Sexual Selection Operating in a Wild Population of Drosophila Robusta

Total Page:16

File Type:pdf, Size:1020Kb

Sexual Selection Operating in a Wild Population of Drosophila Robusta BRIEF COMMUNICATIONS Evuluriun, 50(5), 1996, pp. 2095-2100 SEXUAL SELECTION OPERATING IN A WILD POPULATION OF DROSOPHILA ROBUSTA WILLIAMJ. ETGES Department of Biological Sciences, University of Arkansas, Fayetteville, Arkansas 72701 E-mail: [email protected] Key words.-Breeding site ecology, Drosophila, inversion polymorphism, life cycle components, mating success, natural selection, sexual selection. Received July 18, 1995. Accepted January 9, 1996. Almost 60 years have elapsed since the discovery of vari- (e.g., Prout 1971; Bundgaard and Christiansen 1972). Inver- ation in the polytene chromosomes of Drosophila (Sturtevant sion polymorphisms in cactophilic D. buzzatii have been stud- and Dobzhansky 1936). Inversion polymorphism studies have ied this way, a species that feeds and breeds in the fermenting revealed some of the intricacies of evolutionary change, but tissues of several species of prickly pear cactus. In general, even now, when interest in them has waned, there is little cactophilic Drosophila have taught us much about mainte- understanding of the particular alleles contained within them nance of genetic variability, host specificity, chemical ecol- that alone or in relation to other genes influence any com- ogy, trophic adaptation, and life history evolution (Barker ponent of fitness. Perhaps the most important rule about in- and Starmer 1982; Barker et al. 1990). Despite the fact that version polymorphisms learned from a long history of lab- 48% (44191) of all described and undescribed D. repleta oratory experiments (cf. Lewontin et al. 1981) is their sen- group species possess inversion polymorphism (Wasserman sitivity to environmental features such as temperature and 1992), in only a few species has there been concerted effort nutrition. Therefore, laboratory studies alone may not predict to unravel the causes for maintenance of inversion poly- the consequences due to genotype (karyotype) by environ- morphism in nature, that is, D. buzzatii and D. mojavensis. ment interactions of selection in wild populations. Inversion polymorphism in the latter species, along with D. Only a few studies have documented selective mechanisms pachea, a cactophilic member of the D. nannoptera group, associated with preserving inversion polymorphisms in nat- has been recently summarized (Etges et al., in press). Ruiz ural populations beyond establishing correlations with tem- et al. (1986) demonstrated endocyclic selection, directional perature, rainfall, humidity, elevation, and other environ- selection in opposing directions during the life cycle, on gene mental features. Despite the long history of interest in the arrangements of D. buzzatii. However, this pattern is popu- ecology of Drosophila breeding and feeding sites (cf. Carson lation and host specific (Hasson et al. 1991) and not sur- 1951, 1971; Heed 1957, 1968, 1971), experimental analyses prisingly is limited to a few components of fitness including of inversion polymorphisms involving natural breeding sub- egg to third instar viability and adult body size, but not mating strates are few because the mating sites and larval ecology propensity (Santos et al. 1992; Barbadilla et al. 1994). Adult of most species with well described inversion polymorphisms are poorly known, e.g., D. pseudoobscura. An early exception size in Drosophila can be correlated with increased fitness to this problem was the comprehensive study of inversion as larger flies typically have greater reproductive potential polymorphism in D. jlavopilosa, a flower breeder from South (Robertson 1957) and dispersal ability (Mangan 1982). These America (Brncic 1962). Egg to adult viability differences studies of D. buzzatii deserve special note because they il- among karyotypes were observed among preadult stages in lustrate the complexity of factors that must be addressed in flowers returned to the lab and exposed to contrasting tem- understanding the maintenance of inversion polymorphisms peratures (Brncic 1968). More recently, analysis of the "sex- in natural populations. ratio" meiotic drive system in natural populations of D. pseu- Thus, studies of selection on inversion polymorphisms in doobscura suggested that most selection responsible for species with hard-to-find breeding sites have been restricted maintaining this polymorphism must be operating in preadult to adult flies because they can be captured in the wild. If we stages (Beckenbach 1996). A notable non-Drosophila ex- include the recent D. buzzatii studies mentioned above, sev- ample is the chromosome I polymorphism in seaweed flies, eral studies of genetic variation in male mating success (An- Coelopa frigida, that carry out their life cycle on decom- derson et al. 1979; Levine et al. 1980; Salceda and Anderson posing seaweed on beaches around the north Atlantic and 1988), the recent analysis of the "sex-ratio" polymorphism North Sea. Gene arrangement-based differences in egg to in D. pseudoobscura (Beckenbach 1996), and mate choice in adult development time, adult body size, and mate preference seaweed flies (Gilburn et al. 1992), most of what we know have been demonstrated in seaweed-reared flies (Day et al. of selection operating on inversion polymorphisms under nat- 1983; Engelhard et al. 1989; Gilburn et al. 1992). ural conditions has only recently been documented. It is in- For species that can be collected in nature throughout their teresting to note that not one example documenting an iden- life cycle, karyotype frequencies can be estimated from life tifiable selective agent operating on inversion polymorphisms stages reared in the wild and comparisons can be made be- was cited by Endler (1986) in his review, "Natural Selection tween stages of the life cycle in selection component analyses in the Wild," despite the long history of population genetics 2096 BRIEF COMMUNICATIONS research in Drosophila and other organisms with chromosome into different food vials in the laboratory. Each wild male polymorphisms. was mated to a stock homokaryotypic female and wild fe- Studies of inversion polymorphisms in D. robusta over the males were allowed to oviposit until they were depleted of last 40 years have revealed a wealth of information on clinal stored sperm. Remating is frequent in both sexes with cop- variation (Stalker and Carson 1948; Levitan 1978; Etges ulations lasting less than a minute (Prakash 1967a) and no 1984), temporal frequency changes (Carson 1958; Levitan insemination reaction is formed (Grant 1983). However, there 1973; Etges 1984, 1991), linkage disequilibrium (Carson is little evidence of multiple insemination, that is, mixtures 1953; Levitan 1958, 1992), and population structure (Carson of sperm from more than one male stored by wild females, 1959; Prakash 1973). Variation of karyotype-related fitness in the egg samples of D. robusta females from Fayetteville, components including viability, fertility, mating speed, egg- Arkansas (Etges 1991, unpubl. data). Therefore, five off- to-adult development time, age at first reproduction, and adult spring from each wild female were karyotyped, and in a longevity under laboratory conditions has also been assessed subset of 20 females, up to 10 larvae were scored to ascertain (Prakash 1967a,b, 1968; Etges 1989). This species is one of whether five larvae were a representative egg sample in this the more common members of the noncosmopolitan Dro- population. In no cases were additional gene arrangements souhila fauna in the east-central United States and Canada observed in the expanded progeny sets, suggesting that sam- with a species range roughly coincident with the eastern de- pling five larvae per female provided an adequate sample of ciduous forest (Carson 1958). the offspring each female would have contributed to nature. Drosophila robusta breeds in sap fluxes of several decid- Wild females were transferred to fresh food vials every few uous tree species, particularly American elm, Ulmus ameri- days until no larvae were seen. They were then mated to cana (Carson and Stalker 1951). Fourteen gene arrangements stock homokaryotypic males. The karyotypes of at least sev- distributed over the three metacentric chromosomes (X, 2, 3) en F, larvae from each of the wild adults crossed to stock have been found segregating in natural populations. Those homokaryotypes were determined to infer the karyotypes of on the X and second chromosomes are often encountered in the wild adults. nonrandom associations (reviewed in Levitan 1992) sug- All inversion frequency data were tested for heterogeneity gesting fitness interactions between arrangements on oppos- between sexes and life stages using likelihood ratio or G- ing chromosome arms. Even now, it remains impractical to tests (Sokal and Rohlf 1981) with Williams's correction (Wil- perform experiments with sap flux-reared larvae. liams 1976). Data for each chromosome arm were also tested The focus of the present study was to estimate karyotypic for Hardy-Weinberg equilibrium. Analyses of linkage dis- variation in a natural population of D. robusta and compare equilibrium of gene arrangements on the X and second chro- frequencies of wild caught adults and their offspring to detect mosomes at Mill Creek and four other Arkansas populations the effects of natural selection and possible karyotype related are presented in Levitan and Etges (1995) and so are not differences in male mating success. This study represents the presented here in detail. They found strong nonrandom as- first attempt to identify selection on particular components
Recommended publications
  • 2020 Program Book
    PROGRAM BOOK Note that TAGC was cancelled and held online with a different schedule and program. This document serves as a record of the original program designed for the in-person meeting. April 22–26, 2020 Gaylord National Resort & Convention Center Metro Washington, DC TABLE OF CONTENTS About the GSA ........................................................................................................................................................ 3 Conference Organizers ...........................................................................................................................................4 General Information ...............................................................................................................................................7 Mobile App ....................................................................................................................................................7 Registration, Badges, and Pre-ordered T-shirts .............................................................................................7 Oral Presenters: Speaker Ready Room - Camellia 4.......................................................................................7 Poster Sessions and Exhibits - Prince George’s Exhibition Hall ......................................................................7 GSA Central - Booth 520 ................................................................................................................................8 Internet Access ..............................................................................................................................................8
    [Show full text]
  • Introduction and Bibliography
    Pacific Science (1988), vol. 42, nos. 1-2 © 1988 by the University of Hawaii Press. All rights reserved Introduction and Bibliography Hampton Carson first came to Hawaii in LITERATURE CITED June 1963 at the urging of Elmo Hardy and Wilson Stone. That year saw the first major CARSON, H. L. 1980. Hypotheses that blur gathering in Honolulu of scientists from and grow. Pages 383-384 in E. Mayr and many specialties in the interdisciplinary and W. B. Provine, eds. The evolutionary syn­ cooperative pattern that has proved so pro­ thesis: Perspectives on the unification of ductive in the study of Hawaiian Drosophila biology. Harvard Univ. Press, Cambridge, on "the Project" (Spieth 1980). Carson came Mass . with Harrison Stalker from Washington SPIETH, H. T. 1980. Hawaiian Drosophila University in St. Louis. Together (following Project. Proc., Hawaiian Entomol. Soc. Dobzhansky), they had developed a power­ 23(2) :275-291. ful method of population studies based on detailed examination of the distribution of inversions in the polytene chromosomes of Bibliography ofHampton Lawrence Carson Drosophila robusta and other species of the 1934-1986 mesic forests of the central and eastern United States. 1. CARSON, H. L. 1934. Labrador quarry. Carson's cytological approach can be traced General Mag. 37(1) :97-104. to the influence of McClung, and especially 2. CARSON, H. L. 1935. Use of medicinal of Metz, during his graduate studies at the herbs among the Labrador Eskimo. University of Pennsylvania in the late 1930s General Mag. 37(4):436-439. and early 1940s (Carson 1980). These studies 3. CARSON, H . L.
    [Show full text]
  • Fly Times 46
    FLY TIMES ISSUE 46, April, 2011 Stephen D. Gaimari, editor Plant Pest Diagnostics Branch California Department of Food & Agriculture 3294 Meadowview Road Sacramento, California 95832, USA Tel: (916) 262-1131 FAX: (916) 262-1190 Email: [email protected] Welcome to the latest issue of Fly Times! Let me first thank everyone for sending in such interesting articles – I hope you all enjoy reading it as much as I enjoyed putting it together! Please let me encourage all of you to consider contributing articles that may be of interest to the Diptera community. Fly Times offers a great forum to report on your research activities and to make requests for taxa being studied, as well as to report interesting observations about flies, to discuss new and improved methods, to advertise opportunities for dipterists, and to report on or announce meetings relevant to the community. This is also a great place to report on your interesting (and hopefully fruitful) collecting activities! The electronic version of the Fly Times continues to be hosted on the North American Dipterists Society website at http://www.nadsdiptera.org/News/FlyTimes/Flyhome.htm. The Diptera community would greatly appreciate your independent contributions to this newsletter. For this issue, I want to again thank all the contributors for sending me so many great articles! That said, we need even more reports on trips, collections, methods, updates, etc., with all the associated digital images you wish to provide. Feel free to share your opinions or provide ideas on how to improve the newsletter. The Directory of North American Dipterists is constantly being updated and is currently available at the above website.
    [Show full text]
  • A Supertree Analysis and Literature Review of the Genus Drosophila and Closely Related Genera (Diptera, Drosophilidae)
    A supertree analysis and literature review of the genus Drosophila and closely related genera (Diptera, Drosophilidae) KIM VAN DER LINDE and DAVID HOULE Insect Syst.Evol. van der Linde, K. and Houle, D.: A supertree analysis and literature review of the genus Drosophila and closely related genera (Diptera, Drosophilidae). Insect Syst. Evol. 39: 241- 267. Copenhagen, October 2008. ISSN1399-560X. In the 17 years since the last familywide taxonomic analysis of the Drosophilidae, many stud- ies dealing with a limited number of species or groups have been published. Most of these studies were based on molecular data, but morphological and chromosomal data also contin- ue to be accumulated. Here, we review more than 120 recent studies and use many of those in a supertree analysis to construct a new phylogenetic hypothesis for the genus Drosophila and related genera. Our knowledge about the phylogeny of the genus Drosophila and related gen- era has greatly improved over the past two decades, and many clades are now firmly suppor- ted by many independent studies. The genus Drosophila is paraphyletic and comprises four major clades interspersed with at least five other genera, warranting a revision of the genus. Despite this progress, many relationships remain unresolved. Much phylogenetic work on this important family remains to be done. K. van der Linde & D. Houle, Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, U.S.A. ([email protected]). *Corresponding author: Kim van der Linde, Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, U.S.A.; telephone (850) 645-8521, fax (850) 645- 8447, email: ([email protected]).
    [Show full text]
  • Variable Effects of Crowding on Drosophila Hosts of Male-Lethal and Non-Male-Lethal Spiroplasmas in Laboratory Populations
    Heredity 74 (1995) 227—240 Received 18 February 1994 Genetical Society of Great Britain Variable effects of crowding on Drosophila hosts of male-lethal and non-male-lethal spiroplasmas in laboratory populations MERCEDES A. EBBERT* Department of Bio/oiy, Yale University, New Haven, CT 06511, U.S.A. Male-lethal,maternally inherited spiroplasmas occur in four species of Drosophila, and persist in natural populations despite imperfect vertical transmission rates. In the field, larval crowding is thought to be sporadic, but occasionally intense. To determine whether crowding affects host persistence, I compared the population dynamics of infected females (hosts) under crowded conditions to those expected from data collected on uncrowded females. I estimated host fitness components and maternal transmission rates for individual females under uncrowded conditions in both the artificial host D. pseudoobscura (this paper) and the native host D. willistoni (previously reported). Spiroplasma infection had no effect on lifetime production of daughters in D. pseudoob- scura; however, as with some D. willistoni lines, hosts may produce more of their daughters earlier in life than nonhosts. Because individual contributions to relative rates of increase calculated from these fitness data were similar for hosts and nonhosts, I expected hosts to persist in laboratory populations. Instead, three patterns were observed: rapid extinction of D. willistoni females infected with male-lethal spiroplasmas, slow decline or persistence of hosts (depending on initial frequency) in both D. pseudoobscura infected with male-lethal spiroplasmas, and D. willistoni infected with non-male-lethal spiroplasmas. Population dynamics, then, depend on host species and bacterial isolate. Fitness estimates change with host line in uncrowded D.
    [Show full text]
  • HAMPTON LAWRENCE CARSON November 5, 1914–December 19, 2004
    NATIONAL ACADEMY OF SCIENCES H A M P T O N L A W R E N C E C ARSON 1 9 1 4 – 2 0 0 4 A Biographical Memoir by AL A N R. TEMPLETON Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2011 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. HAMPTON LAWRENCE CARSON November 5, 1914–December 19, 2004 BY ALAN R. TEMPLETON AMPTON (“HAMP”) LAWRENCE CARSON made wide-ranging Hcontributions to cytogenetics, evolutionary genetics, and the study of speciation. He was a pioneer at using cyto- genetic analysis of chromosomal inversion patterns to study migration, local adaptation, and speciation in Drosophila and other insects. Hamp was an extraordinarily observant naturalist whose work on evolutionary genetics often led to unanticipated discoveries, such as his discovery that some species of Drosophila use the external nephric grooves of land crabs as a larval habitat. He had a remarkable ability to synthesize his observations into general theories to yield a deep understanding of the mechanisms of evolution. Hamp’s synthetic abilities are most apparent in his research on the Hawaiian Drosophila, perhaps his most widely known work. The pattern of evolution that he observed in Hawaiian Drosophila suggested to Hamp that founder events, perhaps just a single gravid female going from an older island to a younger one, could play a critical role in the origin of new species. This work on Hawaiian Drosophila and their adaptations to island ecosystems was honored by the awarding of the Joseph Leidy Medal by the Academy of Natural Sciences in Philadelphia in 1985.
    [Show full text]
  • Suppressor Genes with Gender Differences in Activity in Natural
    Genet. Res., Camb.(1997), 69, pp.81–88. Printed in the United Kingdom # 1997 Cambridge University Press 81 Suppressor genes with gender differences in activity in natural populations of Drosophila robusta: another approach to wild-type MAX LEVITAN Departments of Cell Biology}Anatomy and Human Genetics, Mount Sinai School of Medicine of the City Uniersity of New York, New York, NY 10029, USA (Receied 26 June 1996 and in reised form 6 December 1996) Summary Homozygous or hemizygous expression of an X-linked wing mutant of Drosophila robusta varies from a rudimentary wing that does not reach the tip of the abdomen (called ‘club’) to forms with full-sized but curled or crumpled wings (called ‘curly’). Homozygous club females crossed to flies from natural populations or laboratory stocks derived from wild flies invariably produce significantly less club male progeny than the 100% expected, most of them exhibiting less severe phenotypes: ‘curly’ forms and wild-type. The male progeny from similar crosses using curly females tend to be predominantly normal. By contrast, the male progeny of outcrossed females homozygous for an X-linked eye colour mutant, ermilion, are all vermilion. The data indicate that natural populations of D. robusta contain suppressors of the wing mutant but not of the eye colour mutant studied. Activity of the suppressors differs by gender: in experiments in which genetic theory expects similar results in the two sexes, males consistently show stronger effects of the suppressors than females. tions contain modifier genes that suppress the action 1. Introduction of an X-linked wing mutation but apparently none to In 1915, five years after T.
    [Show full text]
  • The Drosophilids of a Pristine Old-Growth Northern Hardwood Forest
    The Great Lakes Entomologist Volume 50 Numbers 3 & 4 -- Fall/Winter 2017 Numbers 3 & Article 7 4 -- Fall/Winter 2017 December 2017 The Drosophilids of a Pristine Old-Growth Northern Hardwood Forest Thomas Werner Michigan Technological University, [email protected] Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Werner, Thomas 2017. "The Drosophilids of a Pristine Old-Growth Northern Hardwood Forest," The Great Lakes Entomologist, vol 50 (2) Available at: https://scholar.valpo.edu/tgle/vol50/iss2/7 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. The Drosophilids of a Pristine Old-Growth Northern Hardwood Forest Cover Page Footnote Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, USA Acknowledgements I would like to thank the Huron Mountain Wildlife Foundation for supporting this research (Michigan Tech agreement #1401076), the Michigan Tech Research Excellence Fund (Mentoring Grant 1205026) for funding my meetings with Dr. John Jaenike (University of Rochester, NY), who taught me how to identify drosophilids and who gave valuable comments on this manuscript, and the Walmart store in Houghton, MI, for the generous supply of overripe produce. This peer-review article is available in The Great Lakes Entomologist: https://scholar.valpo.edu/tgle/vol50/iss2/7 Werner: Huron Mountain drosophilids 68 THE GREAT LAKES ENTOMOLOGIST Vol.
    [Show full text]
  • Drosophila Information Service 72
    DROSOPHILA INFORMATION SERVICE 72 July 1993 Material contributed by DROSOPHILA WORKERS and arranged by James N. Thompson jr. Material presented here should not be used in publications without the consent of the author. prepared at Department of Zoology University of Oklahoma Norman, Oklahoma 73019 Drosophila Information Service Number 72 July 1993 Prepared at the Department of Zoology University of Oklahoma Norman, Oklahoma 73019 U.S.A. u DIS 71 (July 1992) Preface Two new additions to this issue will hopefully increase the access to useful information for Drosophila researchers. First, an author/title and key word index to back issues of DIS (volumes 50 - 71) has been prepared. Photocopies of individual out-of-print research and technique articles can be obtained from the editor for $1.00 each, including postage. A key word index to the most recent issue will be included in future volumes. Second, we will begin printing contributions at regional and national Drosophila meetings as space allows. This will help researchers identify others with similar interests and will increase the visibility of presentations at smaller meetings world-wide. Publicity of these conferences will, however, only be possible if you bring them to our attention. To help identify special materials to include in future issues, a DIS Advisory Group is being formed. Current members include Michael Ashburner (Cambridge University), Daniel Hartl (Harvard University), Kathleen Matthews (Indiana University), and R.C. Woodruff (Bowling Green State University). Others will be added during the coming months, and recommendations are invited. The production of DIS 72 could not have been completed without the generous efforts of many people.
    [Show full text]
  • Diapause in Drosophila Melanogaster Females: a Genetic Analysis
    Heredityll (1993)312—317 Received 18.ianuary 1993 Genetical Society of Great Britain Diapause in Drosophila melanogaster females: a genetic analysis KAREN D. WILLIAMS & MARLA B. SOKOLOWSKI* York University, Department of Biology, Toronto, Ontario, Canada, M3J 1P3 FemaleDrosophila melanogaster exhibit ovarian diapause at low temperatures and short day lengths. We found that D. melanogaster isofemale lines from Windsor (Ontario, Canada) had a significantly higher percentage of females in diapause than did those from Cartersville (Georgia, U.S.A.). To investigate the heredity of this trait, we performed a 16-reciprocal cross analysis using two extreme isofemale lines called W and C. We found that diapause in D. melanogaster is inherited as a simple autosomal recessive trait with the C response (less flies in diapause) completely dominant to the W one. Maternal and cytoplasmic factors did not affect differences in diapause in these lines. The result of our genetic analysis of diapause in D. melanogaster opens many avenues for the genetic dissection of this ecologically relevant trait. Keywords:Drosophilamelanogaster, genetic analysis, ovarian diapause. Introduction Until recently, D. ine/anogaster was thought of as a 'day-neutral' species, devoid of an overwintering Adaptationsto seasonal variability, such as diapause, response, having no diapause (Saunders, 1976). How- allow organisms to persist throughout the stress of ever, Saunders et at. (1989) described the induction of adverse conditions. These adaptations allow the an ovarian diapause in this species. They defined organism to 'escape in time' (Dingle, 1978) by delaying ovarian diapause as a photoperiodically regulated their growth or reproduction and thus increasing their block to vitellogenesis.
    [Show full text]
  • Drosophila (Drosophila) Robusta Species Group (Diptera, Drosophilidae) from Southeast Asian Tropics, with The
    Entomological Science (2010) 13, 381–391 doi:10.1111/j.1479-8298.2010.00398.x ORIGINAL ARTICLE Discovery of the Drosophila (Drosophila) robusta species group (Diptera, Drosophilidae) from Southeast Asian tropics, with the descriptions of six new speciesens_398 381..391 Awit SUWITO1 and Hideaki WATABE2 1Zoology Division (Museum Zoologicum Bogoriense), Research Center for Biology-LIPI, Cibinong, Bogor, Indonesia; and 2Biological laboratory, Sapporo College, Hokkaido University of Education, Sapporo, Japan Abstract Six new species of the Drosophila robusta species group are described from Southeast Asian Islands. Kalimantan and Sunda Islands lie east of Bali, from which Drosophila barobusta sp.nov and D. uncinata sp.nov belong to the lacertosa subgroup, and D. sungaicola sp.nov, D. baliensis sp.nov, D. hitam sp.nov and D. subaquatica sp.nov to the okadai subgroup. The robusta group from Southeast Asian tropics exclusively inhabits streamsides in mountainous highlands with an elevation of more than 600 m from the sea level. Key words: East Malaysia, geographic distribution, habitats, Indonesia, species subgroup. INTRODUCTION restricted to riparian environments with high humidity and relatively constant temperature, and we have The Drosophila robusta species group of the Drosophila carried out bait-trap collections along streams in Borneo virilis section established by Hsu (1949) is one of major and Sunda Islands in tropical Southeast Asia. We have lineages within a huge subgenus Drosophila, and it has discovered many members of the Drosophila virilis been extensively studied from macro- and micro- section, and the present paper describes six new species evolutionary points of view (Stalker 1972; Narayanan of the robusta group as a first report, along with 1973; Throckmorton 1975; Levitan 1982; Watabe et al.
    [Show full text]
  • Karyotype Differentiation and Reproductive Isolation Among Natural Popula- Tions of Drosophila Lacertosa
    Cell research (2003); 13(6):491-497 http://www.cell-research.com Karyotype differentiation and reproductive isolation among natural popula- tions of Drosophila lacertosa 1,4 3, * 1, 2, * 5 LI PING HE , HIDE A KI WATABE , YA PING ZHANG , TADASHI AOTSUKA 1Laboratory of Molecular Biology ofof Domestic Animals, and Cellular and Molecular Evolution, Kunming, InstituteInstitute ofof ZoologyZoology, the Chinese Academy of Sciences,Kunming,Yunnan 650019,China E-mail: [email protected] 22Laborator y for Conser vation andand Utilization of Bio-r esour ce, Y unnan University, Kunming, Yunnan 650223, ChinaChina 33Biological Laborator y, Sappor o College, Hokkaido University of Education, Sappor o 002-8502, Japan E-mail:E-mail: [email protected]@sap.hokkyodai.ac.jp 44Graduate School of the Chinese Academy of Sciences, Beijing, China 55Department of Biology ,, TTokyo Metropolitan University , Hachioji-shi 192-0397, Japan ABSTRACT Drosophila lacertosa is widely distributed from northern India to Far East of Russia throughout China. We have studied geographical distributions of three kinds of chromosomal karyotypes, type D (2n=10, 4 pairs of V-shaped metacentric chromosomes and a pair of micro-chromosomes), type L (2n=10, 5V with a pair of large-sized hetero- chromatic autosomes) and type M (2n=10, 5V with middle-sized ones). Type D was found exclusively in local populations of D. lacertosa distributed in Yun-Gui Plateau, southwestern China. Both type L and M have a wide range of distribution, and the former occurred in subtropical regions of China including Taiwan Island, whereas the latter in cool temperate regions of East Asia covering Far East of Russia, Korea and the Japan Islands.
    [Show full text]