Solution Techniques for Specific Bin Packing Problems with Applications to Assembly Line Optimization

Total Page:16

File Type:pdf, Size:1020Kb

Solution Techniques for Specific Bin Packing Problems with Applications to Assembly Line Optimization Solution Techniques for specific Bin Packing Problems with Applications to Assembly Line Optimization Zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vom Fach– bereich Informatik genehmigte Dissertation von Dipl.-Math. Wolfgang Stille aus Göppingen Juni 2008 — Darmstadt — D 17 Fachbereich Informatik Fachgebiet Algorithmik Solution Techniques for specific Bin Packing Problems with Applications to Assembly Line Optimization vom Fachbereich Informatik genehmigte Dissertation von Dipl.-Math. Wolfgang Stille aus Göp- pingen 1. Gutachten: Prof. Dr. Karsten Weihe 2. Gutachten: Prof. Dr. Matthias Müller-Hannemann Tag der Einreichung: 19. Mai 2008 Tag der Prüfung: 30. Juni 2008 Darmstadt — D 17 Abstract The present thesis is about efficient solution techniques for specific BIN PACKING problems and their derivatives. BIN PACKING problems arise in numerous applications from industry and economics. They occur for example in the distribution of resources, in operation scheduling of complex processes, in project planning, and logistics, only to mention a few. As one concrete application, we present the optimization of assembly lines for printed circuit board manufacturing in detail. This work arose from a long term cooperation with Philips Assembléon in Eindhoven. The BIN PACKING decision problem asks the question whether – given a set of objects of distinct sizes, and a set of bins with specific capacity – there is a distribution of items to bins such that no item is left unpacked nor the capacity of any bin is exceeded. The corresponding optimization problem searches for the minimum number of bins to pack all objects. In general, BIN PACKING is NP-hard. As long as P 6= NP, this amounts to the fact that there is no algorithm that is able to decide whether a feasible distribution for a given instance exists in time that depends polynomially on the size of the input. However, there are several special cases that may be solved efficiently, either approximately or even optimally. In practice, there are for example problems that comprise only few distinct item sizes, but items of each size are occurring in high multiplicities. The thesis gives theoretical insights for exactly this case. We develop an efficient combinatorial algorithm which solves the problem in polynomial time to a solution that is using at most one more bin than an optimal solution. Moreover, we introduce various rounding techniques for rounding arbitrary input data. The pre- sented techniques are general enough to be applied to various optimization problems, either for the computation of approximate solutions, or for the purpose to efficiently generate upper and lower bounds in order to narrow the solution space. This can be achieved for example by applying an effi- ciently solvable special case as described above. In order to control the impact of the relaxation, we put special emphasis on the bounding of the rounding error: for any of the presented rounding algo- rithms, we prove an error estimation. Furthermore, we present a comprehensive qualitative analysis on typical data profiles as well data from real world applications. As an application, we use rounding as a relaxation technique in order to jointly evaluate a global constraint with an arbitrary number of elementary constraints. This problem arises from Constraint Programming which has steadily increased in popularity during the last years for modeling and solving optimization problems. We develop a framework to efficiently evaluate Bin Packing Constraints jointly with a class of fairly general constraints which we call Concave Constraints. These imply a wide variety of elementary constraints as logic operations such as implications and disjunctions, as well as all linear constraints. Moreover, arbitrary concave functions such as quadratic constraints, and constraints modeling a process of growth or decay can be modeled within this framework. We give various examples for the modeling of fundamental optimization problems within this framework. Finally, we develop algorithms that detect infeasibility of a given constraint system. The last chapter is devoted to a concrete application: the optimization of assembly lines for printed circuit board manufacturing. Due to high–mix low–volume batches the production process must be more flexible than ever, and unprofitable setup times should be avoided as far as possible. For this reason, partly–combined processing is introduced: an assembly line consists of multiple trolleys that Abstract 1 hold the component types. One or more of these trolleys might be exchanged on the fly during the batch which amounts to a partial change in the machine setup. Changing the setup several times during the batch process implies a partition of the boards in the batch into several groups. There are two problems arising from this approach: (1) how to find an ideal grouping of boards, and (2) how to assign component types to placement modules in order to exploit the high parallelism of the assembly line. In particular, it must be decided which component types to assign statically, and which ones on the exchangeable trolleys. This problem can be understood as a generalized Bin Packing problem with additional side constraints. We show that the problem is NP-complete. In the scope of an industrial cooperation project with Philips Assembléon in Eindhoven, we devel- oped specific algorithms in order to efficiently compute groupings of boards and machine setups for the partly–combined case. We have made several computational experiments with original data sets from customers and compared our technique to another approach from the literature. The results show that our approach is vastly superior with respect to the solution quality. Moreover, it contains some additional benefits: the computed setups are feasible in any case, and infeasibility is detected at an early stage of the framework. Additionally, this results in a much shorter runtime of the optimiza- tion software. 2 Abstract Zusammenfassung Die vorliegende Arbeit beschäftigt sich mit Techniken zur Lösung von speziellen BIN PACKING Proble- men und deren Verwandten. BIN PACKING Probleme treten in zahlreichen Anwendungen in Industrie und Wirtschaft auf, beispielsweise bei der Verteilung von Ressourcen, der Ablaufplanung komplexer Vorgänge, im Projektmanagement und in der Logistik, nur um einige zu nennen. Als konkrete An- wendung widmen wir uns im letzten Kapitel der Optimierung von Fertigungslinien für die Leiterplat- tenbestückung. Diese entstand aus einer langjährigen Industriekooperation mit Philips Assembléon in Eindhoven. Das BIN PACKING Entscheidungsproblem stellt die Frage, ob zu einer gegebenen Menge von Ob- jekten verschiedener Größe und einer Menge von Containern mit bestimmtem Fassungsvermögen eine Verteilung der Objekte auf die Container existiert, so daß weder ein Objekt unverpackt bleibt, noch die Kapazität eines Containers überschritten wird. Das korrespondierende Optimierungsproblem sucht nach der minimalen Anzahl an Containern, so daß alle Objekte verpackt werden können. Dieses Problem ist im allgemeinen Fall NP-vollständig. Solange P 6= NP bedeutet dies, daß es kein Verfahren gibt, welches die Entscheidung, ob für eine gegebene Instanz eine zulässige Verteilung existiert oder nicht, innerhalb einer Zeit treffen kann, die polynomial von der Eingabegröße des Prob- lems abhängt. Für einige Fälle, in denen die Eingabedaten spezielle Strukturen aufweisen, kann das Problem jedoch effizient, d.h. in Polynomialzeit exakt gelöst bzw. approximiert werden. In der Praxis treten beispielsweise oftmals Probleme auf, die sehr viele Objekte beinhalten, die jedoch nur sehr wenige unterschiedliche Größen aufweisen. Für genau diesen Fall werden in dieser Arbeit die notwendigen theoretischen Grundlagen erarbeitet und ein effizientes kombinatorisches Lösungsver- fahren entwickelt. Das Verfahren berechnet in polynomialer Zeit Lösungen, die maximal einen Behäl- ter mehr benötigen als die Optimallösung. Darüberhinaus werden Verfahren zur Rundung beliebiger Eingabedaten vorgestellt. Im allgemeinen sind solche Verfahren für Optimierungsprobleme unterschiedlichster Art anwendbar: sei es um ef- fizient obere und untere Schranken zu berechnen oder um Näherungslösungen zu generieren, zum Beispiel indem ein effizient lösbarer Spezialfall angewandt werden kann. Da eine Rundung der Eingabedaten einer Relaxierung des Originalproblems entspricht, legen wir besonderes Gewicht auf die Beschränkung des Rundungsfehlers. Wir beweisen für jedes der vorgestellten Verfahren eine Fehlerabschätzung und präsentieren umfangreiche Rechenergebnisse auf typischen Datenprofilen. Als eine Anwendung der Rundung stellen wir ein Verfahren zur Auswertung von Bin Packing Con- straints zusammen mit konkaven Bedingungen vor. Diese Anwendung kommt aus dem Constraint Programming welches sich in den letzten Jahren immer größerer Beliebtheit bei der Lösung von Optimierungs- und Entscheidungsproblemen erfreut. Konkave Bedingungen beinhalten sowohl eine Vielzahl elementarer Constraints wie logische Verknüpfungen, Implikationen und Ausschlüsse, als auch lineare Nebenbedingungen. Darüberhinaus sind beliebige konkave Funktionen verwendbar, wie sie beispielsweise in Wachstums- und Zerfallsprozessen vorkommen. Wir präsentieren umfan- greiche Beispiele, wie grundlegende Optimierungsprobleme innerhalb dieses Paradigmas modelliert werden können. Desweiteren entwickeln wir Algorithmen, die die Unzulässigkeit eines gegebenen Constraintsystems feststellen. Zusammenfassung 3 Das letzte Kapitel
Recommended publications
  • Approximation and Online Algorithms for Multidimensional Bin Packing: a Survey✩
    Computer Science Review 24 (2017) 63–79 Contents lists available at ScienceDirect Computer Science Review journal homepage: www.elsevier.com/locate/cosrev Survey Approximation and online algorithms for multidimensional bin packing: A surveyI Henrik I. Christensen a, Arindam Khan b,∗,1, Sebastian Pokutta c, Prasad Tetali c a University of California, San Diego, USA b Istituto Dalle Molle di studi sull'Intelligenza Artificiale (IDSIA), Scuola universitaria professionale della Svizzera italiana (SUPSI), Università della Svizzera italiana (USI), Switzerland c Georgia Institute of Technology, Atlanta, USA article info a b s t r a c t Article history: The bin packing problem is a well-studied problem in combinatorial optimization. In the classical bin Received 13 August 2016 packing problem, we are given a list of real numbers in .0; 1U and the goal is to place them in a minimum Received in revised form number of bins so that no bin holds numbers summing to more than 1. The problem is extremely important 23 November 2016 in practice and finds numerous applications in scheduling, routing and resource allocation problems. Accepted 20 December 2016 Theoretically the problem has rich connections with discrepancy theory, iterative methods, entropy Available online 16 January 2017 rounding and has led to the development of several algorithmic techniques. In this survey we consider approximation and online algorithms for several classical generalizations of bin packing problem such Keywords: Approximation algorithms as geometric bin packing, vector bin packing and various other related problems. There is also a vast Online algorithms literature on mathematical models and exact algorithms for bin packing.
    [Show full text]
  • Selective Maximum Coverage and Set Packing
    Selective Maximum Coverage and Set Packing Felix J. L. Willamowski1∗ and Bj¨ornF. Tauer2y 1 Lehrstuhl f¨urOperations Research RWTH Aachen University [email protected] 2 Lehrstuhl f¨urManagement Science RWTH Aachen University [email protected] Abstract. In this paper we introduce the selective maximum coverage and the selective maximum set packing problem and variants of them. Both problems are strongly related to well studied problems such as maximum coverage, set packing, and (bipartite) hypergraph matching. The two problems are given by a collection of subsets of a ground set and index subsets of the indices of these subsets. Additionally, there are weights either for each element of the ground set or each subset for each index subset. The goal is to find at most one index per index subset such that the total weight of covered elements or of disjoint subsets is maximum. Applications arise in transportation, e.g., dispatching for ride- sharing services. We prove strong intractability results for the problems and provide almost best possible approximation guarantees. 1 Introduction and Preliminaries We introduce the selective maximum coverage problem (smc) generalizing the weighted maximum k coverage problem (wmkc) which is given by a finite ground set X with weights w : X ! Q≥0, a finite collection S of subsets of X, and an 0 integer k 2 Z≥0. The goal is to find a subcollection S ⊆ S containing at most k P subsets and maximizing the total weight of covered elements x2X0 w(x) with 0 X = [S2S0 S. For unit weights, w ≡ 1, the problem is called maximum k coverage problem (mkc).
    [Show full text]
  • Exact Algorithms and APX-Hardness Results for Geometric Packing and Covering Problems∗
    Exact Algorithms and APX-Hardness Results for Geometric Packing and Covering Problems∗ Timothy M. Chan† Elyot Grant‡ March 29, 2012 Abstract We study several geometric set cover and set packing problems involv- ing configurations of points and geometric objects in Euclidean space. We show that it is APX-hard to compute a minimum cover of a set of points in the plane by a family of axis-aligned fat rectangles, even when each rectangle is an ǫ-perturbed copy of a single unit square. We extend this result to several other classes of objects including almost-circular ellipses, axis-aligned slabs, downward shadows of line segments, downward shad- ows of graphs of cubic functions, fat semi-infinite wedges, 3-dimensional unit balls, and axis-aligned cubes, as well as some related hitting set prob- lems. We also prove the APX-hardness of a related family of discrete set packing problems. Our hardness results are all proven by encoding a highly structured minimum vertex cover problem which we believe may be of independent interest. In contrast, we give a polynomial-time dynamic programming algo- rithm for geometric set cover where the objects are pseudodisks containing the origin or are downward shadows of pairwise 2-intersecting x-monotone curves. Our algorithm extends to the weighted case where a minimum-cost cover is required. We give similar algorithms for several related hitting set and discrete packing problems. 1 Introduction In a geometric set cover problem, we are given a range space (X, )—a universe X of points in Euclidean space and a pre-specified configurationS of regions or geometric objects such as rectangles or half-planes.
    [Show full text]
  • Bin Completion Algorithms for Multicontainer Packing, Knapsack, and Covering Problems
    Journal of Artificial Intelligence Research 28 (2007) 393-429 Submitted 6/06; published 3/07 Bin Completion Algorithms for Multicontainer Packing, Knapsack, and Covering Problems Alex S. Fukunaga [email protected] Jet Propulsion Laboratory California Institute of Technology 4800 Oak Grove Drive Pasadena, CA 91108 USA Richard E. Korf [email protected] Computer Science Department University of California, Los Angeles Los Angeles, CA 90095 Abstract Many combinatorial optimization problems such as the bin packing and multiple knap- sack problems involve assigning a set of discrete objects to multiple containers. These prob- lems can be used to model task and resource allocation problems in multi-agent systems and distributed systms, and can also be found as subproblems of scheduling problems. We propose bin completion, a branch-and-bound strategy for one-dimensional, multicontainer packing problems. Bin completion combines a bin-oriented search space with a powerful dominance criterion that enables us to prune much of the space. The performance of the basic bin completion framework can be enhanced by using a number of extensions, in- cluding nogood-based pruning techniques that allow further exploitation of the dominance criterion. Bin completion is applied to four problems: multiple knapsack, bin covering, min-cost covering, and bin packing. We show that our bin completion algorithms yield new, state-of-the-art results for the multiple knapsack, bin covering, and min-cost cov- ering problems, outperforming previous algorithms by several orders of magnitude with respect to runtime on some classes of hard, random problem instances. For the bin pack- ing problem, we demonstrate significant improvements compared to most previous results, but show that bin completion is not competitive with current state-of-the-art cutting-stock based approaches.
    [Show full text]
  • Solving Packing Problems with Few Small Items Using Rainbow Matchings
    Solving Packing Problems with Few Small Items Using Rainbow Matchings Max Bannach Institute for Theoretical Computer Science, Universität zu Lübeck, Lübeck, Germany [email protected] Sebastian Berndt Institute for IT Security, Universität zu Lübeck, Lübeck, Germany [email protected] Marten Maack Department of Computer Science, Universität Kiel, Kiel, Germany [email protected] Matthias Mnich Institut für Algorithmen und Komplexität, TU Hamburg, Hamburg, Germany [email protected] Alexandra Lassota Department of Computer Science, Universität Kiel, Kiel, Germany [email protected] Malin Rau Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble, France [email protected] Malte Skambath Department of Computer Science, Universität Kiel, Kiel, Germany [email protected] Abstract An important area of combinatorial optimization is the study of packing and covering problems, such as Bin Packing, Multiple Knapsack, and Bin Covering. Those problems have been studied extensively from the viewpoint of approximation algorithms, but their parameterized complexity has only been investigated barely. For problem instances containing no “small” items, classical matching algorithms yield optimal solutions in polynomial time. In this paper we approach them by their distance from triviality, measuring the problem complexity by the number k of small items. Our main results are fixed-parameter algorithms for vector versions of Bin Packing, Multiple Knapsack, and Bin Covering parameterized by k. The algorithms are randomized with one-sided error and run in time 4k · k! · nO(1). To achieve this, we introduce a colored matching problem to which we reduce all these packing problems. The colored matching problem is natural in itself and we expect it to be useful for other applications.
    [Show full text]
  • Reductions and Satisfiability
    Reductions and Satisfiability 1 Polynomial-Time Reductions reformulating problems reformulating a problem in polynomial time independent set and vertex cover reducing vertex cover to set cover 2 The Satisfiability Problem satisfying truth assignments SAT and 3-SAT reducing 3-SAT to independent set transitivity of reductions CS 401/MCS 401 Lecture 18 Computer Algorithms I Jan Verschelde, 30 July 2018 Computer Algorithms I (CS 401/MCS 401) Reductions and Satifiability L-18 30 July 2018 1 / 45 Reductions and Satifiability 1 Polynomial-Time Reductions reformulating problems reformulating a problem in polynomial time independent set and vertex cover reducing vertex cover to set cover 2 The Satisfiability Problem satisfying truth assignments SAT and 3-SAT reducing 3-SAT to independent set transitivity of reductions Computer Algorithms I (CS 401/MCS 401) Reductions and Satifiability L-18 30 July 2018 2 / 45 reformulating problems The Ford-Fulkerson algorithm computes maximum flow. By reduction to a flow problem, we could solve the following problems: bipartite matching, circulation with demands, survey design, and airline scheduling. Because the Ford-Fulkerson is an efficient algorithm, all those problems can be solved efficiently as well. Our plan for the remainder of the course is to explore computationally hard problems. Computer Algorithms I (CS 401/MCS 401) Reductions and Satifiability L-18 30 July 2018 3 / 45 imagine a meeting with your boss ... From Computers and intractability. A Guide to the Theory of NP-Completeness by Michael R. Garey and David S. Johnson, Bell Laboratories, 1979. Computer Algorithms I (CS 401/MCS 401) Reductions and Satifiability L-18 30 July 2018 4 / 45 what you want to say is From Computers and intractability.
    [Show full text]
  • 8. NP and Computational Intractability
    Chapter 8 NP and Computational Intractability CS 350 Winter 2018 1 Algorithm Design Patterns and Anti-Patterns Algorithm design patterns. Ex. Greedy. O(n log n) interval scheduling. Divide-and-conquer. O(n log n) FFT. Dynamic programming. O(n2) edit distance. Duality. O(n3) bipartite matching. Reductions. Local search. Randomization. Algorithm design anti-patterns. NP-completeness. O(nk) algorithm unlikely. PSPACE-completeness. O(nk) certification algorithm unlikely. Undecidability. No algorithm possible. 2 8.1 Polynomial-Time Reductions Classify Problems According to Computational Requirements Q. Which problems will we be able to solve in practice? A working definition. [von Neumann 1953, Godel 1956, Cobham 1964, Edmonds 1965, Rabin 1966] Those with polynomial-time algorithms. Yes Probably no Shortest path Longest path Matching 3D-matching Min cut Max cut 2-SAT 3-SAT Planar 4-color Planar 3-color Bipartite vertex cover Vertex cover Primality testing Factoring 4 Classify Problems Desiderata. Classify problems according to those that can be solved in polynomial-time and those that cannot. Provably requires exponential-time. Given a Turing machine, does it halt in at most k steps? (the Halting Problem) Given a board position in an n-by-n generalization of chess, can black guarantee a win? Frustrating news. Huge number of fundamental problems have defied classification for decades. This chapter. Show that these fundamental problems are "computationally equivalent" and appear to be different manifestations of one really hard problem. 5 Polynomial-Time Reduction Desiderata'. Suppose we could solve X in polynomial-time. What else could we solve in polynomial time? don't confuse with reduces from Reduction.
    [Show full text]
  • Online 3D Bin Packing with Constrained Deep Reinforcement Learning
    Online 3D Bin Packing with Constrained Deep Reinforcement Learning Hang Zhao1, Qijin She1, Chenyang Zhu1, Yin Yang2, Kai Xu1,3* 1National University of Defense Technology, 2Clemson University, 3SpeedBot Robotics Ltd. Abstract RGB image Depth image We solve a challenging yet practically useful variant of 3D Bin Packing Problem (3D-BPP). In our problem, the agent has limited information about the items to be packed into a single bin, and an item must be packed immediately after its arrival without buffering or readjusting. The item’s place- ment also subjects to the constraints of order dependence and physical stability. We formulate this online 3D-BPP as a constrained Markov decision process (CMDP). To solve the problem, we propose an effective and easy-to-implement constrained deep reinforcement learning (DRL) method un- Figure 1: Online 3D-BPP, where the agent observes only a der the actor-critic framework. In particular, we introduce a limited numbers of lookahead items (shaded in green), is prediction-and-projection scheme: The agent first predicts a feasibility mask for the placement actions as an auxiliary task widely useful in logistics, manufacture, warehousing etc. and then uses the mask to modulate the action probabilities output by the actor during training. Such supervision and pro- problem) as many real-world challenges could be much jection facilitate the agent to learn feasible policies very effi- more efficiently handled if we have a good solution to it. A ciently. Our method can be easily extended to handle looka- good example is large-scale parcel packaging in modern lo- head items, multi-bin packing, and item re-orienting.
    [Show full text]
  • Arxiv:1605.07574V1 [Cs.AI] 24 May 2016 Oad I Akn Peiiaypolmsre,Mdl Ihmultiset with Models Survey, Problem (Preliminary Packing Bin Towards ∗ a Levin Sh
    Towards Bin Packing (preliminary problem survey, models with multiset estimates) ∗ Mark Sh. Levin a a Inst. for Information Transmission Problems, Russian Academy of Sciences 19 Bolshoj Karetny Lane, Moscow 127994, Russia E-mail: [email protected] The paper described a generalized integrated glance to bin packing problems including a brief literature survey and some new problem formulations for the cases of multiset estimates of items. A new systemic viewpoint to bin packing problems is suggested: (a) basic element sets (item set, bin set, item subset assigned to bin), (b) binary relation over the sets: relation over item set as compatibility, precedence, dominance; relation over items and bins (i.e., correspondence of items to bins). A special attention is targeted to the following versions of bin packing problems: (a) problem with multiset estimates of items, (b) problem with colored items (and some close problems). Applied examples of bin packing problems are considered: (i) planning in paper industry (framework of combinatorial problems), (ii) selection of information messages, (iii) packing of messages/information packages in WiMAX communication system (brief description). Keywords: combinatorial optimization, bin-packing problems, solving frameworks, heuristics, multiset estimates, application Contents 1 Introduction 3 2 Preliminary information 11 2.1 Basic problem formulations . ...... 11 arXiv:1605.07574v1 [cs.AI] 24 May 2016 2.2 Maximizing the number of packed items (inverse problems) . ........... 11 2.3 Intervalmultisetestimates. ......... 11 2.4 Support model: morphological design with ordinal and interval multiset estimates . 13 3 Problems with multiset estimates 15 3.1 Some combinatorial optimization problems with multiset estimates . ............ 15 3.1.1 Knapsack problem with multiset estimates .
    [Show full text]
  • Solving a New 3D Bin Packing Problem with Deep Reinforcement Learning Method
    Solving a New 3D Bin Packing Problem with Deep Reinforcement Learning Method Haoyuan Hu, Xiaodong Zhang, Xiaowei Yan, Longfei Wang, Yinghui Xu Artificial Intelligence Department, Zhejiang Cainiao Supply Chain Management Co., Ltd., Hangzhou, China [email protected], [email protected], [email protected], [email protected], [email protected] Abstract packing materials, not cartons or other bins, are used to pack items in cross-border e-commerce), so a new type of 3D BPP In this paper,a new type of 3D bin packingproblem is proposed in our research. The objective of this new type of (BPP) is proposed, in which a number of cuboid- 3D BPP is to pack all items into a bin with minimized surface shaped items must be put into a bin one by one or- area. thogonally. The objective is to find a way to place Due to the difficulty of obtaining optimal solutions of these items that can minimize the surface area of BPPs, many researchers have proposed various approxima- the bin. This problem is based on the fact that there tion or heuristic algorithms. To achieve good results, heuris- is no fixed-sized bin in many real business scenar- tic algorithms have to be designed specifically for different ios and the cost of a bin is proportional to its sur- type of problems or situations, so heuristic algorithms have face area. Our research shows that this problem is limitation in generality. In recent years, artificial intelligence, NP-hard. Based on previous research on 3D BPP, especially deep reinforcement learning, has received intense the surface area is determined by the sequence, spa- research and achieved amazing results in many fields.
    [Show full text]
  • The Train Delivery Problem - Vehicle Routing Meets Bin Packing
    The Train Delivery Problem - Vehicle Routing Meets Bin Packing Aparna Das∗† Claire Mathieu∗† Shay Mozes∗ Abstract We consider the train delivery problem which is a generalization of the bin packing problem and is equivalent to a one dimensional version of the vehicle routing problem with unsplittable demands. The problem is also equivalent to the problem of minimizing the makespan on a single batch machine with non-identical job sizes in the scheduling literature. The train delivery problem is strongly NP-Hard and does not admit an approximation ratio better than 3/2. We design the first approximation schemes for the problem. We give an asymptotic polynomial time approximation scheme, under a notion of asymptotic that makes sense even though scaling can cause the cost of the optimal solution of any instance to be arbitrarily large. Alternatively, we give a polynomial time approximation scheme for the case where W , an input parameter that corresponds to the bin size or the vehicle capacity, is polynomial in the number of items or demands. The proofs combine techniques used in approximating bin-packing problems and vehicle routing problems. 1 Introduction We consider the train delivery problem, which is a generalization of bin packing. The problem can be equivalently viewed as a one dimensional vehicle routing problem (VRP) with unsplit- table demands, or as the scheduling problem of minimizing the makespan on a single batch machine with non-identical job sizes. Formally, in the train delivery problem we are given a positive integer capacity W and a set S of n items, each with an associated positive position pi and a positive integer weight wi.
    [Show full text]
  • An Absolute 2-Approximation Algorithm for Two-Dimensional Bin Packing
    An Absolute 2-Approximation Algorithm for Two-Dimensional Bin Packing Rolf Harren and Rob van Stee? Max-Planck-Institut f¨urInformatik (MPII), Campus E1 4, D-66123 Saarbr¨ucken, Germany. frharren,[email protected] Abstract. We consider the problem of packing rectangles into bins that are unit squares, where the goal is to minimize the number of bins used. All rectangles have to be packed non- overlapping and orthogonal, i.e., axis-parallel. We present an algorithm for this problem with an absolute worst-case ratio of 2, which is optimal provided P 6= NP. Keywords: bin packing, rectangle packing, approximation algorithm, absolute worst-case ratio 1 Introduction In the two-dimensional bin packing problem, a list I = r1; : : : ; rn of rectangles of width f g wi 1 and height hi 1 is given. An unlimited supply of unit-sized bins is available to pack all≤ items from I such≤ that no two items overlap and all items are packed axis-parallel into the bins. The goal is to minimize the number of bins used. The problem has many applications, for instance in stock-cutting or scheduling on partitionable resources. In many applications, rotations are not allowed because of the pattern of the cloth or the grain of the wood. This is the case we consider in this paper. Most of the previous work on rectangle packing has focused on the asymptotic approx- imation ratio, i.e., the long-term behavior of the algorithm. The asymptotic approximation ratio is defined as follows. Let alg(I) be the number of bins used by algorithm alg to pack input I.
    [Show full text]