 ​ ​ 3.5.6. Solid modeling tools 15 ​ ​ 3.5.7. Geolocation and display in Google Earth 16 ​ ​ 3.5.8. BIM support 16 ​ ​ 3.5.9. Extensions or plugins 16 ​ ​ 4. Sketchup model and file format 17 ​ ​ 4.1. SketchUp model hierarchy 17 ​ ​ 4.2.
    [Show full text]
  • D Andrea Bastian.Pdf
    ANDREA VERRI BASTIAN MÉTODOS E TÉCNICAS DE BAIXO CUSTO PARA LEVANTAMENTO MÉTRICO DE SÍTIOS HISTÓRICOS Dissertação apresentada ao Programa de Pós- Graduação em Arquitetura e Urbanismo da Faculdade de Arquitetura da Universidade Federal da Bahia como requisito parcial para obtenção do grau de Mestre em Arquitetura e Urbanismo. Orientador: Prof. Dr. Arivaldo Leão de Amorim Salvador 2015 B324 Bastian, Andrea Verri. Métodos e técnicas de baixo custo para levantamento métrico de sítios históricos / Andrea Verri Bastian. 2015. 269 f. : il. Orientador: Prof. Dr. Arivaldo Leão de Amorim. Dissertação (mestrado) - Universidade Federal da Bahia, Faculdade de Arquitetura, Salvador, 2015. 1. Documentação - Arquitetura. 2. Fotogrametria - Sítios históricos. I. Universidade Federal da Bahia. Faculdade de Arquitetura. II. Amorim, Arivaldo Leão. III. Título. CDU: 72 ANDREA VERRI BASTIAN MÉTODOS E TÉCNICAS DE BAIXO CUSTO PARA LEVANTAMENTO MÉTRICO DE SÍTIOS HISTÓRICOS Dissertação apresentada ao Programa de Pós-Graduação em Arquitetura e Urbanismo da Faculdade de Arquitetura da Universidade Federal da Bahia como requisito parcial para obtenção do grau de Mestre em Arquitetura e Urbanismo. Salvador, 18 de setembro de 2015. Banca examinadora: Arivaldo Leão de Amorim – Orientador____________________________________ Doutor em Engenharia de Transportes pela Universidade de São Paulo Universidade Federal da Bahia - UFBA Natalie Johanna Groetelaars____________________________________________ Doutora em Arquitetura e Urbanismo pela Universidade Federal da Bahia Universidade
    [Show full text]
  • Laser Cutting Vector Files Free Download FREE Laser Cutter DXF / SVG Files and Templates
    laser cutting vector files free download FREE Laser Cutter DXF / SVG Files and Templates. It is never easy to find free laser cutter projects, but we will do our best to make it as simple as possible. Before we go on, let’s first go over some of the laser cutting file types you will want to look for. Whether it’s an SVG, DXF, or laser file template, it is important to know the differences and which one will work best with your laser cutting machine. Free Laser Cutting Files. Now let’s cover where you can find some of the best free SVG and DXF files for your laser engraving projects. Free SVG Files. An SVG (Scalable Vector Graphics) file is basically a vector image file format for two-dimensional graphics. Well, you are probably wondering why that is important to note, and that’s because you can just use any image or file to use with your laser cutting software. You will first need to find an SVG file or convert your image or drawing into a usable vector image. Where can I find Free SVG Files? Love SVG. The first on our list of websites with free SVG files is LoveSVG. A great resource for your laser cutting file needs. Be sure to check out all they have to offer for your cutting needs. hello SVG. Another fantastic free SVG resource is helloSVG. Whether you are using a laser cutter, cricut, or vinyl cutter, they offer thousands of free SVG files right at the edge of your finger tips.
    [Show full text]
  • Design Automotive Components by CAD Software; Autocad and Solidworks; a Comparative Study
    Gamal Moustafa Hussien Mohamad Journal of Engineering Research and Application w.ijera.com ISSN : 2248-9622 Vol. 9,Issue 5 (Series -V) May 2019, pp 13-20 RESEARCH ARTICLE OPEN ACCESS Design Automotive Components by CAD Software; AutoCAD and SolidWorks; a Comparative Study Gamal Moustafa Hussien Mohamad, Mazen Alfuraih B.Sc. Automotive section AutoCAD Certified Professional (ACP) Corresponding Author: Gamal Moustafa Hussien Mohamad ABSTRACT: Technical Drawing is a drawing, widely presented, used to convey directions and identify details to a group of people who are building something to explain how it is working or how to design and compose products. In this paper, we compare between the most famous CAD software. Regarding to the specific of the profile of students go through training, the selection of CAD Software is reduced to the most usually used in this field: AutoCAD and SolidWorks. AutoCAD is a computer-modelling program from Autodesk that can be used to create 3D and 2D models of parts. It is the most popular CAD software (Computer Aided Design) in the world. In fact, it is the program commonly used in the definition of CAD (Computer-Aided Design) for students at high schools, colleges and universities. AutoCAD is the most popular program for drafting Tow-dimensional design but is not commonly used in solid modeling like SolidWorks. Nevertheless, with good dominating, solid modelling by AutoCAD is highly multilateral and can be competitive in average engineering design and consulting firms that lack the financial resources to invest in rapidly changing parametric modellers.SolidWorks is a computer-aided design (CAD) software runs on Microsoft Windows.
    [Show full text]
  • Scan2cad V7 Útmutatók, Tippek, Trükkök! Szkennelési Útmutató Billentyħparancsok M Billentyħ Nagyítás a Kurzorral
    Scan2CAD v7 Útmutatók, tippek, trükkök! Szkennelési útmutató BillentyĦparancsok M billentyĦ Nagyítás a kurzorral. Kiküszöbölheti a legtöbb vektorizálási problémát, ha az F billentyĦ a képernyĘt Kitölt. alábbi útmutatót használja a szkenneléshez D billentyĦ a Kicsinyítéshez. Home billentyĦ a Teljes nézet. Színes, szürke a szürke képet fekete-fehér képpé R billentyĦ csak a Raszter nézése. szeretné alakítani. Ilyenkor szken- V billentyĦ csak a Vektor nézése. vagy monokróm? nelés után használja a Scan2CAD B billentyĦ Raszter és Vektor. Shift+F Halványítja a raszter képet A legtöbb szkenner beállítási Threshold funkcióit: (a vektor nézését könnyebbé teszi). lehetĘséget nyújt színes, szürke Kattintson a Simple Threshold- G billentyĦ be-kikapcsolja a Fogókat. vagy monokróm opciókra. Ezeknek ra. Kattintson az Adaptive Thre- C billentyĦ be-kikapcsolja a Színeket. az opcióknak más-más nevük lehet shold-ra. Tekintse meg a Scan2- Ctrl+F8 törli a vektorokat. a szkennertĘl függĘen. CAD Help-et a további informá- ciókért a Simple and Adaptive Színes, szürke vagy Színes Thresholds funkcióknál. fekete - fehér A szkenner színes opciója normál Amikor megnyit egy raszter Figyelmeztetés: A szürke képek módon olyan raszter képet készít, fájlt a Scan2CAD-ben, van egy nagyok lehetnek. Egy E /A0 amely 16.7 millió színt tartalmaz. szám a fájlnév után a képernyĘ méretĦ rajz 300 dpi-be szkennelve tetején. Ez mutatja meg, hogy Ezt az opciót akkor használhatja, ha 128Mb memóriát foglalhat el. milyen típusú raszterkép ez: színes rajzot szkennel azzal a (2) Monokróm kép szándékkal, hogy színes DXF fájllá Monokróm (256) Szürke vagy 256 színĦ konvertálja. Ne használja a A szkenner monokróm opciója (16.7M) 16.7 millió színĦ kép szkenner színes beállítását, ha (gyakran vonalnak, fekete-fehér fekete-fehér rajzot szkennel, bár ezt rajznak, vagy 1 bites-nek nevezik) Ne használjon JPEG-et igen könnyen véletlenül is sokkal kisebb képet fog készíteni, megteheti, mivel a legtöbb szkenner vagy GIF-et! mivel csak két színt, feketét-fehéret • JPEG és GIF fájlok megszer- alapértelmezett beállítása a színes.
    [Show full text]
  • DIAGRAM SVG RPT-NBP FINAL.Docx
    Assessments of Raster-­‐to-­‐Vector (SVG) Conversion software and 3D Printers for Tactile Graphics By Brian Mac Donald, National Braille Press, and Robert Hertig, Engineer-­‐Northeastern University Executive Summary: The National Braille Press (NBP) subcontract is to research and assess SVG conversion software (from bitmap or raster images to SVG) to determine what is best overall choice for DIAGRAM’s future partners (content providers, publishers, authors, teachers and students). The goal is to identify a version that is affordable, and easy to use for publishers and individual content providers, so that they can incorporate SVGs in materials at the beginning of the production cycle. Similarly, this tool could be used for downstream accessibility providers to convert images to an SVG, and through simple software conversions, one can manipulate these images for tactile graphic renderings. Once a good conversion tool is identified, it will be easier for DIAGRAM to reach out and engage content providers to consider incorporating SVGs at the beginning of the production cycle, through the development of a process that is logical, is free or affordable, and is easy to implement. After filtering through much SVG software, we selected five SVG conversion programs that were compared based on ease-of-use, cost, editing features, and quality of SVG output, by converting two images representing different types of textbook diagrams. A second component of the subcontract is to provide an update on the potential use of 3D printers in the production of tactile graphics .Currently there is an explosion in the popularity of 3D printers, for schools and hobbyists, and this tool has the potential to be used for the development of tactile graphics for tests and textbooks.
    [Show full text]
  • Scan2cad Hints & Tips
    Some keyboard shortcuts M Magnify at cursor F Expand zoomed view to Fill the screen D Demagnify Home Zoom Extents R View Raster only V View Vectors only Hints & Tips B View Both raster and vectors Shift+F Fade raster (makes Scanning Checklist vectors easier to see) G Turn vector Grab You can eliminate most vectorization problems by scanning Points on/off your drawings using the checklist below. C Turn vector Colors on/off photo) will normally create an Color, grayscale or Ctrl+F8 Clear vectors image that contains 256 shades monochrome? Ctrl+D Measure in pixels. of gray. Most scanners give you the Grayscale images are not Color, grayscale or option of scanning in color, normally suitable for raster to monochrome grayscale or monochrome. vector conversion. You should These options have different only select Grayscale if you are When you open a raster file in names depending on the make going to convert the grayscale Scan2CAD there is a number of scanner you have. image to black and white after after the file name at the top of scanning using Scan2CAD’s the screen. This tells you what Color Threshold functions: Your scanner’s color option will type of raster image it is: normally create a raster image • Simple Threshold - click . (2) Monochrome image with 16.7 million colors. • Adaptive Threshold - click . (256) Grayscale or 256 colors You should only use this option See the Scan2CAD Help for (16.7M) 16.7 million colors if you are scanning a color more information on Simple and drawing with a view to Adaptive Thresholds.
    [Show full text]
  • Algorithms for Automatic Vectorization of Scanned Maps (URL
    UCGE Reports Number 20226 Department of Geomatics Engineering Algorithms for Automatic Vectorization of Scanned Maps (URL: http://www.geomatics.ucalgary.ca/links/GradTheses.html) by Girija Dharmaraj July 2005 THE UNIVERSITY OF CALGARY Algorithms for Automatic Vectorization of Scanned Maps by Girija Dharmaraj A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF GEOMATICS ENGINEERING CALGARY, ALBERTA JULY, 2005 c Girija Dharmaraj 2005 Abstract The proliferation of Geographic Information System (GIS) in industry and research has lead to the need for converting the available analog geospatial data to digital form. Although maps can be scanned, they cannot be used directly in a GIS system without processing. All the available commercial raster to vector conversion software are semi-automatic and require an operator for digitization and verification. Thus automatic algorithms are required for faster and reliable conversion of maps where the operator is required only for verification. Methods for automatic vectorization of scanned maps deal with polygons, lines and points. The focus of this research is on the extraction of linear features from scanned maps and satellite imageries using skeletonization. Two methods that are examined are skeletonization by Voronoi Diagram and Mathematical Morphology. Connectivity is established between disconnected lines using Least Square Parabola (LSP). The objectives of this research are to compare the two vectorization methods and examine the application of LSP for gap filling. Mathematical Morphology is a method for quantitative analysis of spatial struc- tures that aims at analyzing shapes and forms of an object.
    [Show full text]