Assessment of Erosion Hotspots in a Watershed: Integrating the WEPP Model and GIS in a Case Study in the Peruvian Andes

Total Page:16

File Type:pdf, Size:1020Kb

Assessment of Erosion Hotspots in a Watershed: Integrating the WEPP Model and GIS in a Case Study in the Peruvian Andes Environmental Modelling & Software 22 (2007) 1175e1183 www.elsevier.com/locate/envsoft Assessment of erosion hotspots in a watershed: Integrating the WEPP model and GIS in a case study in the Peruvian Andes Guillermo A. Baigorria a,*, Consuelo C. Romero b a Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL 32611, USA b Departamento de Suelos, Universidad Nacional Agraria La Molina, Lima 12, Peru Received 8 April 2005; received in revised form 3 January 2006; accepted 9 June 2006 Available online 22 August 2006 Abstract This paper presents a case study in assessment of erosion hotspots in an Andean watershed. To do this, we made use of an interface called Geospatial Modelling of Soil Erosion (GEMSE): a tool that integrates Geographical Information Systems (GIS) with the Water Erosion Predic- tion Project (WEPP) model. Its advantages are: (i) it is independent of any special GIS software used to create maps and to visualize the results; (ii) the results can be used to produce response surfaces relating outputs (e.g. soil loss, runoff) with simple inputs (e.g. climate, soils, topogra- phy); (iii) the scale, resolution and area covered by the different layers can be different among them, which facilitates the use of different sources of information. The objective of this paper is to show GEMSE’s performance in a specific case study of soil erosion in La Encan˜ada watershed (Peru) where the hillslope version of WEPP has been previously validated. Resulting runoff and soil loss maps show the spatial distribution of these processes. Though these maps do not give the total runoff and soil loss at the watershed level, they can be used to identify hotspots that will aid decision makers to make recommendations and plan actions for soil and water conservation. Ó 2006 Elsevier Ltd. All rights reserved. Keywords: Geospatial modeling; WEPP; GIS; Soil loss; Runoff; Andes Software availability 1. Introduction Name of software: Geospatial Modelling of Soil Erosion Modeling has formed the core of a great deal of research focus- (GEMSE) ing on inherently geographic aspects of our environment, and has Developer and contact address: G.A. Baigorria, Frazier Rogers led to the understanding of distributions and spatial relationships Hall, University of Florida, Gainesville, FL 32611, in everything from astronomy to microbiology and chemistry USA (Parks, 1993). In the case of soil erosion, simulation models Coding language: Delphi 7 have become important tools for the analysis of hillslope and wa- Software requirements: Any GIS software only for visualiza- tershed processes and their interactions, and for the development tion purposes and assessment of watershed management scenarios (Santhi Hardware requirements: PCs with Windows 98, Windows et al., 2006; Miller et al., 2007; Lu et al., 2005; Metternicht and 2000 or Windows XP. Gonzales, 2005; He, 2003). Since erosion can adversely affect Program size: 1.1 Mb ecosystems on-site as well as off-site, the estimation of runoff Available since: 2004 and soil loss in catchments is becoming more important as con- cerns about surface water quality increase (Cochrane and Flana- gan, 1999). For this, the ‘‘hotspots’’ (source areas of sediments) within a watershed need to be identified. However, many of the * Corresponding author: Fax: þ352 392 4092. predictive models do not examine the problem in a geographic E-mail address: [email protected]fl.edu (G.A. Baigorria). context (Pullar and Springer, 2000). 1364-8152/$ - see front matter Ó 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.envsoft.2006.06.012 1176 G.A. Baigorria, C.C. Romero / Environmental Modelling & Software 22 (2007) 1175e1183 Under these circumstances, a Geographical Information southeastern Brazil. The Geo-Spatial Interface for WEPP System (GIS) becomes a valuable tool. A GIS is a powerful (GeoWEPP) (Renschler, 2003) is another example of a tool set of tools for collecting, storing, retrieving at will, transform- that combines GIS and WEPP. It utilizes readily available dig- ing and displaying spatial data from the real world (Burrough, ital geo-referenced information from accessible Internet sour- 1986). GIS has made a tremendous impact in many fields of ces like topographic maps, digital elevation models, land use application, because it allows the manipulation and analysis and soil maps (Renschler et al., 2002), with the aim of evalu- of individual ‘‘layers’’ of spatial data, and it provides tools ating various land-use scenarios to assist with soil and water for analyzing and modeling the interrelationships between conservation planning. For those users of WEPP with no expe- layers (Bonham-Carter, 1996). Coupled to an environmental rience with commercial GIS packages there is a new web- model, a GIS can interpret simulation outputs in a spatial con- based WEPP-GIS system that only requires a user to have text (Pullar and Springer, 2000). It is presumed that better in- a network connection and web browser (Flanagan et al., tegration of GIS and environmental modeling is possible by 2004). The digital elevation data are processed on the server exploiting the opportunity to combine ever-increasing compu- side to delineate watershed, channels and hillslopes that, tational power, more plentiful digital data, and more advanced once located, WEPP simulations are conducted. Results in models. GIS/modeling tools necessarily encourage the best graphical format are sent as images to the client computer. implementation of new and better ‘‘hybrid’’ tools. According These two last examples’ applicability, however, can fail to Parks (1993), there are three primary reasons for integra- where the availability of digital data is restricted, which often tion: ‘‘(1) spatial representation is critical to environmental occurs in developing countries. problem solving, but GIS currently lack the predictive and re- This paper presents a new tool capable of integrating pro- lated analytic capabilities necessary to examine complex prob- cess-based models with Geographic Information Systems lems; (2) modelling tools typically lack sufficiently flexible (GIS) for improving the analysis of point-estimated results GIS-like spatial analytic components and are often inaccessi- on larger scales. This interface, called Geospatial Modelling ble to potential users less expert than their makers; and (3) of Soil Erosion (GEMSE), makes use of the Water Erosion modeling and GIS technology can both be made more robust Prediction Project (WEPP) model, producing different maps by their linkage and co-evolution.’’ Both GIS and simulation in GIS format as a result of this integration. Analysis of these models have been developed with their own conventions, pro- maps gives insights useful for the evaluation of land resources cedures and limitations. However, linking them at a technical and agricultural sustainability and for estimating risks in a spe- level does not guarantee improved understanding or useful cific area. prediction (Burrough, 1986). More quantitative quality indica- tors, together with spatial statistics and error analysis, are 2. Materials and methods needed to improve the value of GIS/modeling interfaces (Hartkamp et al., 1999). 2.1. The study area A comprehensive description of some of the most popular models of watershed hydrology in the world can be found in Field data for running the model were obtained in the northern Andean Highlands of Peru, in La Encan˜ada watershed. The study area is approximately Singh (1995). As an example, we can mention some of 6000 ha and it is located at 74 0 S latitude and 7816 0 W longitude, ranging them. The TOPMODEL (Beven et al., 1984) was developed between 2950 and 4000 m above sea level (a.s.l.) (Fig. 1a). as a distributed hydrologic model that uses digital elevation Two main climate regimes can be identified during the year in this area: the data and spatial information on soil, vegetation and precipita- rainy season and the dry season. Three automatic weather stations were set up tion to estimate the soil moisture distribution at catchment in the study area to record the climate data on a daily basis. A summary of climate conditions is shown in Table 1. A detailed description about rainfall level, thereby taking account of the spatial heterogeneity of characteristics in the study area is given in Romero (2005) and Romero both topography and soils. One of the most promising of the et al. (in press). physically based models currently used to model erosion is According to the Soil Taxonomy classification (USDA and NRCS, 1998) the Water Erosion Prediction Project (WEPP) model (Flanagan the main soil orders in the watershed are Entisols, Inceptisols and Mollisols and Nearing, 1995). But it was not developed with a flexible (INRENA, 1998). The spatial distribution of the main soil groups is shown in Fig. 1b. In the highest part of the watershed there are deep soils with graphical user interface for spatial and temporal scales appli- a high content of organic matter. Shallow soils are also found; their low or- cations (Renschler, 2003). The first application of WEPP ganic matter content is mainly because the topsoil has been removed by ero- with a raster-based GIS was by Savabi et al. (1995). Another sion. Approximately 65% of the area has a slope gradient less than 15%. Very effort to integrate WEPP and GIS was by Cochrane and steep slopes (up to 65%) are also present, increasing the risk of erosion in this Flanagan (1999) for watershed erosion modeling, using an mountainous area. As steep slopes often occur adjacent to the river, water ero- sion will contribute directly to the river sediment load. interface between Arc View and WEPP. In both cases, the The land use in La Encan˜ada watershed is divided into croplands (55%), integration of WEPP with a GIS was done to facilitate and cultivated pasture (13%), natural pasture (20%) and scrub (12%) (INRENA, improve the application of the model. Another computer 1998). Deep soils with the largest amount of organic matter are used as crop- interface called Erosion Database Interface (EDI) processes lands, with cereals, potato, maize and legumes the most important crops.
Recommended publications
  • Modifying Wepp to Improve Streamflow Simulation in a Pacific Northwest Watershed
    MODIFYING WEPP TO IMPROVE STREAMFLOW SIMULATION IN A PACIFIC NORTHWEST WATERSHED A. Srivastava, M. Dobre, J. Q. Wu, W. J. Elliot, E. A. Bruner, S. Dun, E. S. Brooks, I. S. Miller ABSTRACT. The assessment of water yield from hillslopes into streams is critical in managing water supply and aquatic habitat. Streamflow is typically composed of surface runoff, subsurface lateral flow, and groundwater baseflow; baseflow sustains the stream during the dry season. The Water Erosion Prediction Project (WEPP) model simulates surface runoff, subsurface lateral flow, soil water, and deep percolation. However, to adequately simulate hydrologic conditions with significant quantities of groundwater flow into streams, a baseflow component for WEPP is needed. The objectives of this study were (1) to simulate streamflow in the Priest River Experimental Forest in the U.S. Pacific Northwest using the WEPP model and a baseflow routine, and (2) to compare the performance of the WEPP model with and without including the baseflow using observed streamflow data. The baseflow was determined using a linear reservoir model. The WEPP- simulated and observed streamflows were in reasonable agreement when baseflow was considered, with an overall Nash- Sutcliffe efficiency (NSE) of 0.67 and deviation of runoff volume (Dv) of 7%. In contrast, the WEPP simulations without including baseflow resulted in an overall NSE of 0.57 and Dv of 47%. On average, the simulated baseflow accounted for 43% of the streamflow and 12% of precipitation annually. Integration of WEPP with a baseflow routine improved the model’s applicability to watersheds where groundwater contributes to streamflow. Keywords. Baseflow, Deep seepage, Forest watershed, Hydrologic modeling, Subsurface lateral flow, Surface runoff, WEPP.
    [Show full text]
  • Adapting the Water Erosion Prediction Project (WEPP) Model for Forest Applications
    Journal of Hydrology 366 (2009) 46–54 Contents lists available at ScienceDirect Journal of Hydrology journal homepage: www.elsevier.com/locate/jhydrol Adapting the Water Erosion Prediction Project (WEPP) model for forest applications Shuhui Dun a,*, Joan Q. Wu a, William J. Elliot b, Peter R. Robichaud b, Dennis C. Flanagan c, James R. Frankenberger c, Robert E. Brown b, Arthur C. Xu d a Washington State University, Department of Biological Systems Engineering, P.O. Box 646120, Pullman, WA 99164, USA b US Department of Agriculture, Forest Service, Rocky Mountain Research Station, Moscow, ID 83843, USA c US Department of Agriculture, Agricultural Research Service (USDA-ARS), National Soil Erosion Research Laboratory, West Lafayette, IN 47907, USA d Tongji University, Department of Geotechnical Engineering, Shanghai 200092, China article info summary Article history: There has been an increasing public concern over forest stream pollution by excessive sedimentation due Received 11 July 2008 to natural or human disturbances. Adequate erosion simulation tools are needed for sound management Received in revised form 6 December 2008 of forest resources. The Water Erosion Prediction Project (WEPP) watershed model has proved useful in Accepted 12 December 2008 forest applications where Hortonian flow is the major form of runoff, such as modeling erosion from roads, harvested units, and burned areas by wildfire or prescribed fire. Nevertheless, when used for mod- eling water flow and sediment discharge from natural forest watersheds where subsurface flow is dom- Keywords: inant, WEPP (v2004.7) underestimates these quantities, in particular, the water flow at the watershed Forest watershed outlet. Surface runoff Subsurface lateral flow The main goal of this study was to improve the WEPP v2004.7 so that it can be applied to adequately Soil erosion simulate forest watershed hydrology and erosion.
    [Show full text]
  • Using the Wepp Model to Predict Sediment Yield in a Sample Watershed in Kahramanmaras Region
    USING THE WEPP MODEL TO PREDICT SEDIMENT YIELD IN A SAMPLE WATERSHED IN KAHRAMANMARAS REGION Alaaddin YÜKSEL Abdullah E. AKAY Mahmut REİS KSÜ, Orman Fakültesi, Orman Mühendisliği Bölümü, 46060, Kahramanmaraş Recep GÜNDOĞAN KSÜ, Ziraat Fakültesi, Toprak Bölümü, 46060, Kahramanmaraş E-mail: [email protected], [email protected], [email protected], [email protected] ABSTRACT Considerable amount of sediment yield reaches into streams, lakes, and dam reservoirs from 26 major watersheds in Turkey. Several models have been developed to estimate the sediment yield from watersheds. WEPP (Water Erosion Prediction Project) model is one of the most common model which not only predicts the amount of sediment yield but also determines where and when the sediment produc- tion occurs and locates possible deposition places. Besides, the geo-spatial interface for WEPP model (GeoWEPP) can use digital geo-referenced information by integrat- ing with the most common GIS tools ( i.e. ArcView, ArcGIS) . Therefore, watershed managers can decide the most appropriate soil erosion conservation and sediment prevention techniques for a specific watershed based on the WEPP outputs in text or graphical format. The sediment yield from a watershed in Kahramanmaraş region (Ayvalı Dam Watershed) was estimated by using GeoWEPP model. In this study, process of estimating sediment yield from a specific sub watershed located in a for- ested area was presented to indicate the performance of GeoWEPP. This study indi- cated that using GeoWEPP can provide watershed managers with quick estimation of sediment yield from large watersheds in high accuracy. Keywords: WEPP, GeoWEPP, Sedimentation, Dam Watershed, Kahramanmaraş, 12 INTERNATIONAL CONGRESS ON RIVER BASIN MANAGEMENT 1.
    [Show full text]
  • Application of the WEPP Model to Surface Mine Reclamation• By
    Application of the WEPP Model to Surface Mine Reclamation• by W. J. Elliot Wu Qiong Annette V. Elliot2 Abstract. Sediment from mining sources contributes to the pollution of surface waters. Restoration of mined sites can reduce the problems associated with erosion, and one of the most important objectives of surface mine reclamation is the control of surface runoff and erosion from reclaimed areas. Current methods for predicting sediment yield do not suit surface mine sites because non- agricultural soils and vegetation are involved. There is a need for a computer model to aid in identifying improved management systems and reclamation practices with suitable input data files and appropriate hydrologic modeling routines. The USDA Water Erosion Prediction Project (WEPP) resulted in the development of a computer model based on fundamental erosion mechanics. The WEPP model will be in widespread use by the mid 1990s by the Soil Conservation Service (SCSI, and will be the erosion prediction model of choice well into the next century. This paper gives an overview of the WEPP erosion prediction technology and its implications to surface mine reclamation, and reports on a research project that identifies critical watershed parameters unique to surface mining and reclamation through a sensitivity analysis of the WEPP Watershed Model. The study contributes to the validation of the WEPP Watershed Version by comparing estimates generated by the model with observed data from watersheds after surface mining. Additional Key Words: Erosion simulation INTRODUCTION control of surface runoff and erosion from reclaimed areas (Mitchell et al., 1983; Hartley As renewable fossil fuel energy reserves are and Schuman, 1984).
    [Show full text]
  • Modeling Phosphorus Transport Using the WEPP Model Mario Perez-Bidegain Iowa State University
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Digital Repository @ Iowa State University Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2007 Modeling phosphorus transport using the WEPP model Mario Perez-Bidegain Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agriculture Commons, Agronomy and Crop Sciences Commons, Bioresource and Agricultural Engineering Commons, Environmental Sciences Commons, and the Soil Science Commons Recommended Citation Perez-Bidegain, Mario, "Modeling phosphorus transport using the WEPP model" (2007). Retrospective Theses and Dissertations. 15497. https://lib.dr.iastate.edu/rtd/15497 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Modeling phosphorus transport using the WEPP model by Mario Perez-Bidegain A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Co-majors: Soil Science (Soil Management); Environmental Science Program of Study Committee: Richard M. Cruse, Co-major Professor Matthew J. Helmers, Co-major Professor Brian K. Hornbuckle Robert Horton John M. Laflen Iowa State University Ames, Iowa 2007 Copyright © Mario Perez-Bidegain, 2007. All rights reserved. UMI Number: 3259439 UMI Microform 3259439 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.
    [Show full text]
  • Wepp Model Applications for Evaluations of Best Management Practices
    WEPP MODEL APPLICATIONS FOR EVALUATIONS OF BEST MANAGEMENT PRACTICES D.C. FLANAGAN 1, W.J. ELLIOT 2, J.R. FRANKENBERGER 3, C. HUANG 4 1USDA-Agricultural Research Service, National Soil Erosion Research Laboratory, 275 S. Russell Street, West Lafayette, Indiana, USA, 47907. Phone: +01 765-494- 8673, FAX: +01 765-494-5948, email: [email protected] 2USDA-Forest Service, Rocky Mountain Research Station, 1221 S. Main St., Moscow, ID, USA. 83843. Phone: +01 208-883-2338, FAX: +01 208-883-2318, email: [email protected] 3USDA-Agricultural Research Service, National Soil Erosion Research Laboratory, 275 S. Russell Street, West Lafayette, Indiana, USA, 47907. Phone: +01 765-494- 8673, FAX: +01 765-494-5948, email: [email protected] 4USDA-Agricultural Research Service, National Soil Erosion Research Laboratory, 275 S. Russell Street, West Lafayette, Indiana, USA, 47907. Phone: +01 765-494- 8673, FAX: +01 765-494-5948, email: [email protected] Summary The Water Erosion Prediction Project (WEPP) model is a process-based erosion prediction technology for application to small watersheds and hillslope profiles, under agricultural, forested, rangeland, and other land management conditions. Developed by the United States Department of Agriculture (USDA) over the past 25 years, WEPP simulates many of the physical processes that are important when estimating runoff, soil erosion, and sediment delivery at a location having unique climate, topography, soils, and plants/tillage/management. A variety of user interfaces and databases make the model very easy to apply and use, particularly within the United States. The USDA Agricultural Research Service (ARS) has developed a stand-alone Windows WEPP system, as well as internet web-based hillslope and GIS watershed interfaces.
    [Show full text]
  • WEPP Model Be Improved to Allow Access to Sub-Daily Time Scale Results So That It Can Be Better Integrated with Other Watershed Models
    A COUPLED UPLAND-EROSION AND INSTREAM HYDRODYNAMIC-SEDIMENT TRANSPORT MODEL FOR EVALUATING SEDIMENT TRANSPORT IN FORESTED WATERSHEDS W. J. Conroy, R. H. Hotchkiss, W. J. Elliot ABSTRACT. This article describes a prototype modeling system for assessing forest management-related erosion at its source and predicting sediment transport from hillslopes to stream channels and through channel networks to a watershed outlet. We demonstrate that it is possible to develop a land management tool capable of accurately assessing the primary impacts of spatiotemporally varied forest management practices on sediment yield and delivery at hillslope to watershed scales in a single simulation. The modeling system consists of four components: (1) the TOpographic ParameteriZation (TOPAZ) model for discretizing hillslope and channel elements, (2) the Water Erosion Prediction Project (WEPP) model for evaluating hillslope-scale surface erosion processes, (3) the National Center for Computational Hydrodynamics and Engineering’s one-dimensional (CCHE1D) hydrodynamic-sediment transport model, and (4) an interface program to manage relational databases and data transfer between modules. The coupled models were calibrated and validated with observed flow and sediment load data from the North Fork Caspar Creek Experimental Watershed in coastal northern California. The coupled models’ predictions of peak flow rate and total flow volume were not significantly different from observed values. Predicted sediment concentrations were significantly different from observed values, but within typical ranges for sediment transport equations. We recommend that the WEPP model be improved to allow access to sub-daily time scale results so that it can be better integrated with other watershed models. Keywords. Erosion modeling, Hydrodynamic modeling, Watershed models, TMDLs, CCHE1D, WEPP.
    [Show full text]
  • The Water Erosion Prediction Project (WEPP) Model
    WEPP Model Background, Status, and Current Projects Dennis C. Flanagan Research Agricultural Engineer USDA-Agricultural Research Service Adjunct Professor Purdue Univ., Dept. of Agric. & Biol. Eng. National Soil Erosion Research Laboratory West Lafayette, Indiana, USA “The NSERL – to provide the knowledge and technology needed by land users to conserve soil for future generations.” Building dedicated 1/15/1982 Presentation Outline Erosion Prediction History WEPP Model Background Model Status – 2015 Current Projects Summary Scales of interest 0.01 to 1 ha – Hillslope scale Hillslope profiles in 1 to 1000 ha – Field, farm scale agricultural fields, forested areas, rangeland parcels, Small watersheds in landfills, mines, highways, agricultural fields, on farms, construction sites, etc. in forested catchments, construction sites, etc. Important Processes at these Scales Precipitation (and weather in general) – rainfall occurrence, volume, storm duration, intensity Surface hydrology – infiltration, pondage, ET, runoff Subsurface hydrology – percolation, seepage, lateral flow Hillslope erosion processes – detachment by rainfall, shallow flow transport, rill detachment by flow shear stress, sediment transport, sediment deposition. Channel erosion processes – detachment by flow shear stress, sediment transport, downcutting to a nonerodible layer, sediment deposition. Hillslope region from a small watershed Erosion Prediction History Early tools developed in the 1940’s-1970’s were all empirically-based. Universal Soil Loss Equation (USLE) and revisions Beginning in late 1970’s, efforts began to focus on process-based modeling. ANSWERS and CREAMS models were first distributed parameter hillslope/watershed models with some physical processes represented. They still used USLE for sediment generation. In 1985, the Water Erosion Prediction Project (WEPP) was initiated by USDA, at a meeting in Lafayette, Indiana.
    [Show full text]
  • Lake Tahoe West Science Symposium Day 1: Tuesday May 19, 9:00 Am – 2:00 Pm Day 2: Friday May 29, 9:00 Am – 2:30 Pm Zoom Features
    Lake Tahoe West Science Symposium Day 1: Tuesday May 19, 9:00 am – 2:00 pm Day 2: Friday May 29, 9:00 am – 2:30 pm Zoom Features • Participants are in listen-only mode • Click on the Q&A icon to submit questions • Use the Chat feature if you need technical assistance – send messages to All Panelists • Let us know who is online: please use the Chat feature to introduce yourself! • We recommend joining through phone + computer if your audio or internet is poor Symposium Goals and Audience • Primary Goal: Present and discuss findings from the LTW modeling effort and how they inform future resilience of the Lake Tahoe basin landscape. • Additionally, highlight how modeling results informed the LTW Landscape Restoration Strategy and may inform future environmental analysis • Diverse Audience Symposium Format • Each presentation will be followed by Q&A • Participants submit questions using the Zoom Q&A feature • Moderator will select questions for presenters and panelists • Final panel will discuss overall take-homes Morning agenda Lake Tahoe West TIME AGENDA ITEM PRESENTER 9:00 am Welcome, Zoom Overview, Agenda Review, Introductions Sarah Di Vittorio, Science Symposium National Forest Foundation 9:10 am Introduction to Today’s Workshop Pat Manley, PSW Orientation to today’s talks and associated science Jonathan Long, PSW products 9:20 am Effects of treatment in aspen-conifer stands on fire Chad Hoffman and Justin behavior and stand structure Ziegler, Colorado State 15-minute presentation followed by 5-minute Q&A University 9:40 am Effects of
    [Show full text]
  • Assessment of Soil Loss Using WEPP Model and Geographical Information System
    Journal of Spatial Hydrology Volume 11 Number 1 Article 2 2011 Assessment of Soil Loss Using WEPP Model and Geographical Information System Follow this and additional works at: https://scholarsarchive.byu.edu/josh BYU ScholarsArchive Citation (2011) "Assessment of Soil Loss Using WEPP Model and Geographical Information System," Journal of Spatial Hydrology: Vol. 11 : No. 1 , Article 2. Available at: https://scholarsarchive.byu.edu/josh/vol11/iss1/2 This Article is brought to you for free and open access by the Journals at BYU ScholarsArchive. It has been accepted for inclusion in Journal of Spatial Hydrology by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Journal of Spatial Hydrology Vol.11, No.1 Spring 2011 Assessment of Soil Loss Using WEPP Model and Geographical Information System A. Landi1, A.R. Barzegar1,*, J. Sayadi1 and A. Khademalrasoul1 Abstract Severe soil erosion has generally been regarded as a major cause of land degradation in arid and semi arid regions. A quantitative assessment of soil loss intensity is still scanty for developing appropriate soil erosion control measures in these regions. This article used the combined Water Erosion Prediction Project (WEPP) and Geographic Information System (GIS) models to estimate the average soil loss in the Halahijan watershed in Khuzestan Province, one of the priority areas for soil erosion control in Iran. Also, the sediment yield estimated by the WEPP was compared with that estimated by Modified Pacific Southwest Interagency Committee (MPSIAC) model. The MPSIAC model is used to estimate erosion yield and erosion intensity using nine factors consisting of, geological characteristics, soil, climate, runoff, topography, vegetation cover, land use and present soil erosion.
    [Show full text]
  • BASINS and WEPP Climate Assessment Tools (CAT): Case Study Guide to Potential Applications
    EPA/600/R-11/123a November, 2011 BASINS and WEPP Climate Assessment Tools (CAT): Case Study Guide to Potential Applications NOTICE THIS DOCUMENT IS A DRAFT. This document is distributed solely for the purpose of pre- dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use Global Change Research Program National Center for Environmental Assessment Office of Research and Development U.S. Environmental Protection Agency Washington, DC 20460 Draft – Do not cite or quote DISCLAIMER This document is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Draft – Do not cite or quote 2 FOREWORD Draft – Do not cite or quote 3 AUTHORS AND REVIEWERS The National Center for Environmental Assessment (NCEA), Office of Research and Development, was responsible for preparing this external review draft report. Preparation of an earlier draft report was conducted by AQUA TERRA Consultants, under EPA Contract EP-C-06-029. AUTHORS AQUA TERRA Consultants, Decatur, GA Paul Hummel Paul Duda Tong Zhai Elizabeth Wolfram U.S. Environmental Protection Agency, National Center for Environmental Assessment, Global Change Research Program, Washington, DC Thomas Johnson Meredith Warren REVIEWERS We are very grateful for the many excellent comments and suggestions about improving this report provided by EPA reviewers Steve Kramer, Philip Morefield, Julie Reichert, and Christopher Weaver.
    [Show full text]
  • Chapter 14. SURFACE IMPOUNDMENT ELEMENT MODEL DESCRIPTION
    14.1 Chapter 14. SURFACE IMPOUNDMENT ELEMENT MODEL DESCRIPTION M.R. Lindley, B.J. Barfield and B.N. Wilson 14.1 Introduction User requirements dictate that the WEPP Surface Impoundment Element (WEPPSIE) must simulate several types of impoundments: farm ponds, terraces, culverts, filter fences, and check dams (Foster and Lane, 1987). In order to determine the impact of sediment-laden runoff, the user needs to know: 1. Peak outflow rate and outflow volume. 2. Peak effluent sediment concentration and total sediment yield. 3. Time to fill an impoundment with sediment. To meet these requirements, the WEPPSIE code includes five sections: a front-end interface, daily input, hydraulic simulation, sedimentation simulation, and daily output. A flow chart illustrating how the WEPPSIE code is integrated into the overall WEPP model is shown in Fig. 14.1.1. Start WEPP Main Program Initialization Define watershed (Location, size, shape, slope, land use, supporting practices, channels, etc.) WEPPSIE Front End Interface Compute coefficients for stage discharge functions Compute coefficients for stage-area function Compute coefficients for stage-length function Set particle size subclasses Initialize variables WEPP Main Program Daily Simulation Run climate generator Run hillslope routines Run channel routines WEPPSIE Daily Simulation Read Inputs Perform hydraulic routing Determine deposition and sedimentation Write to output files Figure 14.1.1. Flow chart for WEPPSIE. July 1995 14.2 The front-end interface is run only once at the beginning of a WEPP simulation. Within the front- end interface, the coefficients of continuous stage-discharge relationships are determined from information entered by the user, describing each outflow structure present in a given impoundment.
    [Show full text]