PROJECT REPORT of BIODEGRADABLE PLASTIC
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Polymer Extrusion Cooling for the 21 Century
Polymer Extrusion Cooling for the 21st Century A white paper by: Wesley J. Sipe, Mechanical Systems Manager, GAI Consultants On Behalf Of: NOVATEC, Inc. Baltimore, MD USA Considering all of the plastic produced and With these keys, required cooling times can used every day, it is surprising that very little be determined through the use of advanced is documented on the cooling process for computer models. continuous profiles of extruded shapes. The bulk of the cooling process is The challenge to this methodology is in accomplished through the application of obtaining accurate thermal conductivity and “rules of thumb” learned and used by heat capacity of polymer compounds for use cooling tank manufacturers, and through in predicting thermal response. Since there trial and error methods of individual are literally thousands of compounds that processors. In spite of the desirability of are used in polymer extrusion, this paper processors to minimize space and elapsed concentrates on only six commonly used: time required to effectively cool profiles, the Polyethylene (PE) cooling process remains a “black art” as no Polypropylene (PP) tools exist that will accurately predict the Polycarbonate (PC) time response of cooling plastics with Polystyrene (PS) liquids. This is remarkable in itself because the cooling puzzle can be solved through Poly Vinyl Chloride (PVC) the simplification of the transient heat Acrylonitrile Butadiene Styrene transfer equation for the materials involved. (ABS). Even more remarkable is that through the All of the analyses described in this paper use of powerful personal computers, the assume isotropic forms with temperature process can be modeled and a solution dependent properties. -
Extrusion Foaming of Bioplastics for Lightweight Structure in Food Packaging
EXTRUSION FOAMING OF BIOPLASTICS FOR LIGHTWEIGHT STRUCTURE IN FOOD PACKAGING A thesis submitted for the degree of Doctor of Philosophy by Sitthi Duangphet School of Engineering and Design Brunel University December 2012 i Abstract This thesis reports the systematic approaches to overcome the key drawbacks of the pure PHBV, namely low crystallisation rate, tensile strength, ductility, melt viscosity, thermal stability and high materials cost. The physical, mechanical, thermal, and rheological properties of the pure PHBV were studied systematically first to lay a solid foundation for formulation development. The influence of blending with other biopolymers, inclusion of filler, and chain extender additives in terms of mechanical properties, rheology, thermal decomposition and crystallization kinetics were then followed. Creating lightweight structures by foaming is considered to be one of the effective ways to reduce material consumption, hence the reduction of density and morphology of PHBV-based foams using extrusion foaming technique were studied comprehensively in terms of extrusion conditions (temperature profiles, screw speed and material feeding rate) and the blowing agent content. The material cost reduction was achieved by adding low-cost filler (e.g. CaCO3) and reduction of density by foaming. The thermal instability was enhanced by incorporation of chain extender (e.g. Joncryl) and blending with a high thermal stability biopolymer (e.g. PBAT). The polymer blend also improved the ductility. Adding nucleation agent enhanced the crystallization rate to reduce stickiness of extruded sheet. The final formulation (PHBV/PBAT/CaCO3 composite) was successfully extruded into high quality sheet and thermoformed to produce prototype trays in an industrial scale trial. The effect of the extrusion conditions (temperature profiles, screw speed and material feeding rate) and the blowing agent content are correlated to the density reduction of the foams. -
Plastic Extrusion
The Magazine for ENERGY EFFICIENCY in Compressed Air, Pneumatics, Blower and Vacuum Systems April 2013 Plastic Extrusion 10 Plastic Extruder Saves $116,000 in Energy Costs 16 MGM Industries Reduces Chilled Water Requirements with Dry Vacuum Pumps 22 Air Audit of a Powder Coating System 28 Filtration Improves Pneumatic Performance REMOTE AIR COMPRESSOR SENSING 36 Atlas Dry Air Ad 8.375 x 10.875:Layout 2 3/5/13 1:33 PM Page 1 Clear the way for quality air 140 years of history, and the present is yours Optimizing air supply quality is a way of life at Atlas Copco. Our dryers, aftercoolers, filters and oil-mist eliminators help ensure that your air is always clean, dry and ready for the summer heat. And it doesn’t stop with quality air because the right air system components also save energy. Atlas Copco knows you have challenging targets to reduce energy costs. We know because we face those targets, too! With 14 production facilities in the United States and dozens more globally, we never stop looking for ways to help our manufacturing teams, and yours, save energy and increase productivity. In 2013 Atlas Copco celebrates our 140th birthday. To celebrate this key milestone we are offering a series of gifts: starting with simple air studies for free. We’ll log your plant’s actual air usage, show you ways to save money and compute the payback on any new investments. Sign up now and you’ll receive a limited edition anniversary baseball cap. Register at www.atlascopco.us/mboxusa or call 866-688-9611. -
Simulation of Extrusion of High Density Polyethylene Tubes
MATEC Web of Conferences 112, 04004 (2017) DOI: 10.1051/matecconf/20171120400 4 IManE&E 2017 Simulation of extrusion of high density polyethylene tubes Antonios Koutelieris1, Kyriaki Kioupi1, Onoufrios Haralampous1, Konstantinos Kitsakis1,2,*, Nikolaos Vaxevanidis3, and John Kechagias1 1Technological Educational Institute of Thessaly, Mechanical Engineering Department, 41110 Larissa, Greece 2University of Western Macedonia, Mechanical Engineering Department, 50100 Kozani, Greece 3School of Pedagogical and Technological Education, Mechanical Engineering Educators Department, 14121 N. Heraklion Attikis, Greece Abstract. The production of extruded polyethylene films rods, tubes and pipes is a typical industrial process that has been extensively investigated over many years. In this study the extrusion of High Density Polyethylene (HDPE) tubes was simulated by using the 3D finite element simulation software StarCCM+®. The simulation was applied in order to examine the influence of design and operational parameters on the characteristics and the soundness of the tube and for optimizing the overall quality of the product. Two alternative die configurations were studied; one with a four inputs head and the other with an eight inputs head. From the results obtained it is concluded that extrusion with the eight inputs head die design results in better overall pipe quality; this design was implemented successfully in an industrial production line. 1 Introduction High-density polyethylene (HDPE) tubes are typically used in many applications such as to convey potable water, waste water, chemicals, etc. HDPE has high strength, toughness, durability and resistance to chemicals. In order to manufacture solid wall pipes the following steps should be followed: heat, melt, mix, and convey the raw material into a mold to achieve the final form. -
2012 Plastic Film and Bag Recycling Collection: National Reach Study
Plastic Film and Bag Recycling Collection: National Reach Study April 2012 Moore Recycling Associates Inc. PO Box 1327 Sonoma, CA 95476 T 707.935.3390 F 707.935-1998 www.moorerecycling.com Plastic Film and Bag Recycling Collection: National Reach Study Purpose The purpose of this project is to document the percentage of the U.S. population that has access to plastic retail bags and plastic film (wrap and sack) recycling. This data will provide a better understanding of the progress toward the goal of increased national collection of all plastic. The data will also provide information that will help in efforts to focus resources and programs to increase bag and film recycling in areas clearly underrepresented. Acknowledgement Moore Recycling would like to thank the Plastics Division of the American Chemistry Council (ACC) for funding this project. Methodology The first step was to locate film and bag recycling sites for the following types of programs: retail drop-off, curbside collection, municipal drop-off, non-profit drop-off and commercial drop-off programs. Once Moore Recycling gathered all publicly available data, we followed up with phone research to determine the accuracy of our initial findings. Plastic Collection Material Types Definition Plastic Bags Grocery bags, t-shirt bags, retail bags (hard plastic and string handles removed) Plastic Film Newspaper bags, produce bags, furniture wrap, electronic wrap, food Storage bags (clean and dry), cereal box liners (if it tears like paper do not include), Tyvek (no glue, labels, other material), -
Processing of Bioplastics – a Guideline – Photo: Fraunhofer IAP Fraunhofer Photo: Photo: Fraunhofer IAP Fraunhofer Photo: IAP Fraunhofer Photo: Ifbb Photo
Photo: Fraunhofer IAP Photo: Fraunhofer IAP Processing ofBioplastics Processing Photo: Fraunhofer IAP – aguideline Photo: IfBB Preface For more than 20 years, the Federal Ministry of Food and Agriculture (BMEL) has been promoting, via its project co-ordination agency FNR (Fachagentur Nachwachsende Rohstoffe e. V.), the research and development of energy and products based on renewable raw materials. Bioplastics have always been a major priority in this context. Their promotion has, however, never been closer to real practice than with the collaborative project “Kompetenznetzwerk zur Verarbeitung von Biokunststoffen” (Competence network for the processing of bioplastics), which has been supported financially by the BMEL since the beginning of 2013. With the establishment of four regional centres of excellence for the material-related processing of bio-based polymers, research funding has left the laboratories and placed itself at the side of the user. The goal of the project is, on the one hand, to accelerate the transfer of know-how from research and development to the processors of bioplastics and, on the other hand, to address and resolve the suggestions, questions and problems of, in particular, the many medium-sized companies who genuinely want to pursue innovative approaches. In the past three years, the four alliance partners have moved much closer to this goal. An important result of this work is the brochure which you are holding in your hands today. The brochure provides an overview of the data compiled over the last three years concerning the processing of bioplastics. The brochure primarily represents a showcase which will encourage you to look deeper, as the specific technical data concerning the materials and the processing can be found on the Internet in the corresponding database. -
Impacts of a Ban Or Restrictions in Sale of Items in the EU's Single Use Plastics Directive
SOCIAL RESEARCH NUMBER: 32/2020 PUBLICATION DATE: 19/05/2020 Preliminary Research to Assess the Impacts of a Ban or Restrictions in Sale in Wales of Items in the EU's Single Use Plastics Directive Mae’r ddogfen yma hefyd ar gael yn Gymraeg. This document is also available in Welsh. © Crown Copyright Digital ISBN 978-1-80038-424-8 Title: Preliminary Research to Assess the Impacts of a Ban or Restrictions in Sale in Wales of Items in the EU's Single Use Plastics Directive Author(s): George Cole, Resource Futures Carla Worth, Resource Futures Katie Powell, Resource Futures Sam Reeve, Resource Futures Susie Stevenson, Miller Research (UK) Nick Morgan, Miller Research (UK) Howard Walker, Bridge Economics Full Research Report: Cole, G; Worth, C; Powell, K; Reeve, S; Stevenson, S; Morgan, N; Walker, H (2019). Preliminary Research to Assess the Impacts of a Ban or Restrictions in Sale in Wales of Items in the EU's Single Use Plastics Directive. Cardiff: Welsh Government, GSR report number 32/2020 Available at: https://gov.wales/impacts-ban-or-restrictions-sale-items-eus-single- use-plastics-directive Views expressed in this report are those of the researcher and not necessarily those of the Welsh Government For further information please contact: Isabella Malet-Lambert Knowledge and Analytical Services Welsh Government Cathays Park Cardiff CF10 3NQ 03000 628250 [email protected] Table of contents List of tables .......................................................................................................................... -
Expanded Polystyrene Food Service Take-Out Container Study
Appendix 1.1. California Cities that have Pursued a Polystyrene Ban Please note that not all of these bans are in place: many have been challenged or overturned. Alameda (2008) Expanded polystyrene ban, requirement that all takeout food packaging be compostable or recyclable Albany (2008) Expanded polystyrene ban, requirement that all takeout food packaging be compostable or recyclable Aliso Viejo (2005) Government facility expanded polystyrene ban Ordinance #2004-060 Berkeley (adopted 1988) Expanded polystyrene ban, requirement that 50% of takeout food packaging be recyclable or compostable Title 11.58 and 11.60 of Municipal Code Calabasas (2008) Expanded polystyrene ban, requirement that all takeout food packaging be recyclable or compostable Capitola (2009) Expanded polystyrene ban, requirement that all disposable takeout food packaging be compostable Carmel (1989) Expanded polystyrene ban, requirement that 50% of takeout food packaging be recyclable, compostable or reusable Del Ray Oaks (effective July 1, 2010) Expanded polystyrene ban, requirement that all takeout food packaging More information available on be recyclable or compostable page 35 of Agenda Packet Emeryville (2008) Expanded polystyrene ban, requirement that all takeout food packaging be recyclable or compostable Fairfax (1993) Expanded polystyrene ban for all restaurants and food retail vendors Title 8.16 of Municipal Code Fremont (effective January 1, 2011) Expanded polystyrene ban for food vendors, requirement that all takeout food packaging be recyclable or compostable Appendix 1.1 | i Hayward (effective July 2011) Expanded polystyrene ban for restaurant vendors, requirement that takeout food packaging be recyclable or compostable Hercules (2008) Expanded polystyrene ban Sec. 5-3109, Title 5, Chapter 3 of Municipal Code Huntington Beach (2005) Government facility expanded polystyrene ban Laguna Beach (2008) Polystyrene ban, requirement that all plastic takeout food packaging be recyclable Title 7. -
Sack the Bag!
BAG RECYCLING INFO Phone: 617-654-6580 Boston, MA02108 1 Winter Street What Happens to Plastic Bags? Most plastic bags and plastic films SACK are recycled into outdoor furniture, decking and railing materials for homes and THE businesses. Approximately 2,250 plastic bags go into one typical 16-foot decking board! BAG! What About Paper Bags? Paper shopping bags are recycled and used in the manufacturing of new grocery bags and cardboard boxes. MASSACHUSETTS RESOURCES CONSUMERS: Find a Plastic Bag Recycling USE FEWER Drop-Off Location DISPOSABLE www.plasticbagrecycling.org SHOPPING BAGS! Massachusetts Department of DISTRIBUTED BY Environmental Protection www.mass.gov/dep/recycle Massachusetts Food Association MASSACHUSETTS FOOD ASSOCIATION www.mafood.com DISPOSABLE SHOPPING BAGS: PROBLEMS & SOLUTIONS In MarchWHAT’S 2009, the BEING Department DONE of HOW YOU CAN HELP REFUSE! In March 2009, the Department of First things first: Do you even need a Environmental Protection (MassDEP) bag? Tell the clerk that you'll carry out and Massachusetts Food Association your handful of items. Be sure to keep (MFA) set a mutual goal of reducing by your receipt handy! one-third the number of paper and plastic shopping bags distributed by MFA’s REDUCE! 500+ member grocery stores and Use disposable shopping bags only supermarkets by the year 2013. when necessary: to keep household soaps and cleaners separate from To achieve this goal, MFA members have foodstuffs, for example. committed to: REUSE! • Promoting the use of reusable bags Bring your own canvas, cloth or Disposable shopping bags contribute • Providing in store plastic bag durable plastic bags. Many grocery to a variety of economic, recycling bins for customers stores offer 5¢ or 10¢ off your order • Offering reusable shopping bags for when you “bring back the sack.” environmental, health and safety problems. -
Reducing the Distribution of Single-Use Shopping Bags: a Resource Guide for BC Retailers
Reducing the Distribution of Single-use Shopping Bags: A Resource Guide for BC Retailers Reducing the Distribution of Single-use Shopping Bags: A Resource Guide for BC Retailers Table of Contents Why Reduce the Distribution of Single-use Shopping Bags? 1 Reducing the Distribution of Single-use Shopping Bags 2 Introduce a Fee 2 Offer a Resuable Bag 2 Provide In-store Recycling 3 Develop a Communications Strategy 3 Develop a Training Program 3 Develop a Green Program 3 Creating a Single-use Bag Reduction Program 4 Staff Training 5 Sourcing a Good Reusable Bag 6 Promoting Proper Bag Recycling 7 Appendix A - Single-use Bag Reduction Plans 8 Single-use Bag Reduction Plan 8 Single-use Bag Elimination Plan 9 Appendix B – Templates for Signage and Till Stickers 10 Appendix C – Sample Scripts for Training Staff on Customer Interaction 11-12 Appendix D - Endnotes 13 Reducing the Distribution of Single-use Shopping Bags: A Resource Guide for BC Retailers i Why Reduce the Distribution of Single-use Shopping Bags? Canadians use somewhere between nine billion and 15 billion plastic bags every year, enough to circle the Earth more than 55 times if 1 tied together . Over two million plastic shopping bags are disposed of in the garbage every week in the City of Vancouver, with 63% of 2 them having been re-used for garbage and pet waste . The manufacture and transportation of plastic bags consume significant amounts of non-renewable resources and they are not bio-degradable. We do not know for sure how long plastic bags will take to break down. -
Food Packaging Technology
FOOD PACKAGING TECHNOLOGY Edited by RICHARD COLES Consultant in Food Packaging, London DEREK MCDOWELL Head of Supply and Packaging Division Loughry College, Northern Ireland and MARK J. KIRWAN Consultant in Packaging Technology London Blackwell Publishing © 2003 by Blackwell Publishing Ltd Trademark Notice: Product or corporate names may be trademarks or registered Editorial Offices: trademarks, and are used only for identification 9600 Garsington Road, Oxford OX4 2DQ and explanation, without intent to infringe. Tel: +44 (0) 1865 776868 108 Cowley Road, Oxford OX4 1JF, UK First published 2003 Tel: +44 (0) 1865 791100 Blackwell Munksgaard, 1 Rosenørns Allè, Library of Congress Cataloging in P.O. Box 227, DK-1502 Copenhagen V, Publication Data Denmark A catalog record for this title is available Tel: +45 77 33 33 33 from the Library of Congress Blackwell Publishing Asia Pty Ltd, 550 Swanston Street, Carlton South, British Library Cataloguing in Victoria 3053, Australia Publication Data Tel: +61 (0)3 9347 0300 A catalogue record for this title is available Blackwell Publishing, 10 rue Casimir from the British Library Delavigne, 75006 Paris, France ISBN 1–84127–221–3 Tel: +33 1 53 10 33 10 Originated as Sheffield Academic Press Published in the USA and Canada (only) by Set in 10.5/12pt Times CRC Press LLC by Integra Software Services Pvt Ltd, 2000 Corporate Blvd., N.W. Pondicherry, India Boca Raton, FL 33431, USA Printed and bound in Great Britain, Orders from the USA and Canada (only) to using acid-free paper by CRC Press LLC MPG Books Ltd, Bodmin, Cornwall USA and Canada only: For further information on ISBN 0–8493–9788–X Blackwell Publishing, visit our website: The right of the Author to be identified as the www.blackwellpublishing.com Author of this Work has been asserted in accordance with the Copyright, Designs and Patents Act 1988. -
User Manual Breastmilk Storage Bags and Organizer
Protect breastmilk from both spillage and spoilage with our innovative breastmilk bags. Thanks to their flat design, they cool quickly, which reduces bacterial growth, and thaw evenly, which helps preserve nutrients. They are durable and leak-proof, featuring a double zipper and extra-thick plastic. The organizer enables hygienic and space-saving storage and helps you track pumping order and maintain a “first in, first out” policy. More from nanobébé Breastmilk 1 •Even thawing2 helps preserve nutrients3 Electric Cleaning Brush Feeding Bottle Storage Bags •Fast cooling reduces bacterial growth Ultrasonic vibrations for Patented design preserves and organizer •Bags thaw 2 times faster than standard thorough, easy cleaning essential breastmilk nutrients breastmilk storage bags Microwave Steam Sterilizer Compact Drying Rack Quickly eliminates 99.9% Fast, hygienic drying •Tear-proof, extra-thick plastic of bacteria Stores flat •Double zipper seals securely Flexy Pacifier •Scale accurately measures milk quantity Extra-soft nipple lightweight & ergonomic No leaks, extra-thick. •Label for name, volume, date, and time Organizer protects bags •Freezer organizer helps you maintain a in freezer “first in, first out” policy Made in China for Visit nanobebe.com to learn more. 1 1 2 2 3 3 Nutrits Ltd. Customer service: 1.800.403.0498 •BPA free P.O. Box 7239 User manual Tel Aviv, Israel 6107121 STORING : THAWING : FOR YOUR CHILD’S SAFETY Freshly pumped breastmilk storage guidelines (not for preterm babies) •Open individual bag by tearing away the safety seal •Remove bottommost bag from organizer, as shown in CAUTION ! and pulling the zipper seal apart. diagram 3. •Pour breastmilk from feeding bottle into the bag.