GMOS 101: Your Basic Questions Answered

Total Page:16

File Type:pdf, Size:1020Kb

GMOS 101: Your Basic Questions Answered Is it called GMO or What GMO crops are Why do we have GMOs? Do GMOs affect your feed your mind something else? out there? health? Humans have used traditional ways to modify crops and animals to suit their needs and tastes for “GMO” has become the common term Only a few types of GMO crops are grown in the GMO foods are as healthful and safe to eat as more than 10,000 years. Cross-breeding, selective consumers and popular media use to describe United States, but some of these GMOs make up their non-GMO counterparts. Some GMO plants breeding, and mutation breeding are examples of foods that have been created through genetic a large percentage of the crop grown (e.g., have actually been modified to improve their traditional ways to make these changes. These engineering. This term is not generally used soybeans, corn, sugar beets, canola, and cotton). nutritional value. An example is GMO soybeans 4 breeding methods often involve mixing all of the to refer to plants or animals developed with In 2018, GMO soybeans made up 94% of all with healthier oils that can be used to replace genes from two different sources. They are used to selective breeding, like the common garden soybeans planted, GMO cotton made up 94% of oils that contain trans fats. Since GMO foods create common crops like modern corn varieties5 strawberries available today that were created all cotton planted, and 92% of corn planted was were introduced in the 1990s, research6 has S and seedless watermelon. GMO 101: Your Basic from a cross between a species native to North GMO corn. Most GMO crops are used in food for shown that they are just as safe as non-GMO America and a species native to South America. animals like cows, chickens, and fish. They are foods. Additionally, research7 shows that GMO Modern technology now allows scientists to use While “genetic engineering” is the term typically also used to make ingredients that are then used plants fed to farm animals are as safe as genetic engineering to take just a beneficial gene, used by scientists, you will start seeing the in food products like cereal, snack chips, and non-GMO animal food. Questions Answered “bioengineered” label on some of the foods vegetable oils. Even though you won’t find many like insect resistance or drought tolerance, and we eat in the United States because of the GMO fruits or vegetables in the produce section transfer it into a plant. The reasons for genetic new National Bioengineered Food Disclosure of your grocery store, GMOs are a common part modification today are similar to what they were Standard.2 of today’s food supply. thousands of years ago: higher crop yields, less Do GMO plants reduce crop loss, longer storage life, better appearance, GMO foods have been available to consumers since the early 1990s. Since then, better nutrition, or some combination of these traits. pesticide use? the U.S. Food and Drug Administration (FDA), U.S. Environmental Protection Agency (EPA), and U.S. Department of Agriculture (USDA) have worked together to ensure Some GMO plants contain plant-incorporated that crops produced through genetic engineering are safe for people, animals, and protectants (PIPs)8 to make them resistant to insects, reducing the need for and use of many the environment. Despite there being a wide range of foods—GMO and spray pesticides.9 As another safety measure, non-GMO—available to consumers, there is some confusion around what GMOs EPA works with developers and scientists to help are and how they are used in our food supply. develop GMOs that will resist insects for as long as possible through their Insect Resistance Management program.10 Other GMO plants are developed to tolerate certain weed killers, which What makes it a GMO? allows farmers a wide variety of options for weed control. Some people are concerned that A GMO (genetically modified organism) is a plant, farmers who grow these GMOs will use more animal, or microorganism that has had its genetic weed killers. While this is sometimes the case, material (DNA) changed using technology that EPA regulates the safety of all weed killers that generally involves the specific modification of farmers use on GMO crops and non-GMO crops 11 DNA, including the transfer of specific DNA from alike. EPA also shares information to help one organism to another. Scientists often refer farmers who are concerned about weeds to this process as genetic engineering.1 developing resistance to weed killers. March 2020 — 1 Is it called GMO or What GMO crops are Why do we have GMOs? Do GMOs affect your something else? out there? health? Humans have used traditional ways to modify crops and animals to suit their needs and tastes for “GMO” has become the common term Only a few types of GMO crops are grown in the GMO foods are as healthful and safe to eat as more than 10,000 years. Cross-breeding, selective consumers and popular media use to describe United States, but some of these GMOs make up their non-GMO counterparts. Some GMO plants breeding, and mutation breeding are examples of foods that have been created through genetic a large percentage of the crop grown (e.g., have actually been modified to improve their traditional ways to make these changes. These engineering. This term is not generally used soybeans, corn, sugar beets, canola, and cotton). nutritional value. An example is GMO soybeans 4 breeding methods often involve mixing all of the to refer to plants or animals developed with In 2018, GMO soybeans made up 94% of all with healthier oils that can be used to replace genes from two different sources. They are used to selective breeding, like the common garden soybeans planted, GMO cotton made up 94% of oils that contain trans fats. Since GMO foods create common crops like modern corn varieties5 strawberries available today that were created all cotton planted, and 92% of corn planted was were introduced in the 1990s, research6 has and seedless watermelon. from a cross between a species native to North GMO corn. Most GMO crops are used in food for shown that they are just as safe as non-GMO America and a species native to South America. animals like cows, chickens, and fish. They are foods. Additionally, research7 shows that GMO Modern technology now allows scientists to use While “genetic engineering” is the term typically also used to make ingredients that are then used plants fed to farm animals are as safe as genetic engineering to take just a beneficial gene, used by scientists, you will start seeing the in food products like cereal, snack chips, and non-GMO animal food. “bioengineered” label on some of the foods vegetable oils. Even though you won’t find many like insect resistance or drought tolerance, and we eat in the United States because of the GMO fruits or vegetables in the produce section transfer it into a plant. The reasons for genetic new National Bioengineered Food Disclosure of your grocery store, GMOs are a common part modification today are similar to what they were Standard.2 of today’s food supply. thousands of years ago: higher crop yields, less Do GMO plants reduce crop loss, longer storage life, better appearance, better nutrition, or some combination of these traits. pesticide use? A complete list of GMO crops currently Some GMO plants contain plant-incorporated 8 Did you know? available in the United States: protectants (PIPs) to make them resistant to insects, reducing the need for and use of many spray pesticides.9 As another safety measure, Bioengineered food is the EPA works with developers and scientists to help term that Congress used develop GMOs that will resist insects for as long to describe certain types Alfalfa Papaya as possible through their Insect Resistance of GMOs when they passed Management program.10 Other GMO plants are the National Bioengineered developed to tolerate certain weed killers, which What makes it a GMO? Food Disclosure Standard. Apples Potatoes allows farmers a wide variety of options for weed The Standard defines control. Some people are concerned that farmers who grow these GMOs will use more A GMO (genetically modified organism) is a plant, bioengineered foods3 as weed killers. While this is sometimes the case, animal, or microorganism that has had its genetic those that contain detectable Canola Soybeans material (DNA) changed using technology that EPA regulates the safety of all weed killers that genetic material that has generally involves the specific modification of farmers use on GMO crops and non-GMO crops been modified through certain 11 DNA, including the transfer of specific DNA from Summer alike. EPA also shares information to help one organism to another. Scientists often refer lab techniques and cannot be Corn squash farmers who are concerned about weeds to this process as genetic engineering.1 created through conventional developing resistance to weed killers. breeding or found in nature. Sugar Cotton beets Non-GMO versions of these crops are also available. March 2020 — 2 Is it called GMO or What GMO crops are Why do we have GMOs? Do GMOs affect your something else? out there? health? Humans have used traditional ways to modify crops and animals to suit their needs and tastes for “GMO” has become the common term Only a few types of GMO crops are grown in the GMO foods are as healthful and safe to eat as more than 10,000 years. Cross-breeding, selective consumers and popular media use to describe United States, but some of these GMOs make up their non-GMO counterparts.
Recommended publications
  • Mutation Breeding in Pepper S
    XA0101052 INIS-XA--390 Mutation Breeding Review JOINT FAO/IAEA DIVISION OF ISOTOPE AND RADIATION APPLICATIONS OF ATOMIC ENERGY FOR FOOD AND AGRICULTURAL DEVELOPMENT INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA No. 4 March 1986 MUTATION BREEDING IN PEPPER S. DASKALOV* Plant Breeding Unit, Joint FAO/IAEA Division of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, Seibersdorf Laboratory, IAEA, Vienna Abstract Pepper (Capsicum sp, ) is an important vegetable and spice crop widely grown in tropical as well as in temperate regions. Until recently the improvement programmes were based mainly on using natural sources of germ plasm, crossbreeding and exploiting the heterosis of F hybrids. However, interest in using induced mutations is growing. A great number of agronomically useful mutants as well as mutants valuable for genetic, cytological and physiological studies have been induced and described. Acknowledgements: The author expresses his gratitude to Dr. A. Micke, Head, Plant Breeding and Genetics Section, FAO/IAEA Joint Division and to Dr. T. Hermelin, Head, Agriculture Laboratory, Joint FAO/IAEA Programme, Seibersdorf Laboratory, for their critical review of the manuscript and valuable contributions. * Permanent Address: Institute of Genetics, Sofia 1113, Bulgaria 32/ 22 In this review information is presented about suitable mutagen treatment procedures with radiation as well as chemicals, M effects, handling the treated material in M , M and subsequent generations, and mutant screening procedures. This is supplemented by a description of reported useful mutants and released cultivars. Finally, general advice is given on when and how to incorporate mutation induction in Capsicum improvement programmes. INTRODUCTION Peppers are important vegetable and spice crops widely grown in tropical as well as in temperate regions.
    [Show full text]
  • Nutrition — Ph.D. 1
    Nutrition — Ph.D. 1 NUTRITION — PH.D. Prerequisites • Master's degree in nutrition preferred; or an M.S. or M.P.H. degree Program director with completion of all prerequisite courses; or a health professional Sujatha Rajaram degree at the master's level or higher (M.D. or equivalent) • Advanced biochemistry (may be taken concurrently with the program) The Doctor of Philosophy (Ph.D.) degree in nutrition prepares students to • Anatomy and physiology, microbiology, general chemistry, and effectively conduct nutrition research as well as apply nutritional science organic chemistry knowledge and appropriate research methods to address public health problems. The program provide's an advanced curriculum in nutrition, • G.P.A. of 3.5 or higher preferred th professional skills, and competencies required to support careers in • GRE or equivalent (above the 40 percentile in each section is teaching and research. This program is uniquely situated in the School favorable) of Public Health at a health sciences university. The program engages in interdisciplinary research, encouraging collaboration across public Individuals who may benefit from the health disciplines and the basic sciences, promoting and building upon its core legacy of vegetarian and plant-based nutrition. Areas of curricular program strength and research emphasis include plant-based diets and the health Individuals seeking careers in: of the individual, populations and the planet, nutritional epidemiology, diet • Academia (teaching and research) and chronic disease-risk reduction, and community nutrition. • Researcher in private industry, governmental agencies, nonprofit Students enrolled in this program are able to concurrently complete organizations, or research institutes coursework and practice experience necessary to sit for the registered • Public health nutritionist dietitian nutritionist (RDN) exam if not already an RDN.
    [Show full text]
  • The Practice of Epidemiology
    The Practice of Epidemiology A Meta-Regression Method for Studying Etiologic Heterogeneity across Disease Subtypes Classified by Multiple Biomarkers Molin Wang, Aya Kuchiba, Shuji Ogino Correspondence to Molin Wang, Departments of Biostatistics and Epidemiology, Harvard T.H. Chan School of Public Health, and Channing Division of Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, 677 Huntington Ave., Boston, Massachusetts (email: [email protected]) Abbreviations: CIMP, CpG island methylator phenotype; HPFS, Health Professionals Follow-up Study; MPE, molecular pathological epidemiology; MSI, microsatellite instability; MSS, microsatellite stable; NHS, the Nurses’ Health Study; OR, odds ratio; RR, relative risk; RRR, ratio of relative risk. We use standardized official symbol BRAF, which is described at www.genenames.org. Word count main abstract: 200 Word count text: 3615 N.Figures: 0 N.Tables: 2 Appendices: 0 1 Abstract In interdisciplinary biomedical, epidemiological, and population research, it is increasingly necessary to consider pathogenesis and inherent heterogeneity of any given health condition and outcome. As the unique disease principle implies, no single biomarker can perfectly define disease subtypes. The complex nature of molecular pathology and biology necessitates biostatistical methodologies to simultaneously analyze multiple biomarkers and subtypes. To analyze and test for heterogeneity hypothesis across subtypes defined by multiple categorical and/or ordinal markers, the authors developed a meta-regression method that can utilize existing statistical software for mixed model analysis. This method can be used to assess whether the exposure- subtype associations are different across subtypes defined by one marker while controlling for other markers, and to evaluate whether the difference in exposure- subtype association across subtypes defined by one marker depends on any other markers.
    [Show full text]
  • Encouraging Healthy Lifestyle Practices to Protect Health from Environmental Pollution
    Encouraging Healthy Lifestyle Practices to Protect Health from Environmental Pollution Dawn Brewer, PhD, RD, LD July 26, 2019 NIEHS Superfund Research Program (SRP) Purpose: The NIEHS SRP supports research that provides practical, scientific solutions to protect health, the environment and communities. Source: https://tools.niehs.nih.gov/srp/sites/www.cfm University of Kentucky Superfund Research Center (UK-SRC): Nutrition and Superfund Chemical Toxicity Polychlorinated biphenyls (PCBs) Cl Cl Cl Cl Cl Exposure Cardiovascular diseases Diabetes Obesity Cancer Oxidative Suppression of the immune system damage Dysfunction of reproductive and nervous systems Source: Sci Total Environ. 2009 Dec 1; 407(24): 6109-6119 Source: http://www.epa.gov/opptintr/pcb/ Kentucky Contains Hundreds of Hazardous Waste Sites and Contaminated Waterways • 13 National Priority List sites • 248 state superfund sites • 465 sites pending review • Fish consumption advisories for PCBs exist for Kentucky streams and the entire Ohio River that forms the northern border Source: https://www.kyforward.com/wp-content/uploads/2018/11/Kentucky- Waterways-map.jpg Kentucky Experiences Poor Health Outcomes United Health Indicator Kentucky States Ranking Diabetes (%) 12.9 10.5 44 Heart disease (%) 6.2 3.9 49 Cancer deaths (per 100,000 population) 234.9 189.8 50 High blood pressure (%) 39.4 32.2 46 Obesity (%) 34.3 31.3 43 Source: America's Health Rankings analysis of CDC WONDER Online Database, Underlying Cause of Death, Multiple Cause of Death files, United Health Foundation, AmericasHealthRankings.org, Accessed 2019. Kentuckians Face Increased Vulnerability to Environmental Pollution • A growing and convincing body of research (including results from UK-SRC) indicates that nutrition may function as a modulator of vulnerability to environmental insults with nutrition serving to both better or worsen the health impacts associated with exposure to environmental toxins.
    [Show full text]
  • Master of Public Health/Master of Science in Nutrition Dual Degree Proposal (Plan B, Non-Thesis Requiring) Document of December
    Master of Public Health/Master of Science in Nutrition Dual Degree Proposal (Plan B, non-thesis requiring) Document of December 8, 2014; Revised February 2, 2015 This is a dual degree program that is offered jointly by the Departments of Epidemiology and Biostatistics, and Nutrition. The core Master Degree courses include a mixture of those from nutrition, biochemistry and public health. 1. Background and Justification The World Health Organization, (WHO), identifies diet and nutrition as a lifestyle factor critical for maintenance of health and well-being, as well as a factor influencing risk of chronic disease. Cardiovascular disease, diabetes, cancer and obesity are examples of chronic diseases significantly related to diet and nutrition. Obesity is one of the most common conditions and is growing to epidemic proportions. The two most common associated co-morbidities of obesity, type 2 diabetes and hypertension, are highly prevalent health risks and are among the principal causes of death in the general population. Additionally, in third world countries, malnutrition is a very common cause of infection or death, especially in young children. Accordingly, knowledge of the basic elements of good nutrition and the biochemical pathways associated with the metabolism of protein, fat and carbohydrate offers important contributions to mitigate these health problems. The proposed dual degree program will provide the student with a core understanding of the mechanics of metabolism combined with advanced courses in public health and nutrition. This combined approach will yield a highly qualified and competitive public health practitioner trained to develop evidence based policy, programs, strategies and advocacy to address these health risks and problems.
    [Show full text]
  • Vitamin and Mineral Requirements in Human Nutrition
    P000i-00xx 3/12/05 8:54 PM Page i Vitamin and mineral requirements in human nutrition Second edition VITPR 3/12/05 16:50 Page ii WHO Library Cataloguing-in-Publication Data Joint FAO/WHO Expert Consultation on Human Vitamin and Mineral Requirements (1998 : Bangkok, Thailand). Vitamin and mineral requirements in human nutrition : report of a joint FAO/WHO expert consultation, Bangkok, Thailand, 21–30 September 1998. 1.Vitamins — standards 2.Micronutrients — standards 3.Trace elements — standards 4.Deficiency diseases — diet therapy 5.Nutritional requirements I.Title. ISBN 92 4 154612 3 (LC/NLM Classification: QU 145) © World Health Organization and Food and Agriculture Organization of the United Nations 2004 All rights reserved. Publications of the World Health Organization can be obtained from Market- ing and Dissemination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permis- sion to reproduce or translate WHO publications — whether for sale or for noncommercial distri- bution — should be addressed to Publications, at the above address (fax: +41 22 791 4806; e-mail: [email protected]), or to Chief, Publishing and Multimedia Service, Information Division, Food and Agriculture Organization of the United Nations, 00100 Rome, Italy. The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization and the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Pho300007 Risk Modeling and Screening for Brcai
    ?4 101111111111 PHO300007 RISK MODELING AND SCREENING FOR BRCAI MUTATIONS AMONG FILIPINO BREAST CANCER PATIENTS by ALEJANDRO Q. NAT09 JR. A Master's Thesis Submitted to the National Institute of Molecular Biology and Biotechnology College of Science University of the Philippines Diliman, Quezon City As Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN MOLECULAR BIOLOGY AND BIOTECHNOLOGY March 2003 In memory of my gelovedmother Mrs. josefina Q -Vato who passedaway while waitingfor the accomplishment of this thesis... Thankyouvery inuchfor aff the tremendous rove andsupport during the beautifil'30yearstfiatyou were udth me... Wom, you are he greatest! I fi)ve you very much! .And.. in memory of 4 collaborating 6reast cancerpatients who passedaway during te course of this study ... I e.Vress my deepest condolence to your (overtones... Tou have my heartfeligratitude! 'This tesis is dedicatedtoa(the 37 cofla6oratingpatients who aftruisticaffyjbinedthisstudyfor te sake offuture generations... iii This is to certify that this master's thesis entitled "Risk Modeling and Screening for BRCAI Mutations among Filipino Breast Cancer Patients" and submitted by Alejandro Q. Nato, Jr. to fulfill part of the requirements for the degree of Master of Science in Molecular Biology and Biotechnology was successfully defended and approved on 28 March 2003. VIRGINIA D. M Ph.D. Thesis Ad RIO SUSA B. TANAEL JR., M.Sc., M.D. Thesis Co-.A. r Thesis Reader The National Institute of Molecular Biology and Biotechnology endorses acceptance of this master's thesis as partial fulfillment of the requirements for the degree of Master of Science in Molecular Biology and Biotechnology.
    [Show full text]
  • Genetic Modification for Agriculture—Proposed Revision of GMO Regulation in Australia
    plants Opinion Genetic Modification for Agriculture—Proposed Revision of GMO Regulation in Australia Robert Redden RJR Agriculture Consultants, 62 Schier Drive, Horsham 340, Australia; [email protected] Abstract: Genetic engineering (GM) of crops, modified with DNA transfer between species, has been highly regulated for over two decades. Now, genome editing (GE) enables a range of DNA alterations, from single base pair changes to precise gene insertion with site-directed nucleases (SDNs). Past regulations, established according to the precautionary principle of avoiding potential risks to human health and the environment, are predicated on fears fanned by well-funded and emotional anti-GM campaigns. These fears ignore the safety record of GM crops over the last 25 years and the benefits of GM to crop productivity, disease and pest resistance, and the environment. GE is now superseding GM, and public education is needed about its benefits and its potential to meet the challenges of climate change for crops. World population will exceed 9 billion by 2050, and world CO2 levels are now over 400 ppm in contrast with a pre-industrial 280 ppm, leading to a projected 1.5 ◦C global warming by 2050, with more stressful crop environments. The required abiotic and biotic stress tolerances can be introgressed from crop wild relatives (CWR) into domestic crops via GE. Restrictive regulations need to be lifted to facilitate GE technologies for sustainable agriculture in Australia and the world. Keywords: genetic engineering; genome editing; regulation; climate change; precautionary principle Citation: Redden, R. Genetic Modification for Agriculture—Proposed Revision of 1. Introduction GMO Regulation in Australia.
    [Show full text]
  • Table of Contents
    Table of Contents Human Nutrition and Dietetics.............................................................................. 1 Human Nutrition and Dietetics Nutrition is an exciting and expanding field. In fact, according to the US Bureau of Labor Statistics, this field is expected to grow at a faster rate compared to other careers. The study of Human Nutrition exemplifies the intricate relationships between diet, health, and disease. The Human Nutrition & Dietetics (HND) major is part of the School of Human Sciences and offers two specializations: Didactic Program in Dietetics (DPD); and Nutrition for Wellness (NW). Admission to the HND major follows general undergraduate admission requirements outlined in this catalog. Bachelor of Science (B.S.) in Human Nutrition and Dietetics Degree Requirements Degree Requirements Credit Hours University Core Curriculum Requirements 39 Requirements for Major in Human Nutrition and Dietetics 32 PSYC 102, MATH 108, UNIV 101I 1 7 PLB 115/ZOOL 115 (3) CHEM 140A, CHEM 140B 2 (3)+5 PHIL 104 (3) MICR 201 4 QUAN 402, MATH 282, ABE 318, or PSYC 211 3-4 PHSL 201 and PHSL 208 4 HND 100, HND 101, HND 320, HND 356, HND 425, HND (2)+16 475, HND 485 Additional Requirements for Didactic Program in Dietetics Specialization 49 AH 105 2 HND 321, HND 400, HND 410, HND 470, HND 472, HND 16 480 HTA 156, HTA 206, HTA 360, HTA 373 11 2021-2022 Academic Catalog 1 Degree Requirements Credit Hours MKTG 304 3 PSYC 323 3 Electives 11 Additional Requirements for Nutrition for Wellness Specialization 49 AH 105 2 KIN 201 3 HTA 206 (1) HED 311, HED 312 6 HND 321, HND 410, HND 445, HND 495 12 Approved Electives 25 Total 120 1 The numbers in parentheses are counted as part of the 39-hour University Core Curriculum.
    [Show full text]
  • Plant Genetics – History of Genetic Modification of Crops We Eat
    Plant Genetics – History of Genetic Modification of Crops We Eat WHAT? • Virtually all plants we eat have been genetically changed or modified by humans • This means we have been determining what genes or traits are propagated WHY? • Modifying and selecting plants that have desired traits for yield, taste, quality, texture, disease resistance, etc. benefit farmers and consumers • Responsible for half of crop yield improvements over the last 50 years HOW? • Natural mutations in genes or DNA • 10,000 years ago humans begin to select and breed crops • Crossbreeding of plants of the same species • Mid 1800’s modern genetics began with Gregor Mendel cross pollination of peas • To improve existing plant characteristics by crossing two varieties ….. • 1940s- Man-made mutations or mutation breeding using chemicals and radiation to create new plant varieties • Example: Ruby red grapefruit which is cold tolerant Source: Biofortified.org • 1980s- GMOs or genetically modified organisms: Scientists learned to copy a gene (DNA code) from one organism to another to add a new desired trait called transgenes using gene engineering (GM/GE). • 1990s first GMOs on the market • 2015- Gene editing makes a tiny, controlled, modification of a gene by editing the DNA code • Works like find and replace in word processor for specific, known genes which are modified without changing other genes Source: University of California, Berkley GM/GMO Crops: What’s in a name? • Genetically Modified Organism or GMO is commonly used to describe several terms: • Genetically modified (GM) • Genetic engineering (GE) • Biotech seeds • GMO refers a modern method of breeding that improves plant genetics by adding a gene(s) to a plant by “directly inserting” the gene or DNA from another organism into the genetic code to add a new trait such as insect or disease resistance, drought tolerance or enhance nutrition.
    [Show full text]
  • Food and Nutrition Security and Environmental Pollution: Taboo and Stigma
    DOI: 10.1590/1413-81232017222.10582016 527 Segurança alimentar e nutricional e contaminação ambiental: ARTICLE ARTIGO tabu e estigma Food and nutrition security and environmental pollution: taboo and stigma Mércia Ferreira Barreto 1 Maria do Carmo Soares de Freitas 1 Abstract This qualitative approach study seeks to Resumo Este estudo de abordagem qualitati- understand the meanings of Food and Nutrition va busca compreender significados de Segurança Security (FNS) and environmental contamination Alimentar e Nutricional (SAN) e contaminação by shellfish gatherers in the municipality of Santo ambiental por marisqueiras do município de San- Amaro, Bahia. Solid and industrial waste (mainly to Amaro, Bahia. Resíduos sólidos e industriais lead) and biological waste are released in the Sub- (principalmente Chumbo), e biológicos são lança- aé river and in the mangrove, compromising food dos no rio Subaé e no manguezal, comprometendo resources, life and health of the population. Shell- fontes alimentares, a vida e a saúde da popula- fish gatherers selling their mangrove-derived prod- ção. As marisqueiras, ao tentarem comercializar ucts are stigmatized by people of this municipality, os produtos do mangue, são estigmatizadas pela as well as other cities in the Recôncavo Baiano, população deste e outros municípios do Recôncavo and, as a result, do not reveal the origin of shellfish baiano e, por isso, silenciam sobre a origem dos sold in the market. Silence and contamination de- mariscos que vendem na feira. Compreende-se o nial are understood as ways to ensure the FNS, the silêncio e a negação da contaminação como for- naturalization of social inequality and in favor of mas de garantir a SAN, a naturalização da desi- survival.
    [Show full text]
  • 2. Genetically Modified Food Crops and Their Contribution to Human
    Trends in Food Science & Technology 14 (2003) 191–209 2. Genetically modified food classical nutrient deficiencies, although over-consump- crops and their tion is a problem for some. Also in relatively wealthy countries there is, in general, good access to affordable medical care to meet health needs and most consumers contribution to in rich countries have access to a relatively inexpensive supply of safe and healthy food. In these settings, the human nutrition possibility that biotechnology might reduce the price of food or make food more beneficial to health is a rela- tively minor concern. Rather, public debate about and food quality genetically modified foods (GMFs) appears to have focused on the potential for harm to either the environ- ment or health without a clear definition of benefit to the consumer. a The situation, of course, is quite different in poor Howarth E. Bouis *, Bruce countries where malnutrition and ill health are frequent. M. Chassyb and James Poor consumers typically spend 70% of their incomes c on food, and diets consist primarily of staple foods, O. Ochanda which lack the vitamins, minerals and, very likely, other food components necessary to sustain good health and minimise the risk of adult onset diet-related chronic diseases. In addition, low incomes typically preclude the poor from access to adequate health care. aInternational Food Policy Research Institute, 2033 K There are three broad ways that biotechnology may Street, NW, Washington DC 20006 USA (fax: +1-202- benefit consumers in developing countries. First, bio- 467-4439; e-mail: [email protected]) technology offers a powerful, new tool to improve crop bBiotechnology Center, University of Illinois at productivity, both by making conventional breeding Urbana-Champaign, 238 NSRC, 1101 West Peabody faster and more efficient and, more controversially, by Drive, Urbana, IL 61801, USA the insertion of novel genes in a crop species, by use of cDeparment of Biochemistry, College of Biological & transgenic methods.
    [Show full text]