Fossil Spiders (Araneae) from the Eocene Kishenehn Formation of Montana, USA

Total Page:16

File Type:pdf, Size:1020Kb

Fossil Spiders (Araneae) from the Eocene Kishenehn Formation of Montana, USA Palaeontologia Electronica palaeo-electronica.org Fossil spiders (Araneae) from the Eocene Kishenehn Formation of Montana, USA Matthew R. Downen and Paul A. Selden ABTRACT The Kishenehn Formation contains a diverse assemblage of terrestrial arthropod fossils and represents a tropical ecosystem in North America during the Eocene (46 Ma). Most of the fossils are small insects, but spiders have also been recovered and recently made available for study. The fossil spiders are small and preserved as com- pressions in a thinly laminated oil shale, but abundant setae and other morphological features are preserved in relatively high detail. Here, the fossil spiders are described for the first time and include new species of orbweaving spiders from the family Aranei- dae and a ground-dwelling spider from the family Gnaphosidae. Most of the spiders in the assemblage resemble extant orbweaving spiders like Neoscona: Greenwalta- rachne pamelae gen. & sp. nov. and Consteniusi leonae gen. et sp. nov.. A single gna- phosid, distinguished by widely separated cylindrical spinnerets, is likely a juvenile. A single male spider belonging to Araneomorphae is too poorly preserved to discern at family level. The fossils described here are the oldest fossil spiders recovered from Montana thus far. Matthew R. Downen. Department of Geology, University of Kansas, Ritchie Hall Earth, Energy & Environment Center 1414 Naismith Drive, Room 254 Lawrence, KS 66045, USA. [email protected] Paul A. Selden. Department of Geology, University of Kansas, Ritchie Hall Earth, Energy & Environment Center 1414 Naismith Drive, Room 254 Lawrence, KS 66045, USA and Natural History Museum, Cromwell Road, London SW7 5BD, UK. [email protected] Keywords: Fossil-Lagerstätte; lacustrine; new genus; new species; taxonomy Submission: 24 October 2020. Acceptance: 18 November 2020. http://zoobank.org/5A215F0E-AE94-4250-9D22-E38DE45250E7 Downen, Matthew R. and Selden, Paul A. 2020. Fossil spiders (Araneae) from the Eocene Kishenehn Formation of Montana, USA. Palaeontologia Electronica, 23(3):a56. https://doi.org/10.26879/1135 palaeo-electronica.org/content/2020/3237-kishenehn-fossil-spiders Copyright: December 2020 Paleontological Society. This is an open access article distributed under the terms of Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0), which permits users to copy and redistribute the material in any medium or format, provided it is not used for commercial purposes and the original author and source are credited, with indications if any changes are made. creativecommons.org/licenses/by-nc-sa/4.0/ DOWNEN & SELDEN: KISHENEHN FOSSIL SPIDERS INTRODUCTION and spiders, currently including 14 species of ara- neids in two genera: Araneus Clerck, 1757, and The Kishenehn Formation of Montana Tethneus Scudder, 1885, although many of these (Eocene: 46 Ma) is one of several Cenozoic lacus- fossil spiders from the Florissant Formation are in trine deposits of North America that are considered need of revision (World Spider Catalog, 2020). Fossil-Lagerstätten. A diverse assemblage of fos- Gnaphosids are ground-dwelling spiders that sils is represented and includes terrestrial arthro- do not weave webs to capture prey; instead, they pods, plants, aquatic molluscs, and mammals actively hunt on the ground (Jocqué and Dippe- (Pierce and Constenius, 2014). Small insects naar-Schoeman, 2007). Gnaphosids and their rela- including flies (Diptera), true bugs (Hemiptera), and tives are distinguished from the aerial web- extremely minute fairy wasps (Hymenoptera: spinning spiders by possessing only two tarsal Mymaridae) are the most abundant fossils, while claws, instead of three, and differing leg lengths. vertebrates are rare (Greenwalt and Labandeira, Gnaphosids themselves are distinguished easily 2013; Greenwalt and Engel, 2014; Greenwalt et from other similar spiders by their widely separated al., 2014; Lapolla and Greenwalt, 2015). The cylindrical spinnerets and claw tufts at the end of exceptional preservation has yielded even a blood- each leg (Platnick, 1990). There are currently 2522 engorged mosquito with preserved biomolecules species within Gnaphosidae, which also makes derived from hemoglobin (Greenwalt et al., 2013). them one of the most diverse spider families. The Relatively few fossil spiders have been recovered fossil record of Gnaphosidae comes mostly from this deposit and, hitherto, none have been Baltic amber with 13 species (Menge, 1854; Wun- described formally. This paper is a taxonomic sur- derlich, 2011). Five species are from the Florissant vey of the fossil spider assemblage from the Kish- Formation (34 Ma), but many of these need revi- enehn Formation. sion (Petrunkevitch, 1922). The assemblage consists of new species of orbweaving spiders (Araneidae), a ground dwelling GEOLOGICAL SETTING AND FOSSIL spider from the family Gnaphosidae, and an inde- PRESERVATION terminate araneomorph. Most of the spiders in the assemblage are conspecific and similar to extant The Kishenehn Formation is located in north- spiders in the araneid spider genus Neoscona western Montana and is composed of two mem- Simon, 1864. A single very small spider is likely a bers: the Coal Creek Member and the overlying juvenile gnaphosid, based on cylindrical spinner- Pinchot Conglomerate Member. The Coal Creek ets. A single male spider is too poorly preserved to Member is represented by an 1150 m thick succes- discern at family level and is left as an indetermi- sion of sandstone, siltstone, and oil shale (Conste- nate araneomorph. Whereas none of the spiders nius et al., 1989). Fossil insects and spiders are described here extend the age range of any fami- found in the middle of the Coal Creek Member in lies, they do contribute to comparing spider assem- the oil shale. The fossils are preserved as com- blages preserved in Eocene lacustrine deposits pressions in extremely thin and delicate lamina- across North America during the Eocene. tions representing varves. A thin layer of surface The fossil record of Araneidae extends back silicates obscures many of the fossils (Greenwalt to the Cretaceous with the earliest araneid, Meso- et al., 2014). zygiella dunlopi Ortuño, 2006, preserved in amber The depositional setting and paleoenviron- from Álava, Spain (Penney and Ortuño, 2006). Ara- ment is interpreted as a freshwater lacustrine sys- neids are one of the most diverse groups of spiders tem in a subtropical to tropical environment. today (3100 species; World Spider Catalog, 2020), Fishes, including bowfins (Amiidae) and suckers with many fossils described from amber (91 spe- (Catostomidae), are indicative of freshwater habi- cies). The Cenozoic record of Araneidae in North tats (Wilson, 1988). Sycamores are the most abun- America currently includes araneids from the dant plant fossils and represent humid and warm Dominican and Chiapas ambers and one lacustrine conditions, whereas other plants like cattails and deposit, the Florissant Formation of Colorado waterferns are suggestive of paludal environments (Scudder, 1890; Petrunkevitch, 1922, 1971; Wun- (Constenius et al., 1989). Relatively few mammal derlich, 1982, 1986, 1988). The Florissant Forma- fossils have been recovered but include flying tion (Eocene: 34 Ma) is a well-known lacustrine lemurs, which also support a tropical paleoenviron- deposit with many exceptionally preserved insects ment (McKenna, 1990). 2 PALAEO-ELECTRONICA.ORG MATERIALS AND METHODS sils to fluoresce, and thus, increasing the contrast between matrix and cuticle/fossil material. Materials Abbreviations: AME anterior median eye(s), car The specimens consist of a part only and are carapace, ch chelicera, cx coxa, fe femur, L length, preserved in oil shale from the Coal Creek Member lb labium, LE lateral eye(s), mt metatarsus, mx of the Kishenehn Shale in northwestern Montana. maxilla, op opisthosoma, pa patella, Pd pedipalp, Greenwalt et al. (2013) lists specific sites of collec- PME posterior median eye(s), sp spinnerets, st tion. Specimens (PAL 583.1, PAL 20412.1, PAL sternum, ta tarsus, ti tibia, W width. 32280, PAL 20480) are deposited in the Depart- ment of Paleobiology, National Museum of Natural SYSTEMATIC PALEONTOLOGY History, Washington, D.C., with specimen labels Order ARANEAE Clerck, 1757 beginning with PAL, and one specimen (CM Suborder OPISTHOTHELAE Pocock, 1892 56099) is deposited in the Carnegie Museum of Infraorder ARANEOMORPHAE Smith, 1902 Natural History, Pittsburg, PA. Araneomorphae incertae sedis Methods (Figure 1) Due to the coating of silicates on the surface Remarks. Parts of this fossil spider are preserved of the fossils, specimens were submerged in 95% with high fidelity (the legs), whereas other portions ethanol. The specimens were studied using a are poor in detail (the palps and carapace). The Leica M205C stereomicroscope, photographed palps, carapace, and some of the leg joints have with a Canon EOS 5D MkII digital camera attached been replaced with pyrite which contributes to a to the microscope and captured with DSLR Assis- loss of detail. Mygalomorph spiders typically have tant software (www.kaasoft.com) on an Apple Mac- large porrect chelicerae and robust legs. The fossil Book Pro computer. Drawings were made using a here has relatively small chelicerae that are not drawing tube attached to the microscope. Photo- porrect, and legs that are relatively slender with graphs were manipulated using Adobe Photoshop heavy spination. The pedipalps are modified, indi- software. Fossils were also imaged using an Olym- cating
Recommended publications
  • A Checklist of the Non -Acarine Arachnids
    Original Research A CHECKLIST OF THE NON -A C A RINE A R A CHNIDS (CHELICER A T A : AR A CHNID A ) OF THE DE HOOP NA TURE RESERVE , WESTERN CA PE PROVINCE , SOUTH AFRIC A Authors: ABSTRACT Charles R. Haddad1 As part of the South African National Survey of Arachnida (SANSA) in conserved areas, arachnids Ansie S. Dippenaar- were collected in the De Hoop Nature Reserve in the Western Cape Province, South Africa. The Schoeman2 survey was carried out between 1999 and 2007, and consisted of five intensive surveys between Affiliations: two and 12 days in duration. Arachnids were sampled in five broad habitat types, namely fynbos, 1Department of Zoology & wetlands, i.e. De Hoop Vlei, Eucalyptus plantations at Potberg and Cupido’s Kraal, coastal dunes Entomology University of near Koppie Alleen and the intertidal zone at Koppie Alleen. A total of 274 species representing the Free State, five orders, 65 families and 191 determined genera were collected, of which spiders (Araneae) South Africa were the dominant taxon (252 spp., 174 genera, 53 families). The most species rich families collected were the Salticidae (32 spp.), Thomisidae (26 spp.), Gnaphosidae (21 spp.), Araneidae (18 2 Biosystematics: spp.), Theridiidae (16 spp.) and Corinnidae (15 spp.). Notes are provided on the most commonly Arachnology collected arachnids in each habitat. ARC - Plant Protection Research Institute Conservation implications: This study provides valuable baseline data on arachnids conserved South Africa in De Hoop Nature Reserve, which can be used for future assessments of habitat transformation, 2Department of Zoology & alien invasive species and climate change on arachnid biodiversity.
    [Show full text]
  • Spider Field Guide North America
    Spider Field Guide North America Worldly and oldish Mitch cauterising commensally and suberizes his trovers amok and puissantly. Kirby is tricuspidate and overplays hourly while horror-struck French slummings and motorised. Unpraising Juanita backcomb avoidably. Clean up arm in garages, Bugwood. Nice photos of a decent size that make the bugs and spiders very visible. The posterior eye row is either straight or slightly recurved, Bugwood. Presence of skeleton signals that request is progressively loaded. Other, based on the features you use or your age. Is currently providing a north america and organic matter how you are opportunistic ambush predators of. Cellar spiders in north america re looking at them. Spider is found in the family Dysderidae or the Dysderid spiders. Look like spiders commonly seen wandering, spider a north america except occasionally been shared among north. As a field guides and there are cryptically colored to a video of america, in this platform clean orderly web type indicate species. Also note when fine hairs on the legs, details, or under bark. National Audubon Society Field Guides Audubon. The Funnel web weavers. The range of the brown recluse spider does not extend into Canada. Bites or stings from a variety of arthropods can result in an itching wound. For write more advanced view of spiders currently covered by Spider ID you create also. These animals with their posterior to north america, field guide selection for? These from some explain the biggest spiders in eastern North America; not including their legs, and other buildings. Audubon Insects and Spiders receives the Parent Tested Parent Approved Award.
    [Show full text]
  • SHORT COMMUNICATION a Vertebrate-Eating Jumping Spider
    2017. Journal of Arachnology 45:238–241 SHORT COMMUNICATION A vertebrate-eating jumping spider (Araneae: Salticidae) from Florida, USA Martin Nyffeler1, G. B. Edwards2 and Kenneth L. Krysko3: 1Section of Conservation Biology, Department of Environmental Sciences, University of Basel, CH-4056, Basel, Switzerland; E-mail: [email protected]; 2Curator Emeritus: Arachnida & Myriapoda, Florida State Collection of Arthropods, Gainesville, FL 32608, USA; 3Division of Herpetology, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA Abstract. The salticid spider Phidippus regius C.L. Koch, 1846 is documented preying on small frogs (Hyla spp., Osteopilus septentrionalis) and lizards (Anolis carolinensis and Anolis sagrei) in Florida, USA. Female as well as male P. regius were engaged in feeding on this type of vertebrate prey. A total of eight incidents of P. regius devouring vertebrates have been witnessed in seven Florida counties. Furthermore, we report an incident of a large unidentified Phidippus sp. (possibly P. bidentatus F. O. Pickard-Cambridge, 1901) preying on an immature anole lizard in Costa Rica. P. regius, otherwise known to feed almost exclusively on insects and spiders, is one of the world’s largest salticid spiders reaching a maximum recorded body length of 2.2 cm. Most other salticid spiders appear to be too small in body size to overcome vertebrate prey. Vertebrate predation by salticid spiders has not been previously documented in the scientific literature. Together with Salticidae, spiders from 27 of 114 families (24%) are currently known to occasionally consume vertebrate prey. Keywords: Generalist predators, predation, prey, Dactyloidae, Hylidae, Southeastern USA With .5,900 described species, the jumping spider family (Salt- observations.
    [Show full text]
  • Biochemical Divergence Between Cavernicolous and Marine
    The position of crustaceans within Arthropoda - Evidence from nine molecular loci and morphology GONZALO GIRIBET', STEFAN RICHTER2, GREGORY D. EDGECOMBE3 & WARD C. WHEELER4 Department of Organismic and Evolutionary- Biology, Museum of Comparative Zoology; Harvard University, Cambridge, Massachusetts, U.S.A. ' Friedrich-Schiller-UniversitdtJena, Instituifiir Spezielte Zoologie und Evolutionsbiologie, Jena, Germany 3Australian Museum, Sydney, NSW, Australia Division of Invertebrate Zoology, American Museum of Natural History, New York, U.S.A. ABSTRACT The monophyly of Crustacea, relationships of crustaceans to other arthropods, and internal phylogeny of Crustacea are appraised via parsimony analysis in a total evidence frame­ work. Data include sequences from three nuclear ribosomal genes, four nuclear coding genes, and two mitochondrial genes, together with 352 characters from external morphol­ ogy, internal anatomy, development, and mitochondrial gene order. Subjecting the com­ bined data set to 20 different parameter sets for variable gap and transversion costs, crusta­ ceans group with hexapods in Tetraconata across nearly all explored parameter space, and are members of a monophyletic Mandibulata across much of the parameter space. Crustacea is non-monophyletic at low indel costs, but monophyly is favored at higher indel costs, at which morphology exerts a greater influence. The most stable higher-level crusta­ cean groupings are Malacostraca, Branchiopoda, Branchiura + Pentastomida, and an ostracod-cirripede group. For combined data, the Thoracopoda and Maxillopoda concepts are unsupported, and Entomostraca is only retrieved under parameter sets of low congruence. Most of the current disagreement over deep divisions in Arthropoda (e.g., Mandibulata versus Paradoxopoda or Cormogonida versus Chelicerata) can be viewed as uncertainty regarding the position of the root in the arthropod cladogram rather than as fundamental topological disagreement as supported in earlier studies (e.g., Schizoramia versus Mandibulata or Atelocerata versus Tetraconata).
    [Show full text]
  • Arachnida, Solifugae) with Special Focus on Functional Analyses and Phylogenetic Interpretations
    HISTOLOGY AND ULTRASTRUCTURE OF SOLIFUGES Comparative studies of organ systems of solifuges (Arachnida, Solifugae) with special focus on functional analyses and phylogenetic interpretations HISTOLOGIE UND ULTRASTRUKTUR DER SOLIFUGEN Vergleichende Studien an Organsystemen der Solifugen (Arachnida, Solifugae) mit Schwerpunkt auf funktionellen Analysen und phylogenetischen Interpretationen I N A U G U R A L D I S S E R T A T I O N zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) an der Mathematisch-Naturwissenschaftlichen Fakultät der Ernst-Moritz-Arndt-Universität Greifswald vorgelegt von Anja Elisabeth Klann geboren am 28.November 1976 in Bremen Greifswald, den 04.06.2009 Dekan ........................................................................................................Prof. Dr. Klaus Fesser Prof. Dr. Dr. h.c. Gerd Alberti Erster Gutachter .......................................................................................... Zweiter Gutachter ........................................................................................Prof. Dr. Romano Dallai Tag der Promotion ........................................................................................15.09.2009 Content Summary ..........................................................................................1 Zusammenfassung ..........................................................................5 Acknowledgments ..........................................................................9 1. Introduction ............................................................................
    [Show full text]
  • Ontogenetic Changes in the Spinning Fields of Nuctenea Cornuta and Neoscona Iheish Araneae, Araneidae)
    Yu. L. and J. A. Coddington. J990. Ontogenetic changes in the spinning fields of Nuctenea cornuta and Neoscona iheisH Araneae, Araneidae). J. Arachnol., 18:331-345. ONTOGENETIC CHANGES IN THE SPINNING FIELDS OF NUCTENEA CORNUTA AND NEOSCONA THEISI (ARANEAE, ARANEIDAE) Liuming Yu Div. of Biological Sciences University of Missouri Columbia, Missouri 65211 USA and Jonathan A. Coddington Department of Entomology National Museum of Natural History Smithsonian Institution, Washington, DC 20560 USA ABSTRACT The postembryonie development of spinning organs of Nuctenea cornuta (Clerck) and Neoscona theisi (Walckenaer) (Araneae, Araneidae), was studied with SEM. emphasizing first appearance of, and increase in. spigot and fusule complements. Our results suggest that these species may renew their spinning fields by two distinct methods during their ontogeny: spigots may be merely molted in situ like any other cuticular appendage; and/or spigots in one position are lost and "replaced" by an apparently new spigot in a new position. Some or all of each class of fusule (aciniform and pyrifornf) as well as major and minor ampullate spigots are replaced as well as merely molted. Flagelliform and aggregate spigots seem to be merely molted, never replaced. Evidence for these modes of replacement are the apparently vestigial spinning structures that persist from the previous instar, termed "nubbins" in the case of spigots, and "tartipores" in the case of fusules, as well as patterns in the increase in numbers of fusules and spigots. Spinneret ontogeny confirms Theridiidae and Tetragnathidae as phylogenetically derived taxa relative to Araneidae. INTRODUCTION Previous work on spinnerets has concerned histology (see Kovoor 1987 for a review), morphology (Glatz 1967, 1972, 1973; Mikulska 1966, 1967, 1969; Wasowska 1966, 1967, 1970, 1973; Coddington 1989), and function (Peters 1983.
    [Show full text]
  • Tarantulas and Social Spiders
    Tarantulas and Social Spiders: A Tale of Sex and Silk by Jonathan Bull BSc (Hons) MSc ICL Thesis Presented to the Institute of Biology of The University of Nottingham in Partial Fulfilment of the Requirements for the Degree of Doctor of Philosophy The University of Nottingham May 2012 DEDICATION To my parents… …because they both said to dedicate it to the other… I dedicate it to both ii ACKNOWLEDGEMENTS First and foremost I would like to thank my supervisor Dr Sara Goodacre for her guidance and support. I am also hugely endebted to Dr Keith Spriggs who became my mentor in the field of RNA and without whom my understanding of the field would have been but a fraction of what it is now. Particular thanks go to Professor John Brookfield, an expert in the field of biological statistics and data retrieval. Likewise with Dr Susan Liddell for her proteomics assistance, a truly remarkable individual on par with Professor Brookfield in being able to simplify even the most complex techniques and analyses. Finally, I would really like to thank Janet Beccaloni for her time and resources at the Natural History Museum, London, permitting me access to the collections therein; ten years on and still a delight. Finally, amongst the greats, Alexander ‘Sasha’ Kondrashov… a true inspiration. I would also like to express my gratitude to those who, although may not have directly contributed, should not be forgotten due to their continued assistance and considerate nature: Dr Chris Wade (five straight hours of help was not uncommon!), Sue Buxton (direct to my bench creepy crawlies), Sheila Keeble (ventures and cleans where others dare not), Alice Young (read/checked my thesis and overcame her arachnophobia!) and all those in the Centre for Biomolecular Sciences.
    [Show full text]
  • Spider Biology Unit
    Spider Biology Unit RET I 2000 and RET II 2002 Sally Horak Cortland Junior Senior High School Grade 7 Science Support for Cornell Center for Materials Research is provided through NSF Grant DMR-0079992 Copyright 2004 CCMR Educational Programs. All rights reserved. Spider Biology Unit Overview Grade level- 7th grade life science- heterogeneous classes Theme- The theme of this unit is to understand the connection between form and function in living things and to investigate what humans can learn from other living things. Schedule- projected time for this unit is 3 weeks Outline- *Activity- Unique spider facts *PowerPoint presentation giving a general overview of the biology of spiders with specific examples of interest *Lab- Spider observations *Cross-discipline activity #1- Spider short story *Activity- Web Spiders and Wandering spiders *Project- create a 3-D model of a spider that is anatomically correct *Project- research a specific spider and create a mini-book of information. *Activity- Spider defense pantomime *PowerPoint presentation on Spider Silk *Lab- Fiber Strength and Elasticity *Lab- Polymer Lab *Project- Spider silk challenge Support for Cornell Center for Materials Research is provided through NSF Grant DMR-0079992 Copyright 2004 CCMR Educational Programs. All rights reserved. Correlation to the NYS Intermediate Level Science Standards (Core Curriculum, Grades 5-8): General Skills- #1. Follow safety procedures in the classroom and laboratory. #2. Safely and accurately use the following measurement tools- Metric ruler, triple beam balance #3. Use appropriate units for measured or calculated values #4. Recognize and analyze patterns and trends #5. Classify objects according to an established scheme and a student-generated scheme.
    [Show full text]
  • Phylogeny of Entelegyne Spiders: Affinities of the Family Penestomidae
    Molecular Phylogenetics and Evolution 55 (2010) 786–804 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogeny of entelegyne spiders: Affinities of the family Penestomidae (NEW RANK), generic phylogeny of Eresidae, and asymmetric rates of change in spinning organ evolution (Araneae, Araneoidea, Entelegynae) Jeremy A. Miller a,b,*, Anthea Carmichael a, Martín J. Ramírez c, Joseph C. Spagna d, Charles R. Haddad e, Milan Rˇezácˇ f, Jes Johannesen g, Jirˇí Král h, Xin-Ping Wang i, Charles E. Griswold a a Department of Entomology, California Academy of Sciences, 55 Music Concourse Drive, Golden Gate Park, San Francisco, CA 94118, USA b Department of Terrestrial Zoology, Nationaal Natuurhistorisch Museum Naturalis, Postbus 9517 2300 RA Leiden, The Netherlands c Museo Argentino de Ciencias Naturales – CONICET, Av. Angel Gallardo 470, C1405DJR Buenos Aires, Argentina d William Paterson University of New Jersey, 300 Pompton Rd., Wayne, NJ 07470, USA e Department of Zoology & Entomology, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa f Crop Research Institute, Drnovská 507, CZ-161 06, Prague 6-Ruzyneˇ, Czech Republic g Institut für Zoologie, Abt V Ökologie, Universität Mainz, Saarstraße 21, D-55099, Mainz, Germany h Laboratory of Arachnid Cytogenetics, Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic i College of Life Sciences, Hebei University, Baoding 071002, China article info abstract Article history: Penestomine spiders were first described from females only and placed in the family Eresidae. Discovery Received 20 April 2009 of the male decades later brought surprises, especially in the morphology of the male pedipalp, which Revised 17 February 2010 features (among other things) a retrolateral tibial apophysis (RTA).
    [Show full text]
  • Hemolymph and Hemocytes of Tarantula Spiders: Physiological Roles and Potential As Sources of Bioactive Molecules
    In: Advances in Animal Science and Zoology. Volume 8 ISBN: 978-1-63483-552-7 Editor: Owen P. Jenkins © 2015 Nova Science Publishers, Inc. No part of this digital document may be reproduced, stored in a retrieval system or transmitted commercially in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services. Chapter 8 HEMOLYMPH AND HEMOCYTES OF TARANTULA SPIDERS: PHYSIOLOGICAL ROLES AND POTENTIAL AS SOURCES OF BIOACTIVE MOLECULES Tatiana Soares, Thiago H. Napoleão, Felipe R. B. Ferreira and Patrícia M. G. Paiva∗ Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil ABSTRACT Arachnids compose the most important and numerous group of chelicerates and include spiders, scorpions, mites and ticks. Some arachnids have a worldwide distribution and can live for more than two decades. This is in part due to their efficient defense system, with an innate immunity that acts as a first line of protection against bacterial, fungal and viral pathogens. The adaptive success of the spiders stimulates the study of their defense mechanisms at cellular and molecular levels with both biological and biotechnological purposes. The hemocytes (plasmatocytes, cyanocytes, granulocytes, prohemocytes, and leberidocytes) of spiders are responsible for phagocytosis, nodulation, and encapsulation of pathogens as well as produce substances that mediate humoral mechanisms such as antimicrobial peptides and factors involved in the coagulation of hemolymph and melanization of microorganisms.
    [Show full text]
  • Common Kansas Spiders
    A Pocket Guide to Common Kansas Spiders By Hank Guarisco Photos by Hank Guarisco Funded by Westar Energy Green Team, American Arachnological Society and the Chickadee Checkoff Published by the Friends of the Great Plains Nature Center i Table of Contents Introduction • 2 Arachnophobia • 3 Spider Anatomy • 4 House Spiders • 5 Hunting Spiders • 5 Venomous Spiders • 6-7 Spider Webs • 8-9 Other Arachnids • 9-12 Species accounts • 13 Texas Brown Tarantula • 14 Brown Recluse • 15 Northern Black Widow • 16 Southern & Western Black Widows • 17-18 Woodlouse Spider • 19 Truncated Cellar Spider • 20 Elongated Cellar Spider • 21 Common Cellar Spider • 22 Checkered Cobweb Weaver • 23 Quasi-social Cobweb Spider • 24 Carolina Wolf Spider • 25 Striped Wolf Spider • 26 Dotted Wolf Spider • 27 Western Lance Spider • 28 Common Nurseryweb Spider • 29 Tufted Nurseryweb Spider • 30 Giant Fishing Spider • 31 Six-spotted Fishing Spider • 32 Garden Ghost Spider Cover Photo: Cherokee Star-bellied Orbweaver ii Eastern Funnelweb Spider • 33 Eastern and Western Parson Spiders • 34 Garden Ghost Spider • 35 Bark Crab Spider • 36 Prairie Crab Spider • 37 Texas Crab Spider • 38 Black-banded Crab Spider • 39 Ridge-faced Flower Spider • 40 Striped Lynx Spider • 41 Black-banded Common and Convict Zebra Spiders • 42 Crab Spider Dimorphic Jumping Spider • 43 Bold Jumping Spider • 44 Apache Jumping Spider • 45 Prairie Jumping Spider • 46 Emerald Jumping Spider • 47 Bark Jumping Spider • 48 Puritan Pirate Spider • 49 Eastern and Four-lined Pirate Spiders • 50 Orchard Spider • 51 Castleback Orbweaver • 52 Triangulate Orbweaver • 53 Common & Cherokee Star-bellied Orbweavers • 54 Black & Yellow Garden Spider • 55 Banded Garden Spider • 56 Marbled Orbweaver • 57 Eastern Arboreal Orbweaver • 58 Western Arboreal Orbweaver • 59 Furrow Orbweaver • 60 Eastern Labyrinth Orbweaver • 61 Giant Long-jawed Orbweaver • 62 Silver Long-jawed Orbweaver • 63 Bowl and Doily Spider • 64 Filmy Dome Spider • 66 References • 67 Pocket Guides • 68-69 1 Introduction This is a guide to the most common spiders found in Kansas.
    [Show full text]
  • Genetic Diversity Analysis of Crab Spider (Araneae: Thomisidae) Based on RAPD-PCR
    RESEARCH PAPER Zoology Volume : 4 | Issue : 8 | August 2014 | ISSN - 2249-555X Genetic Diversity Analysis of Crab Spider (Araneae: Thomisidae) based on RAPD-PCR KEYWORDS Crab spiders, RAPD, diversity, Amravati Nandkishor Warghat Navin Sharma Assistant professor, Department of Zoology, Arts, Assistant professor, Department of Zoology, Arts and commerce and Science College , Maregaon, Dist- Science College, Pulgaon, Dist- Wardha, Maharashtra. Yavatmal, Maharashtra. Punam Thakur *Mumtaz Baig Associate professor, Department of Zoology, Govt. Research Scholar, Department of Zoology, Govt. Vidarbha Institute of Science and Humanities, Vidarbha Institute of Science and Humanities, Amravati Amravati-444604. MH *Corresponding Author ABSTRACT The current study deals with the genetic diversity of crab spiders using molecular markers. Total scorable bands were produced using six random primers for the 16 species of crab spiders belonging to family thomisidae. Out of all screened primers, OPP 9 produced highest 113 scorable bands, out of which 111 bands were found with 98.28 percent polymorphism. Primer OPA 3 was produced lowest 43 bands with 100 percent polymor- phism. Remaining primers (OPA 2, OPA 4, OPN 16 and OPN 18) showed 100 per cent polymorphism with 60, 60, 81 and 51 bands respectively. Along with the molecular markers, a morphometric analysis was also focus on the phyloge- netic relationship of crab spiders using UPGMA and NJ approach. The present study is the first report from India to describe the genetic relatedness amongst spider using RAPD-PCR. Introduction at 20055’ and 20.93 North latitude 77045’ and 77.75 East Crab spiders are small to large size, with two claws and longitudes at an elevation of 1125 feet.
    [Show full text]