Reductions and Satisfiability
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Selective Maximum Coverage and Set Packing
Selective Maximum Coverage and Set Packing Felix J. L. Willamowski1∗ and Bj¨ornF. Tauer2y 1 Lehrstuhl f¨urOperations Research RWTH Aachen University [email protected] 2 Lehrstuhl f¨urManagement Science RWTH Aachen University [email protected] Abstract. In this paper we introduce the selective maximum coverage and the selective maximum set packing problem and variants of them. Both problems are strongly related to well studied problems such as maximum coverage, set packing, and (bipartite) hypergraph matching. The two problems are given by a collection of subsets of a ground set and index subsets of the indices of these subsets. Additionally, there are weights either for each element of the ground set or each subset for each index subset. The goal is to find at most one index per index subset such that the total weight of covered elements or of disjoint subsets is maximum. Applications arise in transportation, e.g., dispatching for ride- sharing services. We prove strong intractability results for the problems and provide almost best possible approximation guarantees. 1 Introduction and Preliminaries We introduce the selective maximum coverage problem (smc) generalizing the weighted maximum k coverage problem (wmkc) which is given by a finite ground set X with weights w : X ! Q≥0, a finite collection S of subsets of X, and an 0 integer k 2 Z≥0. The goal is to find a subcollection S ⊆ S containing at most k P subsets and maximizing the total weight of covered elements x2X0 w(x) with 0 X = [S2S0 S. For unit weights, w ≡ 1, the problem is called maximum k coverage problem (mkc). -
NP-Completeness: Reductions Tue, Nov 21, 2017
CMSC 451 Dave Mount CMSC 451: Lecture 19 NP-Completeness: Reductions Tue, Nov 21, 2017 Reading: Chapt. 8 in KT and Chapt. 8 in DPV. Some of the reductions discussed here are not in either text. Recap: We have introduced a number of concepts on the way to defining NP-completeness: Decision Problems/Language recognition: are problems for which the answer is either yes or no. These can also be thought of as language recognition problems, assuming that the input has been encoded as a string. For example: HC = fG j G has a Hamiltonian cycleg MST = f(G; c) j G has a MST of cost at most cg: P: is the class of all decision problems which can be solved in polynomial time. While MST 2 P, we do not know whether HC 2 P (but we suspect not). Certificate: is a piece of evidence that allows us to verify in polynomial time that a string is in a given language. For example, the language HC above, a certificate could be a sequence of vertices along the cycle. (If the string is not in the language, the certificate can be anything.) NP: is defined to be the class of all languages that can be verified in polynomial time. (Formally, it stands for Nondeterministic Polynomial time.) Clearly, P ⊆ NP. It is widely believed that P 6= NP. To define NP-completeness, we need to introduce the concept of a reduction. Reductions: The class of NP-complete problems consists of a set of decision problems (languages) (a subset of the class NP) that no one knows how to solve efficiently, but if there were a polynomial time solution for even a single NP-complete problem, then every problem in NP would be solvable in polynomial time. -
Mapping Reducibility and Rice's Theorem
6.045: Automata, Computability, and Complexity Or, Great Ideas in Theoretical Computer Science Spring, 2010 Class 9 Nancy Lynch Today • Mapping reducibility and Rice’s Theorem • We’ve seen several undecidability proofs. • Today we’ll extract some of the key ideas of those proofs and present them as general, abstract definitions and theorems. • Two main ideas: – A formal definition of reducibility from one language to another. Captures many of the reduction arguments we have seen. – Rice’s Theorem, a general theorem about undecidability of properties of Turing machine behavior (or program behavior). Today • Mapping reducibility and Rice’s Theorem • Topics: – Computable functions. – Mapping reducibility, ≤m – Applications of ≤m to show undecidability and non- recognizability of languages. – Rice’s Theorem – Applications of Rice’s Theorem • Reading: – Sipser Section 5.3, Problems 5.28-5.30. Computable Functions Computable Functions • These are needed to define mapping reducibility, ≤m. • Definition: A function f: Σ1* →Σ2* is computable if there is a Turing machine (or program) such that, for every w in Σ1*, M on input w halts with just f(w) on its tape. • To be definite, use basic TM model, except replace qacc and qrej states with one qhalt state. • So far in this course, we’ve focused on accept/reject decisions, which let TMs decide language membership. • That’s the same as computing functions from Σ* to { accept, reject }. • Now generalize to compute functions that produce strings. Total vs. partial computability • We require f to be total = defined for every string. • Could also define partial computable (= partial recursive) functions, which are defined on some subset of Σ1*. -
Vertex Cover Might Be Hard to Approximate to Within 2 Ε − Subhash Khot ∗ Oded Regev †
Vertex Cover Might be Hard to Approximate to within 2 ε − Subhash Khot ∗ Oded Regev † Abstract Based on a conjecture regarding the power of unique 2-prover-1-round games presented in [Khot02], we show that vertex cover is hard to approximate within any constant factor better than 2. We actually show a stronger result, namely, based on the same conjecture, vertex cover on k-uniform hypergraphs is hard to approximate within any constant factor better than k. 1 Introduction Minimum vertex cover is the problem of finding the smallest set of vertices that touches all the edges in a given graph. This is one of the most fundamental NP-complete problems. A simple 2- approximation algorithm exists for this problem: construct a maximal matching by greedily adding edges and then let the vertex cover contain both endpoints of each edge in the matching. It can be seen that the resulting set of vertices indeed touches all the edges and that its size is at most twice the size of the minimum vertex cover. However, despite considerable efforts, state of the art techniques can only achieve an approximation ratio of 2 o(1) [16, 21]. − Given this state of affairs, one might strongly suspect that vertex cover is NP-hard to approxi- mate within 2 ε for any ε> 0. This is one of the major open questions in the field of approximation − algorithms. In [18], H˚astad showed that approximating vertex cover within constant factors less 7 than 6 is NP-hard. This factor was recently improved by Dinur and Safra [10] to 1.36. -
3.1 Matchings and Factors: Matchings and Covers
1 3.1 Matchings and Factors: Matchings and Covers This copyrighted material is taken from Introduction to Graph Theory, 2nd Ed., by Doug West; and is not for further distribution beyond this course. These slides will be stored in a limited-access location on an IIT server and are not for distribution or use beyond Math 454/553. 2 Matchings 3.1.1 Definition A matching in a graph G is a set of non-loop edges with no shared endpoints. The vertices incident to the edges of a matching M are saturated by M (M-saturated); the others are unsaturated (M-unsaturated). A perfect matching in a graph is a matching that saturates every vertex. perfect matching M-unsaturated M-saturated M Contains copyrighted material from Introduction to Graph Theory by Doug West, 2nd Ed. Not for distribution beyond IIT’s Math 454/553. 3 Perfect Matchings in Complete Bipartite Graphs a 1 The perfect matchings in a complete b 2 X,Y-bigraph with |X|=|Y| exactly c 3 correspond to the bijections d 4 f: X -> Y e 5 Therefore Kn,n has n! perfect f 6 matchings. g 7 Kn,n The complete graph Kn has a perfect matching iff… Contains copyrighted material from Introduction to Graph Theory by Doug West, 2nd Ed. Not for distribution beyond IIT’s Math 454/553. 4 Perfect Matchings in Complete Graphs The complete graph Kn has a perfect matching iff n is even. So instead of Kn consider K2n. We count the perfect matchings in K2n by: (1) Selecting a vertex v (e.g., with the highest label) one choice u v (2) Selecting a vertex u to match to v K2n-2 2n-1 choices (3) Selecting a perfect matching on the rest of the vertices. -
The Satisfiability Problem
The Satisfiability Problem Cook’s Theorem: An NP-Complete Problem Restricted SAT: CSAT, 3SAT 1 Boolean Expressions ◆Boolean, or propositional-logic expressions are built from variables and constants using the operators AND, OR, and NOT. ◗ Constants are true and false, represented by 1 and 0, respectively. ◗ We’ll use concatenation (juxtaposition) for AND, + for OR, - for NOT, unlike the text. 2 Example: Boolean expression ◆(x+y)(-x + -y) is true only when variables x and y have opposite truth values. ◆Note: parentheses can be used at will, and are needed to modify the precedence order NOT (highest), AND, OR. 3 The Satisfiability Problem (SAT ) ◆Study of boolean functions generally is concerned with the set of truth assignments (assignments of 0 or 1 to each of the variables) that make the function true. ◆NP-completeness needs only a simpler Question (SAT): does there exist a truth assignment making the function true? 4 Example: SAT ◆ (x+y)(-x + -y) is satisfiable. ◆ There are, in fact, two satisfying truth assignments: 1. x=0; y=1. 2. x=1; y=0. ◆ x(-x) is not satisfiable. 5 SAT as a Language/Problem ◆An instance of SAT is a boolean function. ◆Must be coded in a finite alphabet. ◆Use special symbols (, ), +, - as themselves. ◆Represent the i-th variable by symbol x followed by integer i in binary. 6 SAT is in NP ◆There is a multitape NTM that can decide if a Boolean formula of length n is satisfiable. ◆The NTM takes O(n2) time along any path. ◆Use nondeterminism to guess a truth assignment on a second tape. -
Approximation Algorithms
Lecture 21 Approximation Algorithms 21.1 Overview Suppose we are given an NP-complete problem to solve. Even though (assuming P = NP) we 6 can’t hope for a polynomial-time algorithm that always gets the best solution, can we develop polynomial-time algorithms that always produce a “pretty good” solution? In this lecture we consider such approximation algorithms, for several important problems. Specific topics in this lecture include: 2-approximation for vertex cover via greedy matchings. • 2-approximation for vertex cover via LP rounding. • Greedy O(log n) approximation for set-cover. • Approximation algorithms for MAX-SAT. • 21.2 Introduction Suppose we are given a problem for which (perhaps because it is NP-complete) we can’t hope for a fast algorithm that always gets the best solution. Can we hope for a fast algorithm that guarantees to get at least a “pretty good” solution? E.g., can we guarantee to find a solution that’s within 10% of optimal? If not that, then how about within a factor of 2 of optimal? Or, anything non-trivial? As seen in the last two lectures, the class of NP-complete problems are all equivalent in the sense that a polynomial-time algorithm to solve any one of them would imply a polynomial-time algorithm to solve all of them (and, moreover, to solve any problem in NP). However, the difficulty of getting a good approximation to these problems varies quite a bit. In this lecture we will examine several important NP-complete problems and look at to what extent we can guarantee to get approximately optimal solutions, and by what algorithms. -
Homework 4 Solutions Uploaded 4:00Pm on Dec 6, 2017 Due: Monday Dec 4, 2017
CS3510 Design & Analysis of Algorithms Section A Homework 4 Solutions Uploaded 4:00pm on Dec 6, 2017 Due: Monday Dec 4, 2017 This homework has a total of 3 problems on 4 pages. Solutions should be submitted to GradeScope before 3:00pm on Monday Dec 4. The problem set is marked out of 20, you can earn up to 21 = 1 + 8 + 7 + 5 points. If you choose not to submit a typed write-up, please write neat and legibly. Collaboration is allowed/encouraged on problems, however each student must independently com- plete their own write-up, and list all collaborators. No credit will be given to solutions obtained verbatim from the Internet or other sources. Modifications since version 0 1. 1c: (changed in version 2) rewored to showing NP-hardness. 2. 2b: (changed in version 1) added a hint. 3. 3b: (changed in version 1) added comment about the two loops' u variables being different due to scoping. 0. [1 point, only if all parts are completed] (a) Submit your homework to Gradescope. (b) Student id is the same as on T-square: it's the one with alphabet + digits, NOT the 9 digit number from student card. (c) Pages for each question are separated correctly. (d) Words on the scan are clearly readable. 1. (8 points) NP-Completeness Recall that the SAT problem, or the Boolean Satisfiability problem, is defined as follows: • Input: A CNF formula F having m clauses in n variables x1; x2; : : : ; xn. There is no restriction on the number of variables in each clause. -
11 Reductions We Mentioned Above the Idea of Solving Problems By
11 Reductions We mentioned above the idea of solving problems by translating them into known soluble problems, or showing that a new problem is insoluble by translating a known insoluble into it. Reductions are the formal tool to implement this idea. It turns out that there are several subtly different variations – we will mainly use one form of reduction, which lets us make a fine analysis of uncomputability. First, we introduce a technical term for a Register Machine whose purpose is to translate one problem into another. Definition 12 A Turing transducer is an RM that takes an instance d of a problem (D, Q) in R0 and halts with an instance d0 = f(d) of (D0,Q0) in R0. / Thus f must be a computable function D D0 that translates the problem, and the → transducer is the machine that computes f. Now we define: Definition 13 A mapping reduction or many–one reduction from Q to Q0 is a Turing transducer f as above such that d Q iff f(d) Q0. Iff there is an m-reduction from Q ∈ ∈ to Q0, we write Q Q0 (mnemonic: Q is less difficult than Q0). / ≤m The standard term for these is ‘many–one reductions’, because the function f can be many–one – it doesn’t have to be injective. Our textbook Sipser doesn’t like that term, and calls them ‘mapping reductions’. To hedge our bets, and for brevity, we’ll call them m-reductions. Note that the reduction is just a transducer (i.e. translates the problem) that translates correctly (so that the answer to the translated problem is the same as the answer to the original). -
Exact Algorithms and APX-Hardness Results for Geometric Packing and Covering Problems∗
Exact Algorithms and APX-Hardness Results for Geometric Packing and Covering Problems∗ Timothy M. Chan† Elyot Grant‡ March 29, 2012 Abstract We study several geometric set cover and set packing problems involv- ing configurations of points and geometric objects in Euclidean space. We show that it is APX-hard to compute a minimum cover of a set of points in the plane by a family of axis-aligned fat rectangles, even when each rectangle is an ǫ-perturbed copy of a single unit square. We extend this result to several other classes of objects including almost-circular ellipses, axis-aligned slabs, downward shadows of line segments, downward shad- ows of graphs of cubic functions, fat semi-infinite wedges, 3-dimensional unit balls, and axis-aligned cubes, as well as some related hitting set prob- lems. We also prove the APX-hardness of a related family of discrete set packing problems. Our hardness results are all proven by encoding a highly structured minimum vertex cover problem which we believe may be of independent interest. In contrast, we give a polynomial-time dynamic programming algo- rithm for geometric set cover where the objects are pseudodisks containing the origin or are downward shadows of pairwise 2-intersecting x-monotone curves. Our algorithm extends to the weighted case where a minimum-cost cover is required. We give similar algorithms for several related hitting set and discrete packing problems. 1 Introduction In a geometric set cover problem, we are given a range space (X, )—a universe X of points in Euclidean space and a pre-specified configurationS of regions or geometric objects such as rectangles or half-planes. -
Complexity and Approximation Results for the Connected Vertex Cover Problem in Graphs and Hypergraphs Bruno Escoffier, Laurent Gourvès, Jérôme Monnot
Complexity and approximation results for the connected vertex cover problem in graphs and hypergraphs Bruno Escoffier, Laurent Gourvès, Jérôme Monnot To cite this version: Bruno Escoffier, Laurent Gourvès, Jérôme Monnot. Complexity and approximation results forthe connected vertex cover problem in graphs and hypergraphs. 2007. hal-00178912 HAL Id: hal-00178912 https://hal.archives-ouvertes.fr/hal-00178912 Preprint submitted on 12 Oct 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Laboratoire d'Analyse et Modélisation de Systèmes pour l'Aide à la Décision CNRS UMR 7024 CAHIER DU LAMSADE 262 Juillet 2007 Complexity and approximation results for the connected vertex cover problem in graphs and hypergraphs Bruno Escoffier, Laurent Gourvès, Jérôme Monnot Complexity and approximation results for the connected vertex cover problem in graphs and hypergraphs Bruno Escoffier∗ Laurent Gourv`es∗ J´erˆome Monnot∗ Abstract We study a variation of the vertex cover problem where it is required that the graph induced by the vertex cover is connected. We prove that this problem is polynomial in chordal graphs, has a PTAS in planar graphs, is APX-hard in bipartite graphs and is 5/3-approximable in any class of graphs where the vertex cover problem is polynomial (in particular in bipartite graphs). -
Approximation Algorithms Instructor: Richard Peng Nov 21, 2016
CS 3510 Design & Analysis of Algorithms Section B, Lecture #34 Approximation Algorithms Instructor: Richard Peng Nov 21, 2016 • DISCLAIMER: These notes are not necessarily an accurate representation of what I said during the class. They are mostly what I intend to say, and have not been carefully edited. Last week we formalized ways of showing that a problem is hard, specifically the definition of NP , NP -completeness, and NP -hardness. We now discuss ways of saying something useful about these hard problems. Specifi- cally, we show that the answer produced by our algorithm is within a certain fraction of the optimum. For a maximization problem, suppose now that we have an algorithm A for our prob- lem which, given an instance I, returns a solution with value A(I). The approximation ratio of algorithm A is dened to be OP T (I) max : I A(I) This is not restricted to NP-complete problems: we can apply this to matching to get a 2-approximation. Lemma 0.1. The maximal matching has size at least 1=2 of the optimum. Proof. Let the maximum matching be M ∗. Consider the process of taking a maximal matching: an edge in M ∗ can't be chosen only after one (or both) of its endpoints are picked. Each edge we add to the maximal matching only has 2 endpoints, so it takes at least M ∗ 2 edges to make all edges in M ∗ ineligible. This ratio is indeed close to tight: consider a graph that has many length 3 paths, and the maximal matching keeps on taking the middle edges.