Toxicological Profile for Otto Fuel Ii and Its Components

Total Page:16

File Type:pdf, Size:1020Kb

Toxicological Profile for Otto Fuel Ii and Its Components TOXICOLOGICAL PROFILE FOR OTTO FUEL II AND ITS COMPONENTS U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry June 1995 OTTO FUEL II AND ITS COMPONENTS ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. OTTO FUEL II AND ITS COMPONENTS iii UPDATE STATEMENT Toxicological profiles are revised and republished as necessary, but no less than once every three years. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology/Toxicology Information Branch 1600 Clifton Road NE, E-29 Atlanta, Georgia 30333 OTTO FUEL II AND ITS COMPONENTS vii CONTRIBUTORS CHEMICAL MANAGER(S)/AUTHOR(S): Henry Abadin, M.S.P.H. ATSDR, Division of Toxicology, Atlanta, GA Fernando Llados, Ph.D. Research Triangle Institute, Research Triangle Park, NC THE PROFILE HAS UNDERGONE THE FOLLOWING ATSDR INTERNAL REVIEWS: 1. Green Border Review. Green Bonier review assures consistency with ATSDR policy. 2. Health Effects Review. The Health Effects Review Committee examines the health effects chapter of each profile for consistency and accuracy in interpreting health effects and classifying end points. 3. Minimal Risk Level Review. The Minimal Risk Level Workgroup considers issues relevant to substance-specific minimal risk levels (MRLs), reviews the health effects database of each profile, and makes recommendations for derivation of MRLs. 4. Quality Assurance Review. The Quality Assurance Branch assures that consistency across profiles is maintained, identifies any significant problems in format or content, and establishes that Guidance has been followed. OTTO FUEL II AND ITS COMPONENTS ix PEER REVIEW A peer review panel was assembled for Otto Fuel II and its components. The panel consisted of the following members: 1 . Steven Godin, Ph.D., DABT, Research Scientist, Drug Metabolism, CEPHALON, Inc., West Chester, Pennsylvania; 2 . Dr. Arthur Gregory, Private Consultant, Techto Enterprises, Sterling, Virginia; and 3 . Dr. Richard Stewart, Private Consultant, Racine, Wisconsin. These experts collectively have knowledge of Otto Fuel II and its components’ physical and chemical properties, toxicokinetics, key health end points, mechanisms of action, human and animal exposure, and quantification of risk to humans. All reviewers were selected in conformity with the conditions for peer review specified in Section 104(i)( 13) of the Comprehensive Environmental Response, Compensation, and Liability Act, as amended. Scientists from the Agency for Toxic Substances and Disease Registry (ATSDR) have reviewed the peer reviewers’ comments and determined which comments will be included in the profile. A listing of the peer reviewers’ comments not incorporated in the profile, with a brief explanation of the rationale for their exclusion, exists as part of the administrative record for this compound. A list of databases reviewed and a list of unpublished documents cited are also included in the administrative record. The citation of the peer review panel should not be understood to imply its approval of the profile’s final content. The responsibility for the content of this profile lies with the ATSDR. OTTO FUEL II AND ITS COMPONENTS 1 1. PUBLIC HEALTH STATEMENT This statement was prepared to give you information about Otto Fuel II and its components, and to emphasize the human health effects that may result from exposure to them. The Environmental Protection Agency (EPA) has identified 1,397 hazardous waste sites as the most serious in the nation. These sites make up the National Priorities List (NPL) and are the sites targeted for long-term federal clean-up activities. Otto Fuel II has been found at two of the sites on the NPL. However, the number of NPL sites evaluated for Otto Fuel II and its components is not known. As EPA evaluates more sites, the number of sites at which Otto Fuel II and its components are found may increase. This information is important for you to know because Otto Fuel II and its components may cause harmful health effects and because these sites are potential or actual sources of human exposure to Otto Fuel II and its components. When a chemical is released from a large area, such as an industrial plant, or from a container, such as a drum or bottle, it enters the environment as a chemical emission. This emission, which is also called a release, does not always lead to exposure. You can be exposed to a chemical only when you come into contact with the chemical. You may be exposed to it in the environment by breathing, eating or drinking substances containing the chemical, or from skin contact with it. If you are exposed to a hazardous chemical such as Otto Fuel II and its components, several factors will determine whether harmful health effects will occur, and what the type and severity of those health effects will be. These factors include the dose (how much), the duration (how long), the route or pathway by which you are exposed (breathing, eating, drinking, or skin contact), the other chemicals to which you are exposed, and your individual characteristics such as age, sex, nutritional status, family traits, life-style, and state of health. OTTO FUEL II AND ITS COMPONENTS 2 1. PUBLIC HEALTH STATEMENT 1.1 WHAT ARE OTTO FUEL II AND ITS COMPONENTS? Otto Fuel II is a distinct-smelling, reddish-orange, oily liquid that the U.S. Navy uses as a fuel for torpedo and other weapons systems. It is a mixture of three synthetic substances. It contains mostly propylene glycol dinitrate, but it also contains dibutyl sebacate and 2-nitrodiphenylamine. Propylene glycol dinitrate is the explosive part of Otto Fuel II. It is a colorless liquid with an unpleasant odor. Other names for propylene glycol dinitrate are PGDN, 1,Zpropylene glycol dinitrate, and 1,2-propanediol dinitrate. Dibutyl sebacate is a clear liquid. It is most often used for making plastics, many of which are used for packaging food. It is also used to enhance flavor in foods such as ice cream, candy, baked goods, and nonalcoholic drinks. Some shaving creams also contain dibutyl sebacate. Other names for dibutyl sebacate are decanedioic acid, dibutyl ester; sebacic acid, dibutyl ester; and dibutyl decanedioate. 2-Nitrodiphenylamine is a solid. Otto Fuel II contains 2-nitrodiphenylamine to control the explosion of propylene glycol dinitrate. It is also used as a solvent dye. Other names for 2-nitrodiphenylamine are 2-nitrobenzenamine, 2-nitro-N-phenyl; 2-nitro-N-phenylaniline; and Sudan Yellow 1339. See Chapters 3 and 4 for more information. 1.2 WHAT HAPPENS TO OTTO FUEL II AND ITS COMPONENTS WHEN THEY ENTER THE ENVIRONMENT? Otto Fuel II enters the environment mainly in waste water from Navy facilities that produce it or are involved in torpedo rework operations. Otto Fuel II may also be spilled by accident or be disposed of improperly and contaminate soil. We do not have much information on what happens to Otto Fuel II and its components when they enter the environment. We do know OTTO FUEL II AND ITS COMPONENTS 3 1. PUBLIC HEALTH STATEMENT that Otto Fuel II enters the environment as a mixture of three separate components. A large portion of the propylene glycol dinitrate will evaporate very rapidly from the water or the surface of wet soil, but a small portion of it will be broken down by light to other chemicals. Propylene glycol dinitrate that enters the air is probably also broken down by light. Some studies suggest that propylene glycol dinitrate in water or soil is broken down by microorganisms that are normally present, but not all studies agree about this point. It is unlikely that 2-nitrodiphenylamine will evaporate from water or soil into the air. 2-Nitrodiphenylamine will also probably not stay dissolved in water because it does not dissolve easily in water and because it most likely sticks to particles in the water or soil. 2-Nitrodiphenylamine that enters the water is broken down by light. A portion of 2-nitrodiphenylamine in the water or soil also is broken down by microorganisms. We do not know which of the two processes (light- or microorganism-assisted) is more important in breaking down this chemical in the environment. Many microorganisms in water and soil have the capability to break down dibutyl sebacate. We do not have any information on other ways that dibutyl sebacate might be broken down in water or soil. There is no evidence that dibutyl sebacate evaporates into the air from soil or water. You will find more information about the fate and movement of Otto Fuel II and its components in the environment in Chapter 5. 1.3 HOW MIGHT I BE EXPOSED TO OTTO FUEL II AND ITS COMPONENTS? Humans are most likely to be exposed to Otto Fuel II or its components in areas where Otto Fuel II is used as a torpedo fuel or where it is made. The most likely ways these people will be exposed to Otto Fuel II are by breathing contaminated air and by touching the fuel during handling. One of the chemicals that makes up Otto Fuel II, propylene glycol dinitrate, was measured at levels of less than 1 part per million (ppm) parts of air in a facility where Otto Fuel II was used. Another chemical found in Otto Fuel II, 2-nitrodiphenylamine, was measured at levels of 1-14 ppm in waste water released from a plant where torpedo fuel was being manufactured. This chemical was also measured at levels of 0.5-12.2 ppm in the sediment of the river where the waste water was dumped. Almost nothing is known about levels of Otto Fuel II or its components at hazardous waste sites or at other places.
Recommended publications
  • Response to Inhaled Nitric Oxide, but Neither Sodium Nitroprusside Nor Sildenafil, Predicts Survival in Patients With
    Jachec et al., J Clin Exp Cardiolog 2015, 6:6 Clinical & Experimental Cardiology http://dx.doi.org/10.4172/2155-9880.1000376 Research Article Open Access Response to Inhaled Nitric Oxide, But neither Sodium Nitroprusside nor Sildenafil, Predicts Survival in Patients with Dilated Cardiomyopathy Complicated with Pulmonary Hypertension Wojciech Jacheć1*, Celina Wojciechowska2, Andrzej Tomasik2, Damian Kawecki2, Ewa Nowalany-Kozielska2 and Jan Wodniecki2 1II Katedra i Oddział Kliniczny Kardiologii w Zabrzu Śląskiego Uniwersytetu Medycznego w Katowicach, ul. Skłodowskiej 10, 41-800 Zabrze, Polska 2Department of Cardiology in Zabrze, Medical University of Silesia in Katowice, Poland *Corresponding author: Wojciech Jacheć, II Katedra i Oddział Kliniczny Kardiologii w Zabrzu Śląskiego Uniwersytetu Medycznego w Katowicach, ul. Skłodowskiej 10, 41-800 Zabrze, Polska, Tel: +48 32 373 23 72; Fax: +48 32 271 10 10; E-mail: [email protected] Received date: May 26, 2015, Accepted date: Jun 25, 2015, Published date: Jun 29, 2015 Copyright: ©2015 Jacheć W. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Introduction: Pulmonary hypertension in patients with dilated cardiomyopathy is associated with higher mortality. Objectives: The aim of the study was to assess the predictive value of the vasodilator response to three different drugs, sodium nitroprusside,
    [Show full text]
  • Acute Effect of Sodium Nitroprusside on Microvascular Dysfunction In
    Clinical Studies Acute Effect of Sodium Nitroprusside on Microvascular Dysfunction in Patients Who Underwent Percutaneous Coronary Intervention for Acute ST-segment Elevation Myocardial Infarction Kotaro Morimoto,1, 2 MD, Shigenori Ito,2 MD, Kosuke Nakasuka,2 MD, Satoru Sekimoto,2 MD, Kazuyuki Miyata,2 MD, Masahiko Inomata,2 MD, Takayuki Yoshida,2 MD, Nozomu Tamai,2 MD, Tomoaki Saeki,2 MD, Shin Suzuki,2 MD, Yoshimasa Murakami,2 MD, Koichi Sato,2 MD, Akihiro Morino,3 CE, and Yoshiyuki Shimizu,3 CE Summary Even in the era of thrombus aspiration and distal protection for ST-segment elevation acute myocardial infarction (STEMI), microvascular dysfunction does exist and improvement of microvascular dysfunction can improve the progno- sis and/or left ventricular dysfunction. We evaluated the acute effects of nitroprusside (NTP) on coronary microvascular injury that occurred after primary percutaneous coronary intervention (PCI) for STEMI in 18 patients. The final Throm- bolysis in Myocardial Infarction trial (TIMI) flow grade after PCI was 3 in 17 patients and 2 in 1 patient. The index of microcirculatory resistance (IMR) was improved significantly from 76 ± 42 to 45 ± 37 (P = 0.0006) by intracoronary NTP administration. IMR improved to the normal range (IMR < 30) in 9 patients (50%). Higher TIMI flow grade and lower IMR at baseline were observed more frequently in patients whose IMR recovered to normal range after NTP ad- ministration. NTP improved the microcirculatory dysfunction at the acute phase in patients who underwent PCI for STEMI and
    [Show full text]
  • Soluble Guanylate Cyclase B1-Subunit Expression Is Increased in Mononuclear Cells from Patients with Erectile Dysfunction
    International Journal of Impotence Research (2006) 18, 432–437 & 2006 Nature Publishing Group All rights reserved 0955-9930/06 $30.00 www.nature.com/ijir ORIGINAL ARTICLE Soluble guanylate cyclase b1-subunit expression is increased in mononuclear cells from patients with erectile dysfunction PJ Mateos-Ca´ceres1, J Garcia-Cardoso2, L Lapuente1, JJ Zamorano-Leo´n1, D Sacrista´n1, TP de Prada1, J Calahorra2, C Macaya1, R Vela-Navarrete2 and AJ Lo´pez-Farre´1 1Cardiovascular Research Unit, Cardiovascular Institute, Hospital Clı´nico San Carlos, Madrid, Spain and 2Urology Department, Fundacio´n Jime´nez Diaz, Madrid, Spain The aim was to determine in circulating mononuclear cells from patients with erectile dysfunction (ED), the level of expression of endothelial nitric oxide synthase (eNOS), soluble guanylate cyclase (sGC) b1-subunit and phosphodiesterase type-V (PDE-V). Peripheral mononuclear cells from nine patients with ED of vascular origin and nine patients with ED of neurological origin were obtained. Fourteen age-matched volunteers with normal erectile function were used as control. Reduction in eNOS protein was observed in the mononuclear cells from patients with ED of vascular origin but not in those from neurological origin. Although sGC b1-subunit expression was increased in mononuclear cells from patients with ED, the sGC activity was reduced. However, only the patients with ED of vascular origin showed an increased expression of PDE-V. This work shows for the first time that, independently of the aetiology of ED, the expression of sGC b1-subunit was increased in circulating mononuclear cells; however, the expression of both eNOS and PDE-V was only modified in the circulating mononuclear cells from patients with ED of vascular origin.
    [Show full text]
  • 1. PUBLIC HEALTH STATEMENT This Statement Was Prepared to Give
    OTTO FUEL II AND ITS COMPONENTS 1 1. PUBLIC HEALTH STATEMENT This statement was prepared to give you information about Otto Fuel II and its components, and to emphasize the human health effects that may result from exposure to them. The Environmental Protection Agency (EPA) has identified 1,397 hazardous waste sites as the most serious in the nation. These sites make up the National Priorities List (NPL) and are the sites targeted for long-term federal clean-up activities. Otto Fuel II has been found at two of the sites on the NPL. However, the number of NPL sites evaluated for Otto Fuel II and its components is not known. As EPA evaluates more sites, the number of sites at which Otto Fuel II and its components are found may increase. This information is important for you to know because Otto Fuel II and its components may cause harmful health effects and because these sites are potential or actual sources of human exposure to Otto Fuel II and its components. When a chemical is released from a large area, such as an industrial plant, or from a container, such as a drum or bottle, it enters the environment as a chemical emission. This emission, which is also called a release, does not always lead to exposure. You can be exposed to a chemical only when you come into contact with the chemical. You may be exposed to it in the environment by breathing, eating or drinking substances containing the chemical, or from skin contact with it. If you are exposed to a hazardous chemical such as Otto Fuel II and its components, several factors will determine whether harmful health effects will occur, and what the type and severity of those health effects will be.
    [Show full text]
  • Nitric Oxide Activates Guanylate Cyclase and Increases Guanosine 3':5'
    Proc. Natl. Acad. Sci. USA Vol. 74, No. 8, pp. 3203-3207, August 1977 Biochemistry Nitric oxide activates guanylate cyclase and increases guanosine 3':5'-cyclic monophosphate levels in various tissue preparations (nitro compounds/adenosine 3':5'-cyclic monophosphate/sodium nitroprusside/sodium azide/nitrogen oxides) WILLIAM P. ARNOLD, CHANDRA K. MITTAL, SHOJI KATSUKI, AND FERID MURAD Division of Clinical Pharmacology, Departments of Medicine, Pharmacology, and Anesthesiology, University of Virginia, Charlottesville, Virginia 22903 Communicated by Alfred Gilman, May 16, 1977 ABSTRACT Nitric oxide gas (NO) increased guanylate cy- tigation of this activation. NO activated all crude and partially clase [GTP pyrophosphate-yase (cyclizing), EC 4.6.1.21 activity purified guanylate cyclase preparations examined. It also in- in soluble and particulate preparations from various tissues. The effect was dose-dependent and was observed with all tissue creased cyclic GMP but not adenosine 3':5'-cyclic monophos- preparations examined. The extent of activation was variable phate (cyclic AMP) levels in incubations of minces from various among different tissue preparations and was greatest (19- to rat tissues. 33-fold) with supernatant fractions of homogenates from liver, lung, tracheal smooth muscle, heart, kidney, cerebral cortex, and MATERIALS AND METHODS cerebellum. Smaller effects (5- to 14-fold) were observed with supernatant fractions from skeletal muscle, spleen, intestinal Male Sprague-Dawley rats weighing 150-250 g were decapi- muscle, adrenal, and epididymal fat. Activation was also ob- tated. Tissues were rapidly removed, placed in cold 0.-25 M served with partially purified preparations of guanylate cyclase. sucrose/10 mM Tris-HCl buffer (pH 7.6), and homogenized Activation of rat liver supernatant preparations was augmented in nine volumes of this solution by using a glass homogenizer slightly with reducing agents, decreased with some oxidizing and Teflon pestle at 2-4°.
    [Show full text]
  • WHO Model List (Revised April 2003) Explanatory Notes
    13th edition (April 2003) Essential Medicines WHO Model List (revised April 2003) Explanatory Notes The core list presents a list of minimum medicine needs for a basic health care system, listing the most efficacious, safe and cost-effective medicines for priority conditions. Priority conditions are selected on the basis of current and estimated future public health relevance, and potential for safe and cost-effective treatment. The complementary list presents essential medicines for priority diseases, for which specialized diagnostic or monitoring facilities, and/or specialist medical care, and/or specialist training are needed. In case of doubt medicines may also be listed as complementary on the basis of consistent higher costs or less attractive cost-effectiveness in a variety of settings. When the strength of a drug is specified in terms of a selected salt or ester, this is mentioned in brackets; when it refers to the active moiety, the name of the salt or ester in brackets is preceded by the word "as". The square box symbol (? ) is primarily intended to indicate similar clinical performance within a pharmacological class. The listed medicine should be the example of the class for which there is the best evidence for effectiveness and safety. In some cases, this may be the first medicine that is licensed for marketing; in other instances, subsequently licensed compounds may be safer or more effective. Where there is no difference in terms of efficacy and safety data, the listed medicine should be the one that is generally available at the lowest price, based on international drug price information sources.
    [Show full text]
  • Ceftazidime 2015
    CefTAZidime 2015 Alert The Antimicrobial Stewardship Team recommends this drug is listed under the following category: Restricted. Indication Treatment of meningitis and sepsis caused by susceptible gram-negative organisms (especially Pseudomonas aeruginosa) and susceptible gram-positive organisms. Action Bactericidal agent which inhibits cell wall synthesis in susceptible bacteria. Drug Type Cephalosporin antibiotic. Trade Name Ceftazidime Alphapharm, Ceftazidime Aspen, Ceftazidime Sandoz, Fortum, Hospira Ceftazidime. Presentation Ceftazidime 1 g vial Ceftazidime 2 g vial Dosage / Interval 50 mg/kg /dose. Dosing interval as per table below Method Interval Corrected Gestational Age/Postmenstrual Age Postnatal Age < 30+0 weeks 0─28 days 12 hourly < 30+0 weeks 29+ days 8 hourly 30+0─36+6 weeks 0─14 days 12 hourly 30+0─36+6 weeks 15+ days 8 hourly 37+0─44+6 weeks 0─7 days 12 hourly 37+0─44+6 weeks 8+ days 8 hourly ≥ 45 weeks 0+ 8 hourly Route IV IM Maximum Daily Dose 150mg/kg/day Preparation/Dilution IV injection Add 8.9 mL of water for injection to the 1 g powder for reconstitution to make a 100 mg/mL solution. IM injection Add 3 mL water for injection to the 1 g powder for reconstitution to make a 260 mg/mL solution. Administration IV injection: Give over at least 3 to 5 minutes. IV infusion: Over 15─30 minutes via syringe driver. IM injection: Not recommended. If IM administration is necessary, ceftazidime may be reconstituted with lignocaine 1%. NOTE: Vials are carbonated, shake well after reconstitution and wait 1─2 minutes for the solution to clear before withdrawing the appropriate dose.
    [Show full text]
  • Acetyl Tributyl Citrate | C20H34O8 - Pubchem
    12/31/2020 Acetyl tributyl citrate | C20H34O8 - PubChem COVID-19 is an emerging, rapidly evolving situation. Get the latest public health information from CDC: https://www.coronavirus.gov. Get the latest research from NIH: https://www.nih.gov/coronavirus. COMPOUND SUMMARY Acetyl tributyl citrate PubChem CID 6505 Structure 2D Find Similar Structures Chemical Safety Laboratory Chemical Safety Summary (LCSS) Datasheet Molecular Formula C20H34O8 ACETYL TRIBUTYL CITRATE 77-90-7 tributyl 2-acetoxypropane-1,2,3-tricarboxylate Synonyms Tributyl O-acetylcitrate Acetyltributyl citrate More... Molecular Weight 402.5 g/mol Modify Create Dates 2020-12-26 2005-03-26 https://pubchem.ncbi.nlm.nih.gov/compound/6505 1/46 12/31/2020 Acetyl tributyl citrate | C20H34O8 - PubChem 1 Structures 1.1 2D Structure Chemical Structure Depiction PubChem 1.2 3D Status Conformer generation is disallowed since too flexible PubChem https://pubchem.ncbi.nlm.nih.gov/compound/6505 2/46 12/31/2020 Acetyl tributyl citrate | C20H34O8 - PubChem 2 Names and Identifiers 2.1 Computed Descriptors 2.1.1 IUPAC Name tributyl 2-acetyloxypropane-1,2,3-tricarboxylate Computed by LexiChem 2.6.6 (PubChem release 2019.06.18) PubChem 2.1.2 InChI InChI=1S/C20H34O8/c1-5-8-11-25-17(22)14-20(28-16(4)21,19(24)27-13-10-7-3)15-18(23)26-12-9-6-2/h5-15H2,1-4H3 Computed by InChI 1.0.5 (PubChem release 2019.06.18) PubChem 2.1.3 InChI Key QZCLKYGREBVARF-UHFFFAOYSA-N Computed by InChI 1.0.5 (PubChem release 2019.06.18) PubChem 2.1.4 Canonical SMILES CCCCOC(=O)CC(CC(=O)OCCCC)(C(=O)OCCCC)OC(=O)C Computed
    [Show full text]
  • PINK BOOK 3 Sebacic Acid/Dicarboxylic Acids CIR EXPERT PANEL MEETING AUGUST 30-31, 2010
    PINK BOOK 3 Sebacic Acid/Dicarboxylic Acids CIR EXPERT PANEL MEETING AUGUST 30-31, 2010 Memorandum To: CIR Expert Panel Members and Liaisons From: Monice M. Fiume MMF Senior Scientific Analyst/Writer Bart A. Heldreth, Ph.D. BAH Chemist Date: July 30, 2010 Subject: Draft Report on Dicarboxylic Acids (previously called Diisopropyl Sebacate) The draft report on dicarboxylic acids was last reviewed in December 2009, under the title Diisopropyl Sebacate. At that time, the report was tabled for reorganization. Also at that time, it was determined that oxalic acid would not be part of the safety assessment. The entire report has been reorganized and rewritten. It will be obvious that the Chemistry section is now prepared in a way that allows you to view the dicarboxylic acids in order of increasing chain length. Also included are charts demonstrating the relationship between molecular weight and the log octanol – water partitioning coefficient. Additionally, the report, from the General Biology section on, is now divided into two sections, as was suggested by the Panel in December. The first section addresses dicarboxylic acids and their salts, while the second part addresses esters of dicarboxylic acids. These two subsets of ingredients have different functions in cosmetics, and this will allow the Panel to view the data on each subset separately. In addition to the reorganization, the report has change greatly in the extent of data included. A complete new search of the literature has been performed, and a substantial amount of new data has been added. A great deal of the information included in this report has come from summary documents, such as HPV robust summaries, that cite unpublished sources.
    [Show full text]
  • C:\Documents and Settings\Millerj\My Documents\Miller\Forms\Product
    COPPERHEAD CHEMICAL COMPANY 120 RIVER ROAD C TAMAQUA, PA 18252 TEL: (570) 386-6123 C FAX: (570) 386-6158 Product Information Bulletin for: OTTO FUEL II OTTO Fuel II is a reddish-orange, oily liquid that is used as a fuel for torpedoes and other weapons systems. It is a mixture which contains propylene glycol dinitrate, dibutyl sebacate, and 2-nitrodiphenylamine. Physical Properties Physical State Oily liquid Color Reddish-orange Melting Point -27.7°C Boiling Point Decomposes at 121°C Density 1.232 g/mL (25°C) Solubility in Water Insoluble Vapor Pressure @ 20°C 0.0877 mm Hg Autoignition 121°C Flashpoint 130°C Shipping Information Designation DOT Classification Approximate Composition Standard Packages Substances, Explosive, n.o.s. 75/23/2 5 gallon inner packaging or 30 gallon inner RXL 646 Class 1.3C, UN0477 PGDN / DBS / 2NDPA packaging with 1A2 outer packaging If you are looking for a responsive, reliable, and cost effective manufacturer, contact us at via telephone at (570) 386-6123 or via email at [email protected]. For additional information and handing instructions, refer to the material safety data sheet. Rev May 2011 FOR YOUR PROTECTION: The information and recommendations in this publication are, to the best of our knowledge, reliable. Suggestions made responsibility of Copperhead for claims arising out of breach of warranty, negligence, strict liability, or otherwise is limited concerning uses or applications are only the opinion of Copperhead Chemical Company Inc. and users should make their to the purchase price of the material. Copperhead shall, in no event, be liable for special, incidental, or consequential own tests to determine the suitability of these products for their own particular purposes.
    [Show full text]
  • LOUS 2013 Hoering Phthalates
    Survey of selected phthalates Part of the LOUS-review Version of Public Hearing October 2013 1 Survey of selected phthalates 1 Title: Authors and contributors : Survey of selected phthalates Sonja Hagen Mikkelsen Jakob Maag Jesper Kjølholt Carsten Lassen Christian Nyander Jeppesen Anna Juliane Clausen COWI A/S, Denmark Published by: The Danish Environmental Protection Agency Strandgade 29 1401 Copenhagen K Denmark www.mst.dk/english Year: 2013 ISBN no. [xxxxxx] Disclaimer: When the occasion arises, the Danish Environmental Protection Agency will publish reports and papers concerning research and development projects within the environmental sector, financed by study grants provided by the Danish Environmental Protection Agency. It should be noted that such publications do not necessarily reflect the position or opinion of the Danish Environmental Protection Agency. However, publication does indicate that, in the opinion of the Danish Environmental Protection Agency, the content represents an important contribution to the debate surrounding Danish environmental policy. While the information provided in this report is believed to be accurate, the Danish Environmental Protection Agency disclaims any responsibility for possible inaccuracies or omissions and consequences that may flow from them. Neither the Danish Environmental Protection Agency nor COWI or any individual involved in the preparation of this publication shall be liable for any injury, loss, damage or prejudice of any kind that may be caused by persons who have acted based on
    [Show full text]
  • 3.1 Sediments and Water Quality
    3.1 Sediments and Water Quality NORTHWEST TRAINING AND TESTING FINAL EIS/OEIS OCTOBER 2015 TABLE OF CONTENTS 3.1 SEDIMENTS AND WATER QUALITY ............................................................................................... 3.1-1 3.1.1 INTRODUCTION AND METHODS ......................................................................................................... 3.1-1 3.1.1.1 Introduction ............................................................................................................................. 3.1-1 3.1.1.2 Methods ................................................................................................................................... 3.1-9 3.1.2 AFFECTED ENVIRONMENT ............................................................................................................... 3.1-11 3.1.2.1 Sediments in the Study Area .................................................................................................. 3.1-11 3.1.2.2 Marine Debris, Military Expended Materials, and Marine Sediments .................................. 3.1-19 3.1.2.3 Climate Change and Sediments ............................................................................................. 3.1-20 3.1.2.4 Water Quality in the Study Area ............................................................................................ 3.1-21 3.1.2.5 Marine Debris and Marine Water Quality ............................................................................. 3.1-27 3.1.2.6 Climate Change and Marine Water Quality ..........................................................................
    [Show full text]