Cranial Biomechanics and Feeding Performance of Sharks Daniel Robert Huber University of South Florida

Total Page:16

File Type:pdf, Size:1020Kb

Cranial Biomechanics and Feeding Performance of Sharks Daniel Robert Huber University of South Florida University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 2006 Cranial biomechanics and feeding performance of sharks Daniel Robert Huber University of South Florida Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the American Studies Commons Scholar Commons Citation Huber, Daniel Robert, "Cranial biomechanics and feeding performance of sharks" (2006). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/2566 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Cranial Biomechanics and Feeding Performance of Sharks by Daniel Robert Huber A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Biology College of Arts and Sciences University of South Florida Major Professor: Philip J. Motta, Ph.D. Robert E. Hueter, Ph.D. Thomas J. Koob, Ph.D. Florence I. Thomas, Ph.D. James R. Garey, Ph.D. Date of Approval: June 2, 2006 Keywords: elasmobranch, functional morphology, aquatic prey capture, bite force, jaw suspension © Copyright 2006 , Daniel Robert Huber Dedication I dedicate this work to my parents, Mark, Geri, Joann, and Steve, for fostering a kid’s bizarre fascination with dangerous animals. Their foresight and unwavering support over the past twenty-seven years has been the foundation of the perseverance and integrity that has led to the completion of my doctorate. I am forever indebted to them, and hope that I have made them proud. Acknowledgements I would first like to acknowledge the contributions of my mentor and friend Dr. Philip J. Motta. His wisdom in all things shark and otherwise has been a guiding force in my life over the past six years and I cannot imagine having found a more insightful and cheerful person to call “boss”. Secondly, I would like to acknowledge Christina Weggelaar, whose confidence in and patience with me have been crucial to my sanity and success. Many others have contributed to the work herein, including Drs. Thomas Eason, James Garey, Robert Hueter, Thomas Koob, Adam Summers, and Florence Thomas. Years full of thought provoking conversation and brainstorming on this and other projects were provided by Angela Collins, Eric Cross, Mason Dean, Mark Driscoll, Dayv Lowry, Kyle Mara, Mike Matott, Samantha Mulvany, Justin Schaefer, Lisa Whitenack, and Alpa Wintzer. Experimental assistance was provided by Dan Conklin, Coral Gehrke, Wayne Giordano, Terry Hall, Eric Hovland, Kristen Mathews, Sean Moore, Jack Morris, Wes Pratt, Chris Schreiber, and John Tyminski. The use of facilities and specimens was provided by California State University at Long Beach, Florida Museum of Natural History, Florida Aquarium, Hokkaido University, Mote Marine Laboratory Center for Shark Research, Occidental College, SeaWorld Entertainment Parks, Texas A&M University, University of Miami, University of South Florida, and University of Washington Friday Harbor Laboratories. Funding for this project was provided by the American Elasmobranch Society, American Society of Ichthyologists and Herpetologists, Mote Marine Laboratory, PADI Project A.W.A.R.E. Foundation, Porter Family Foundation, Society for Integrative and Comparative Biology, University of South Florida Department of Biology, and University of South Florida Foundation. Table of Contents List of Tables ......................................................................................................................iv List of Figures................................................................................................................... vii Abstract.............................................................................................................................. xi Chapter One. Prey Capture Biomechanics and Feeding Performance of the Horn Shark Heterodontus francisci .........................................................................................1 Introduction..............................................................................................................3 Materials and Methods.............................................................................................6 Experimental Animals .................................................................................6 Morphological Analysis...............................................................................6 Theoretical Force Generation....................................................................10 In Situ Bite Performance Measurements....................................................12 Restrained and Stimulated Bite Force Measurements ...............................14 Statistical Analysis.....................................................................................15 Results....................................................................................................................17 Biomechanical Modeling...........................................................................17 Performance Measurements.......................................................................22 Methodological Comparison......................................................................27 Bite Forces Among Vertebrates.................................................................28 Discussion..............................................................................................................30 Functional Morphology.............................................................................30 Methodological Comparison......................................................................37 Feeding Performance .................................................................................39 Feeding Ecology........................................................................................42 Conclusions............................................................................................................44 Chapter Two. Prey Capture Biomechanics and Feeding Performance of Juvenile Lemon Sharks Negaprion brevisostris..........................................................................46 Introduction............................................................................................................48 Materials and Methods...........................................................................................52 Experimental Animals ...............................................................................52 Cranial Morphology...................................................................................52 Theoretical Biomechanical Analysis.........................................................55 Bite Performance Measurements ...............................................................58 Statistical Analysis.....................................................................................60 i Results....................................................................................................................62 Cranial Biomechanics ................................................................................62 Mechanics of Jaw Protrusion.....................................................................67 Prey Capture Performance .........................................................................68 Methodological Comparison......................................................................73 Bite Forces Among Cartilaginous Fishes ..................................................73 Discussion..............................................................................................................71 Cranial Biomechanics ................................................................................74 Mechanics and Evolution of Jaw Suspension............................................77 Prey Capture Performance .........................................................................82 Methodological Comparison......................................................................85 Conclusions............................................................................................................86 Chapter Three. Mechanical Consequences of Functional Constraint in the Feeding Mechanism of the Whitespotted Bamboo Shark Chiloscyllium plagiosum..................88 Introduction............................................................................................................90 Materials and Methods...........................................................................................95 Experimental Animals ...............................................................................95 Morphological Analysis.............................................................................95 Theoretical Force Generation....................................................................98 Bite Force Measurement..........................................................................101 Statistical Analysis...................................................................................103 Results..................................................................................................................104 Biomechanical Modeling.........................................................................104 Methodological Comparison....................................................................110
Recommended publications
  • Sharks from the Middle-Late Devonian Aztec Siltstone, Southern Victoria Land, Antarctica
    Records of the Western Australian Museum 17: 287-308 (1995). Sharks from the Middle-Late Devonian Aztec Siltstone, southern Victoria Land, Antarctica John A. Longl and Gavin C. Young2 I Western Australian Museum, Francis Street, Perth, Western Australia 6000 2 Australian Geological Survey Organisation, p.a. Box 378, Canberra, A.C.T. 2601 Abstract Shark teeth representing three new taxa are described from the Middle-Late Devonian Aztec Siltstone of southern Victoria Land, Antarctica. Portalodus bradshawae gen. et sp. novo is represented by large diplodont teeth which have a base with a well-produced labial platform. It occurs in the middle to upper sections of the Aztec Siltstone. Aztecodus harmsenae gen. et sp. novo is represented by broad bicuspid teeth, wider than high, with numerous medial crenulations and twin nutritive foramina penetrating the rectangular base. It occurs in the middle sections of the Aztec Siltstone. The teeth of Anareodus statei gen. et sp. novo are characterised by having a main cusp which is more than twice as high as the second cusp, a small cusplet developed on the outer cutting edge of the main cusp, sometimes with few crenulations developed in the middle of the two cusps, and the base is strongly concave. Antarctilanma cf. prisca Young, 1982 is also recorded from the middle and upper sections of the Aztec Siltstone above the thelodont horizons and occurring with phyllolepids and Pambulaspis in the Cook Mountains section south of Mt Hughes. The chondrichthyan fauna from the Aztec Siltstone now contains at least 5 species, being the most diverse assemblage of Middle Devonian chondrichthyans (based on teeth) from one stratigraphic unit.
    [Show full text]
  • Building Trophic Specializations That Result in Substantial Niche
    Journal of Anatomy J. Anat. (2017) doi: 10.1111/joa.12742 Building trophic specializations that result in substantial niche partitioning within a young adaptive radiation Luz Patricia Hernandez,1 Dominique Adriaens,2 Christopher H. Martin,3 Peter C. Wainwright,4 Bert Masschaele5 and Manuel Dierick5 1Department of Biological Sciences, The George Washington University, Washington, DC, USA 2Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium 3Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA 4Department of Evolution & Ecology, University of California, Davis, Davis, CA, USA 5Department of Subatomic and Radiation Physics, Ghent University, Ghent, Belgium Abstract Dietary partitioning often accompanies the increased morphological diversity seen during adaptive radiations within aquatic systems. While such niche partitioning would be expected in older radiations, it is unclear how significant morphological divergence occurs within a shorter time period. Here we show how differential growth in key elements of the feeding mechanism can bring about pronounced functional differences among closely related species. An incredibly young adaptive radiation of three Cyprinodon species residing within hypersaline lakes in San Salvador Island, Bahamas, has recently been described. Characterized by distinct head shapes, gut content analyses revealed three discrete feeding modes in these species: basal detritivory as well as derived durophagy and lepidophagy (scale-feeding). We dissected, cleared and stained, and micro-CT scanned species to assess functionally relevant differences in craniofacial musculoskeletal elements. The widespread feeding mode previously described for cyprinodontiforms, in which the force of the bite may be secondary to the requisite dexterity needed to pick at food items, is modified within both the scale specialist and the durophagous species.
    [Show full text]
  • Reptiles As Principal Prey? Adaptations for Durophagy and Prey Selection by Jaguar (Panthera Onca) Everton B.P
    JOURNAL OF NATURAL HISTORY, 2016 http://dx.doi.org/10.1080/00222933.2016.1180717 Reptiles as principal prey? Adaptations for durophagy and prey selection by jaguar (Panthera onca) Everton B.P. Mirandaa,b, Jorge F.S. de Menezesc,d and Marcelo L. Rheingantzc aLaboratório de Herpetologia, Universidade Federal de Mato Grosso, Cuiabá, Brazil; bPrograma de Pós-graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, Brasil; cLaboratório de Ecologia e Conservação de Populações, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil; dMitrani Department of Desert Ecology, Ben Gurion University of the Negev, Beersheba, Israel ABSTRACT ARTICLE HISTORY We examined the evidence supporting the hypothesis that jaguars Received 16 February 2015 (Panthera onca) have morphological and behavioural adaptations Accepted 21 January 2016 ’ to facilitate reptile predation. Jaguars head and bite features show KEYWORDS adaptations to durophagy (consumption of hard-integumented Dangerous prey; prey) that are very unusual within the genus Panthera. These saurophagy; Tayassuidae; include: thick canines, well-developed head muscles and a fatal Xenarthra bite directed to braincase or nape. These characteristics have been previously considered an adaptation for the consumption of rep- tilian prey, whose thick integument poses a challenge to preda- tion. Although causation of any trait as result of natural selection is hard to demonstrate with ecological evidence, its consequences can be suggested and predictions made. Here, through a review of the literature on jaguar predatory habits, we tallied the evidence for saurophagy against environmental characteristics correlated with jaguar predation on reptiles. We offer a new explanation for the presence of those traits, based on the selection patterns, prey abundances and main predation habits over the geographic range of the jaguar.
    [Show full text]
  • Ontogeny of Jaw Mechanics and Stiffness in Mollusk‐Feeding
    Received: 18 December 2018 Revised: 15 March 2019 Accepted: 16 March 2019 DOI: 10.1002/jmor.20984 RESEARCH ARTICLE Killing them softly: Ontogeny of jaw mechanics and stiffness in mollusk-feeding freshwater stingrays Kelsi M. Rutledge1,2 | Adam P. Summers1 | Matthew A. Kolmann3,4,1 1Department of Biology, Friday Harbor Laboratories, University of Washington, Friday Abstract Harbor, Washington Durophagous predators consume hard-shelled prey such as bivalves, gastropods, and 2 Department of Ecology and Evolutionary large crustaceans, typically by crushing the mineralized exoskeleton. This is costly Biology, University of California, Los Angeles, California from the point of view of the bite forces involved, handling times, and the stresses 3Department of Biological Sciences, George inflicted on the predator's skeleton. It is not uncommon for durophagous taxa to dis- Washington University, Washington, D.C. play an ontogenetic shift from softer to harder prey items, implying that it is relatively 4Department of Ichthyology, Royal Ontario Museum, Toronto, Ontario difficult for smaller animals to consume shelled prey. Batoid fishes (rays, skates, sawfishes, and guitarfishes) have independently evolved durophagy multiple times, Correspondence Kelsi M. Rutledge, Department of Ecology and despite the challenges associated with crushing prey harder than their own cartilagi- Evolutionary Biology, University of California nous skeleton. Potamotrygon leopoldi is a durophagous freshwater ray endemic to the Los Angeles, Los Angeles, CA 90095. Email: [email protected]; Xingu River in Brazil, with a jaw morphology superficially similar to its distant [email protected] durophagous marine relatives, eagle rays (e.g., Aetomylaeus, Aetobatus). We used sec- Present address ond moment of area as a proxy for the ability to resist bending and analyzed the Kelsi M.
    [Show full text]
  • A Multifunction Trade-Off Has Contrasting Effects on the Evolution of Form and Function ∗ KATHERINE A
    Syst. Biol. 0():1–13, 2020 © The Author(s) 2020. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For permissions, please email: [email protected] DOI:10.1093/sysbio/syaa091 Downloaded from https://academic.oup.com/sysbio/advance-article/doi/10.1093/sysbio/syaa091/6040745 by University of California, Davis user on 08 January 2021 A Multifunction Trade-Off has Contrasting Effects on the Evolution of Form and Function ∗ KATHERINE A. CORN ,CHRISTOPHER M. MARTINEZ,EDWARD D. BURRESS, AND PETER C. WAINWRIGHT Department of Evolution & Ecology, University of California, Davis, 2320 Storer Hall, 1 Shields Ave, Davis, CA, 95616 USA ∗ Correspondence to be sent to: University of California, Davis, 2320 Storer Hall, 1 Shields Ave, Davis, CA 95618, USA; E-mail: [email protected] Received 27 August 2020; reviews returned 14 November 2020; accepted 19 November 2020 Associate Editor: Benoit Dayrat Abstract.—Trade-offs caused by the use of an anatomical apparatus for more than one function are thought to be an important constraint on evolution. However, whether multifunctionality suppresses diversification of biomechanical systems is challenged by recent literature showing that traits more closely tied to trade-offs evolve more rapidly. We contrast the evolutionary dynamics of feeding mechanics and morphology between fishes that exclusively capture prey with suction and multifunctional species that augment this mechanism with biting behaviors to remove attached benthic prey. Diversification of feeding kinematic traits was, on average, over 13.5 times faster in suction feeders, consistent with constraint on biters due to mechanical trade-offs between biting and suction performance.
    [Show full text]
  • Xenacanthus (Chondrichthyes: Xenacanthiformes) from North America
    Acta Geologica Polonica, Vol. 49 (J 999), No.3, pp. 215-266 406 IU S UNES 0 I Dentitions of Late Palaeozoic Orthacanthus species and new species of ?Xenacanthus (Chondrichthyes: Xenacanthiformes) from North America GARY D. JOHNSON Department of Earth Sciences and Physics, University of South Dakota; 414 East Clark Street, Vermillion, SD 57069-2390, USA. E-mail: [email protected] ABSTRACT: JOHNSON, G.D. 1999. Dentitions of Late Palaeozoic Orthacanthus species and new species of ?Xenacanthus (Chondrichthyes: Xenacanthiformes) from North America. Acta Geologica Polonica, 49 (3),215-266. Warszawa. Orthacanthus lateral teeth have paired, variably divergent, smooth, usually carinated labio-lingually compressed principal cusps separated by a central foramen; one or more intermediate cusps; and an api­ cal button on the base isolated from the cusps. Several thousand isolated teeth from Texas Artinskian bulk samples are used to define the heterodont dentitions of O. texensis and O. platypternus. The O. tex­ ensis tooth base has a labio-Iingual width greater than the anteromedial-posterolateral length, the basal tubercle is restricted to the thick labial margin, the principal cusps are serrated to varying degrees, and the posterior cusp is larger. The O. platypternus tooth base is longer than wide, its basal tubercle extends to the center, the labial margin is thin, serrations are absent on the principal cusps, the anterior cusp is larger, and a single intermediate cusp is present. More than two hundred isolated teeth from Nebraska (Gzhelian) and Pennsylvania (Asselian) provide a preliminary description of the heterodont dentition of O. compress us . The principal cusps are similar to O.
    [Show full text]
  • Variable Changes in Cranial Structures Underlie Transitions to Durophagy in Moray Eels
    http://www.jstor.org/stable/10.1086/675810 . Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press, The American Society of Naturalists, The University of Chicago are collaborating with JSTOR to digitize, preserve and extend access to The American Naturalist. http://www.jstor.org This content downloaded from 128.120.194.194 on Fri, 2 May 2014 08:16:53 AM All use subject to JSTOR Terms and Conditions vol. 183, no. 6 the american naturalist june 2014 E-Article Imperfect Morphological Convergence: Variable Changes in Cranial Structures Underlie Transitions to Durophagy in Moray Eels David C. Collar,1,*JoshuaS.Reece,2 Michael E. Alfaro,3 Peter C. Wainwright,1 and Rita S. Mehta4 1. Department of Evolution and Ecology, University of California, Davis, California 95616; 2. Department of Biology, Valdosta State University, Valdosta, Georgia 31698; 3. Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095; 4. Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95060 Submitted October 8, 2013; Accepted December 27, 2013; Electronically published April 24, 2014 Online enhancement: appendixes. Dryad data: http://dx.doi.org/10.5061/dryad.h9r37.
    [Show full text]
  • WILDLIFE JOURNAL SINGITA PAMUSHANA, ZIMBABWE for the Month of March, Two Thousand and Nineteen
    WILDLIFE JOURNAL SINGITA PAMUSHANA, ZIMBABWE For the month of March, Two Thousand and Nineteen Temperature Rainfall Recorded Sunrise & Sunset Average minimum: 21˚C (69,8˚F) For the month: 69 mm Sunrise: 06:00 Minimum recorded: 18,8˚C (65,8˚F) For the year to date: 238 mm Sunset: 17:55 Average maximum: 31,1˚C (87,9˚F) Maximum recorded: 36,6˚C (97,8˚F) We can report that the final phase of lodge renovation at Singita Pamushana is going well, and us field guides have been busying ourselves with all kinds of projects and taking our annual leave while there are no guests visiting. Fortunately, we weren’t really affected by the cyclone that hit Mozambique in March, however the Malilangwe Trust and our staff donated goods to those most affected. We have had some good rain and the landscape is looking lush. Here’s a Sightings Snapshot for March: Lions • There’s been a very interesting development in that the River Pride has taken over part of the Southern Pride’s territory. We are now seeing the River Pride in the southern area and it’ll be interesting to see how this plays out. • Great news is that the three lion cubs that seemed to have disappeared a while ago have reappeared, and are in good health. Leopards • We’ve heard a lot of leopard calling at night, so there is much activity even though we are not on drive, and in the last two days we have had three leopard sightings! Cheetah • Cheetahs were spotted on staff drives.
    [Show full text]
  • Cranial Kinesis in Lepidosaurs: Skulls in Motion
    Topics in Functional and Ecological Vertebrate Morphology, pp. 15-46. P. Aerts, K. D’Août, A. Herrel & R. Van Damme, Eds. © Shaker Publishing 2002, ISBN 90-423-0204-6 Cranial Kinesis in Lepidosaurs: Skulls in Motion Keith Metzger Department of Anatomical Sciences, Stony Brook University, USA. Abstract This chapter reviews various aspects of cranial kinesis, or the presence of moveable joints within the cranium, with a concentration on lepidosaurs. Previous studies tend to focus on morphological correlates of cranial kinesis, without taking into account experimental evidence supporting or refuting the presence of the various forms of cranial kinesis in these taxa. By reviewing experimental and anatomical evidence, the validity of putative functional hypotheses for cranial kinesis in lepidosaurs is addressed. These data are also considered with respect to phylogeny, as such an approach is potentially revealing regarding the development of various forms of cranial kinesis from an evolutionary perspective. While existing evidence does not allow for events leading to the origin of cranial kinesis in lepidosaurs to be clearly understood at the present time, the potential role of exaptation in its development for specific groups (i.e., cordylids, gekkonids, varanids) is considered here. Directions for further research include greater understanding of the distribution of cranial kinesis in lepidosaurs, investigation of intraspecific variation of this feature (with a focus on ontogenetic factors and prey properties as variables which may influence the presence of kinesis), and continued study of the relationship between experimentally proven observation of cranial kinesis and cranial morphology. Key words: cranial kinesis, lepidosaur skull, functional morphology. Introduction Cranial kinesis, or the presence of moveable joints within the cranium, has been a subject of considerable interest to researchers for more than a century (for references see Bock, 1960; Frazzetta, 1962; Smith, 1982).
    [Show full text]
  • (Crustacea) As Predators on Mollusca Through Geologic Time
    PALAIOS, 2010, v. 25, p. 167–182 Research Article DOI: 10.2110/palo.2009.p09-054r THE DECAPODA (CRUSTACEA) AS PREDATORS ON MOLLUSCA THROUGH GEOLOGIC TIME CARRIE E. SCHWEITZER1* and RODNEY M. FELDMANN 2 1Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. NW, North Canton, Ohio 44720, USA; 2Department of Geology, Kent State University, Kent, Ohio 44242, USA e-mail: [email protected] ABSTRACT decapods and lineages known to have modern congeners that are durophagous. The relationship between predator and prey is a persistent theme in There are five major means by which decapods crush shells or eat marine paleontology. Herein we focus on the decapod Crustacea, the shelled prey that, as they require specialization of the appendages (see shrimps, lobsters, and crabs, and their role as predators on the Mollusca Lau, 1987 on extant forms), might be recorded in the body fossil record. through geologic time. Five major means by which decapods crush shells There are also several types of feeding that may only chip the shells or or eat shelled prey might be recorded in the body-fossil record, as they simply pry them open, which are often not apparent in the fossil record. require specialization of the appendages. These include use of (1) All types of feeding on shelled organisms must affect evolution of the heterochelous first pereiopods, (2) molariform teeth on the fingers of shelled organism, based on recent studies that illustrate how predation the chelae, (3) a curved proximal tooth on the movable finger of the chela, takes precedence over other aspects of the environment in driving (4) calcified mandibles, and (5) flattened pereiopods (walking legs).
    [Show full text]
  • A Dental Microwear Texture Analysis of the Mio−Pliocene Hyaenids from Langebaanweg, South Africa
    A dental microwear texture analysis of the Mio−Pliocene hyaenids from Langebaanweg, South Africa DEANO D. STYNDER, PETER S. UNGAR, JESSICA R. SCOTT, and BLAINE W. SCHUBERT Stynder, D.D., Ungar, P.S., Scott, J.R., and Schubert, B.W. 2012. A dental microwear texture analysis of the Mio−Plio− cene hyaenids from Langebaanweg, South Africa. Acta Palaeontologica Polonica 57 (3): 485–496. Hyaenids reached their peak diversity during the Mio−Pliocene, when an array of carnivorous species emerged alongside dwindling civet−like and mongoose−like insectivorous/omnivorous taxa. Significantly, bone−cracking morphological ad− aptations were poorly developed in these newly−emerged species. This, their general canid−like morphology, and the ab− sence/rarity of canids in Eurasia and Africa at the time, has led researchers to hypothesise that these carnivorous Mio−Pliocene hyaenas were ecological vicars to modern canids. To shed further light on their diets and foraging strate− gies, we examine and compare the dental microwear textures of Hyaenictitherium namaquensis, Ikelohyaena abronia, Chasmaporthetes australis, and Hyaenictis hendeyi from the South African Mio−Pliocene site of Langebaanweg with those of the extant feliforms Crocuta crocuta, Acinonyx jubatus, and Panthera leo (caniforms are not included because homologous wear facets are not directly comparable between the suborders). Sample sizes for individual fossil species are small, which limits confidence in assessments of variation between the extinct taxa; however, these Mio−Pliocene hyaenas exhibit surface complexity and textural fill volume values that are considerably lower than those exhibited by the living hyaena, Crocuta crocuta. Dental microwear texture analysis thus supports interpretations of craniodental evidence suggesting low bone consumption in carnivorous Mio−Pliocene hyaenas.
    [Show full text]
  • Anatomical Network Analyses Reveal Oppositional Heterochronies in Avian Skull Evolution ✉ Olivia Plateau1 & Christian Foth 1 1234567890():,;
    ARTICLE https://doi.org/10.1038/s42003-020-0914-4 OPEN Birds have peramorphic skulls, too: anatomical network analyses reveal oppositional heterochronies in avian skull evolution ✉ Olivia Plateau1 & Christian Foth 1 1234567890():,; In contrast to the vast majority of reptiles, the skulls of adult crown birds are characterized by a high degree of integration due to bone fusion, e.g., an ontogenetic event generating a net reduction in the number of bones. To understand this process in an evolutionary context, we investigate postnatal ontogenetic changes in the skulls of crown bird and non-avian ther- opods using anatomical network analysis (AnNA). Due to the greater number of bones and bone contacts, early juvenile crown birds have less integrated skulls, resembling their non- avian theropod ancestors, including Archaeopteryx lithographica and Ichthyornis dispars. Phy- logenetic comparisons indicate that skull bone fusion and the resulting modular integration represent a peramorphosis (developmental exaggeration of the ancestral adult trait) that evolved late during avialan evolution, at the origin of crown-birds. Succeeding the general paedomorphic shape trend, the occurrence of an additional peramorphosis reflects the mosaic complexity of the avian skull evolution. ✉ 1 Department of Geosciences, University of Fribourg, Chemin du Musée 6, CH-1700 Fribourg, Switzerland. email: [email protected] COMMUNICATIONS BIOLOGY | (2020) 3:195 | https://doi.org/10.1038/s42003-020-0914-4 | www.nature.com/commsbio 1 ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0914-4 fi fi irds represent highly modi ed reptiles and are the only length (L), quality of identi ed modular partition (Qmax), par- surviving branch of theropod dinosaurs.
    [Show full text]