WILDLIFE JOURNAL SINGITA PAMUSHANA, ZIMBABWE for the Month of March, Two Thousand and Nineteen

Total Page:16

File Type:pdf, Size:1020Kb

WILDLIFE JOURNAL SINGITA PAMUSHANA, ZIMBABWE for the Month of March, Two Thousand and Nineteen WILDLIFE JOURNAL SINGITA PAMUSHANA, ZIMBABWE For the month of March, Two Thousand and Nineteen Temperature Rainfall Recorded Sunrise & Sunset Average minimum: 21˚C (69,8˚F) For the month: 69 mm Sunrise: 06:00 Minimum recorded: 18,8˚C (65,8˚F) For the year to date: 238 mm Sunset: 17:55 Average maximum: 31,1˚C (87,9˚F) Maximum recorded: 36,6˚C (97,8˚F) We can report that the final phase of lodge renovation at Singita Pamushana is going well, and us field guides have been busying ourselves with all kinds of projects and taking our annual leave while there are no guests visiting. Fortunately, we weren’t really affected by the cyclone that hit Mozambique in March, however the Malilangwe Trust and our staff donated goods to those most affected. We have had some good rain and the landscape is looking lush. Here’s a Sightings Snapshot for March: Lions • There’s been a very interesting development in that the River Pride has taken over part of the Southern Pride’s territory. We are now seeing the River Pride in the southern area and it’ll be interesting to see how this plays out. • Great news is that the three lion cubs that seemed to have disappeared a while ago have reappeared, and are in good health. Leopards • We’ve heard a lot of leopard calling at night, so there is much activity even though we are not on drive, and in the last two days we have had three leopard sightings! Cheetah • Cheetahs were spotted on staff drives. Hyenas • Every night, without fail, we’ve heard hyenas calling, and in the morning their tracks are all over the roads. They travel far and wide in search of food. Elephants • There has been a breeding herd feeding in the northern sector of the reserve. • This magnificent bull had right of way on our main Binya Road, while the old boy with the broken tusks fed peacefully on the plentiful grass. Photo by Mark Saunders Rhinos • Tracks tell us that there has been lots of white rhino movement, and on more than one occasion this month we’ve been lucky enough to see black rhinos from the main Binya Road. Wild dogs • A pack has been hunting along the northern boundary fence, and with the denning season coming up soon we hope they will choose to have their pups on the reserve. Buffalos • A large herd was drinking at the central Banyini Pan, in early March. Plains game • Plains game is as abundant as ever with zebra, impala, giraffe and wildebeest seen on every drive, and there has also been regular eland sightings on central Banyini open areas. Fishing • During time off many of us have been fishing and there is excellent bream and tiger fishing at the moment! Some exciting and informative Bush Stories follow, as well as a March Gallery of images. The other side of the fence By Brad Fouché Early one morning Jenny and I were out scouting in different vehicles to help the guests’ game drives locate key specific animals, like lions, leopards, cheetahs, black rhinos and wild dogs. At about 7 am we received a sighting update from Bravo 2, which is the main southern boundary gate that links us to Gonarezhou National Park, informing us that they had seen wild dogs frantically location calling and running backwards and forwards along the boundary area. A wild dog running along, looking for pack members. Plaintively calling using a far-reaching whooping sound. Jenny was first on the scene and managed to see two wild dogs calling and running around. Once I arrive the dogs had momentarily disappeared west. I decided to move east along the boundary fence to look for tracks and see what was going on, on that side. I discovered, on the Gonarezhou National Park side of the fence, a third wild dog and it became very apparent to us that this satellite group of dogs had split up and become separated. There were now four on our side of the fence and at least one outside in the park, and this was the reason for the frantic location calls! Further along this high fenceline, in an easterly direction, is a section of fence spanning about 8 km long that is only 1,2 m high. The reason for this is to allow free movement of elephants between our reserve and the park. It’s low enough for the elephants to simply step over it. It also allows movement of other animals such as kudu, eland and impala, to mention a few. These animals simply jump over the low fence. Back to the story… So, travelling up the fence we located tracks from the dogs earlier and came across a part in the fence where it had been compromised by animals such as warthogs that are known for digging open burrows under fences to keep from getting zapped by the electric strands. These hollows are used by other animals such as porcupines, lions, leopards, cheetahs, bushpigs and, of course, wild dogs. The dogs we were following had indeed entered through this open burrow. It was interesting because taking a closer look at the fence we discovered there had been movement of lions through the fence since we found long dark mane hairs caught on the bottom wires. After about half an hour of watching and following the dogs, they started moving along the fenceline in an easterly direction, with Jenny in close pursuit. I waited about 30 m past the hollow under the fence at the entry point. What was great about this is that Jenny kept a close enough distance from the dogs not to frighten them but just to keep a little pressure on them moving in the right direction towards the part of the fence they had entered by, while I secured the far side as a buffer. Eventually the dogs recognised their entry point and raced under the fence into the park where we heard them joyfully reacquainting with the rest of their pack. Wild dogs are nomadic and can traverse 50 km in a single day. As a result, their territories can range between 400 and 1 500 square kilometres which often extends beyond the boundaries of wildlife reserves. Photo by Brad Fouché A welcome surprise By Alex Kadziyanike It ended up being a remarkably fortuitous morning as we had started our drive early to look for black rhinos. I drove to all areas with the habitats that black rhinos prefer - areas with shrubs and trees and dense thickets, but with no joy. The Binya Road is a road that stretches from the northern to southern part of our reserve and is used to enter Gonarezhou National Park. The road can be busy with public vehicles accessing the park and we usually avoid it on game drives, but I needed to travel it for a short distance to access another area closer to the river. On the Binya Road I saw what appeared to be a large walking boulder and reminded myself that boulders don't walk! I could feel the excitement in my vehicle but it was also full of fear. It was a black rhino, and it was casually walking towards us as I stopped the vehicle at a distance and switched off the engine. I thought it was going to run away, but I was surprised by its nonchalant behaviour. Black rhinos have a reputation of being extremely aggressive, and readily charge at perceived threats, and will not hesitate to charge even when one is in the confines of a vehicle. It was a brilliant sighting and photo opportunity. When he got within a couple of metres of the vehicle he contemplated us for what seemed an eternity, and then curled his upper lip and gave a few puffing snorts. I knew it was time to go and as I started the engine he turned, with his head low, ears flattened and tail raised and cantered off into the thick bushes. By referencing his ear notches our Conservation team let us know he is a 13 year-old bull referred to as Tsonzo, and from his previously recorded movement he is normally seen near the Chiredzi River, which is where we were heading. Buffalo dynamics By Dharmesh Dhaya It is not uncommon to sit in Hwata blind and see dagga boys come to the pan and drink. Dagga boys are the old grumpy buffalo bulls who have left the ‘buzz’ of the breeding herd and often join bachelor herds of other old bulls. The name dagga boys refers to their habit of wallowing in the mud (dagga), mostly as a means of thermoregulation. These old guys are very confident in their grumpiness and often end up walking into the middle of the pan on a hot dry day. The same cannot be said for the breeding herds of buffalo, who are often rather skittish when it comes to drinking water. I am sure it is because of the stress of having young buffalos with them and the unwanted attention that these youngsters bring in the form of predators like lions, hyenas and even leopards. Breeding herds here normally vary in size from small herds of 50 to big herds of 400. But as the dry season progresses you get herds joining together to form huge herds of 600 or more. With such numbers in one group there is a definite need for some order, and a hierarchy is established not just among the males but also the females.
Recommended publications
  • Building Trophic Specializations That Result in Substantial Niche
    Journal of Anatomy J. Anat. (2017) doi: 10.1111/joa.12742 Building trophic specializations that result in substantial niche partitioning within a young adaptive radiation Luz Patricia Hernandez,1 Dominique Adriaens,2 Christopher H. Martin,3 Peter C. Wainwright,4 Bert Masschaele5 and Manuel Dierick5 1Department of Biological Sciences, The George Washington University, Washington, DC, USA 2Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium 3Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA 4Department of Evolution & Ecology, University of California, Davis, Davis, CA, USA 5Department of Subatomic and Radiation Physics, Ghent University, Ghent, Belgium Abstract Dietary partitioning often accompanies the increased morphological diversity seen during adaptive radiations within aquatic systems. While such niche partitioning would be expected in older radiations, it is unclear how significant morphological divergence occurs within a shorter time period. Here we show how differential growth in key elements of the feeding mechanism can bring about pronounced functional differences among closely related species. An incredibly young adaptive radiation of three Cyprinodon species residing within hypersaline lakes in San Salvador Island, Bahamas, has recently been described. Characterized by distinct head shapes, gut content analyses revealed three discrete feeding modes in these species: basal detritivory as well as derived durophagy and lepidophagy (scale-feeding). We dissected, cleared and stained, and micro-CT scanned species to assess functionally relevant differences in craniofacial musculoskeletal elements. The widespread feeding mode previously described for cyprinodontiforms, in which the force of the bite may be secondary to the requisite dexterity needed to pick at food items, is modified within both the scale specialist and the durophagous species.
    [Show full text]
  • Reptiles As Principal Prey? Adaptations for Durophagy and Prey Selection by Jaguar (Panthera Onca) Everton B.P
    JOURNAL OF NATURAL HISTORY, 2016 http://dx.doi.org/10.1080/00222933.2016.1180717 Reptiles as principal prey? Adaptations for durophagy and prey selection by jaguar (Panthera onca) Everton B.P. Mirandaa,b, Jorge F.S. de Menezesc,d and Marcelo L. Rheingantzc aLaboratório de Herpetologia, Universidade Federal de Mato Grosso, Cuiabá, Brazil; bPrograma de Pós-graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, Brasil; cLaboratório de Ecologia e Conservação de Populações, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil; dMitrani Department of Desert Ecology, Ben Gurion University of the Negev, Beersheba, Israel ABSTRACT ARTICLE HISTORY We examined the evidence supporting the hypothesis that jaguars Received 16 February 2015 (Panthera onca) have morphological and behavioural adaptations Accepted 21 January 2016 ’ to facilitate reptile predation. Jaguars head and bite features show KEYWORDS adaptations to durophagy (consumption of hard-integumented Dangerous prey; prey) that are very unusual within the genus Panthera. These saurophagy; Tayassuidae; include: thick canines, well-developed head muscles and a fatal Xenarthra bite directed to braincase or nape. These characteristics have been previously considered an adaptation for the consumption of rep- tilian prey, whose thick integument poses a challenge to preda- tion. Although causation of any trait as result of natural selection is hard to demonstrate with ecological evidence, its consequences can be suggested and predictions made. Here, through a review of the literature on jaguar predatory habits, we tallied the evidence for saurophagy against environmental characteristics correlated with jaguar predation on reptiles. We offer a new explanation for the presence of those traits, based on the selection patterns, prey abundances and main predation habits over the geographic range of the jaguar.
    [Show full text]
  • Component # 1 Mineral Deficiencies
    1 – WildlifeCampus Wildlife Management Course Module # 7 - Component # 1 Mineral Deficiencies Objective Obtain the knowledge about the mineral needs of wildlife and the methods to supply the animals with the necessary supplementary feeds and medicines. Expected Outcome Recognize mineral deficiencies in wildlife and to be able to supply the necessary supplements with the appropriate precautions. Mineral lick Mineral Deficiencies © Copyright This course material is the copyrighted intellectual property of WildlifeCampus. It may not be copied, distributed or reproduced in any format whatsoever without the express written permission of WildlifeCampus 2 – WildlifeCampus Wildlife Management Course Introduction The aim of supplementary feeding and mineral licks is to fill the nutrient shortages in natural grazing. The animal is thereby placed in a position to express its genetic potential (making it an attractive mate) in terms of maintenance of mass, condition, reproduction and mass of calf at weaning. If the animal's feeding status at a given time is known, a supplementary lick can be formulated, and the shortage of a specific mineral or minerals can then be identified. It is accepted that most game yield the same results as in the case of cattle, considering that both are ruminants. There are no commercially registered products that can be used for game. All products are registered for cattle, sheep and goats. Nutritional shortage in natural grazing There is either an over-abundance of low quality grass (sour veld) for grazers, or there is too little rough food of high quality (sweet veld) for browsers. The situation is further worsened by game being “tamed” by intensive farming and being limited to certain areas by the construction of game fences.
    [Show full text]
  • Ontogeny of Jaw Mechanics and Stiffness in Mollusk‐Feeding
    Received: 18 December 2018 Revised: 15 March 2019 Accepted: 16 March 2019 DOI: 10.1002/jmor.20984 RESEARCH ARTICLE Killing them softly: Ontogeny of jaw mechanics and stiffness in mollusk-feeding freshwater stingrays Kelsi M. Rutledge1,2 | Adam P. Summers1 | Matthew A. Kolmann3,4,1 1Department of Biology, Friday Harbor Laboratories, University of Washington, Friday Abstract Harbor, Washington Durophagous predators consume hard-shelled prey such as bivalves, gastropods, and 2 Department of Ecology and Evolutionary large crustaceans, typically by crushing the mineralized exoskeleton. This is costly Biology, University of California, Los Angeles, California from the point of view of the bite forces involved, handling times, and the stresses 3Department of Biological Sciences, George inflicted on the predator's skeleton. It is not uncommon for durophagous taxa to dis- Washington University, Washington, D.C. play an ontogenetic shift from softer to harder prey items, implying that it is relatively 4Department of Ichthyology, Royal Ontario Museum, Toronto, Ontario difficult for smaller animals to consume shelled prey. Batoid fishes (rays, skates, sawfishes, and guitarfishes) have independently evolved durophagy multiple times, Correspondence Kelsi M. Rutledge, Department of Ecology and despite the challenges associated with crushing prey harder than their own cartilagi- Evolutionary Biology, University of California nous skeleton. Potamotrygon leopoldi is a durophagous freshwater ray endemic to the Los Angeles, Los Angeles, CA 90095. Email: [email protected]; Xingu River in Brazil, with a jaw morphology superficially similar to its distant [email protected] durophagous marine relatives, eagle rays (e.g., Aetomylaeus, Aetobatus). We used sec- Present address ond moment of area as a proxy for the ability to resist bending and analyzed the Kelsi M.
    [Show full text]
  • Botulism in Cattle Associated with Osteophagy in the State of Acre, Brazil
    Acta Scientiae Veterinariae, 2019. 47(Suppl 1): 430. CASE REPORT ISSN 1679-9216 Pub. 430 Botulism in Cattle Associated with Osteophagy in the State of Acre, Brazil Camila Machado Nobre, Tamyres Izarelly Barbosa da Silva, Girclyhanne da Costa Costa, Andressa Ribeiro da Silva, Rodrigo Gomes de Souza & Marcelo Fernando Gomes Montozo ABSTRACT Background: Botulism is a non-febrile intoxication resulting from the ingestion of Clostridium botulinum neurotoxins manifested by partial or complete flaccid paralysis of the musculature of locomotion, swallowing and respiration. The objective of this study was to report the first case of botulinum intoxication associated with osteopathy in the state of Acre, as well as to alert breeders and veterinarians to the incidence of this disease in cattle farming. Case: The present report is an outbreak of botulism in the municipality of Acrelândia, in the state of Acre, which resulted in the death of 16 Nelore beef cattle in approximately 30 days. The affected animals were females in reproductive phase maintained under extensive breeding system. The main clinical signs presented were weakness in the pelvic limbs, prostra- tion, recumbency and death in less than 48 h. Only one animal, with similar symptomatology, was found alive and submit- ted to emergency therapeutic measures, but without success. During the necropsy of this bovine, no significant changes were found, only related to the decubitus and agony time, except for fragments of long bones visualized in the reticulum. Samples of bone particles, ruminal contents, reticulum, rumen and intestine fragments were collected for the detection of botulinum toxins by the mouse bioassay method, as well as brain and brain stem for differential diagnosis of rabies and bovine spongiform encephalopathy by direct immunofluorescence and immunohistochemistry, respectively.
    [Show full text]
  • The Tortuga Gazette and Education Since 1964 Volume 55, Number 2 • March/April 2019
    Dedicated to CALIFORNIA TURTLE & TORTOISE CLUB Turtle & Tortoise Conservation, Preservation the Tortuga Gazette and Education Since 1964 Volume 55, Number 2 • March/April 2019 Adult pair of Hermann’s tortoises with a 1-foot (30-centimeter) ruler for scale. Hermann’s tortoise, Testudo hermanni Hermann’s Tortoise: History and Care text and photographs by Ralph Hoekstra y interest in tortoises began not a desert tortoise (Gopherus They charged at each other in­ M in 1975 when our pastor gave agassizii), but that it was definitely tending to ram their opponent. Just me a tortoise his children found a female Hermann’s tortoise (Te- before they collided, each would walking down their street. His chil­ studo hermanni). We named her pull her head back into her shell. dren wanted to keep it, but it was “Shelley.” Both desert tortoises found new eating the plants in their mother’s Shelley shared our backyard for homes. Note: this is a common mis­ vegetable garden. I volunteered to a short time with two desert tor­ take made by many new tortoise take the tortoise off of their hands toises that were found walking keepers. Tortoises so distinct­ and thus began my 35-plus years on nearby streets by neighbors. ly different should never be kept with tortoises. I took the tortoise to Shelley did not want to share her together. a California Turtle & Tortoise Club/ territory and neither did one of the Range Description Orange County Chapter show to desert tortoises, a female. Both This species occurs in Mediter­ get it identified. I was told it was claimed my yard as their territory.
    [Show full text]
  • 638 Natural History Notes
    638 NATURAL HISTORY NOTES Brasileiro de Proteção e Pesquisa das Tartarugas Marinhas, 41815-135, the region, all turtles carried barnacles (Chelonibia testudinar- Salvador, Bahia, Brazil; CLÁUDIO L. S. SAMPAIO, Universidade Federal de ia), Amphipoda, red algae Polysiphonia sp., and some assorted Alagoas, Unidade de Ensino Penedo. Av. Beira Rio, s/n. Centro Histórico, bivalves. The microbivalve Cymatioa pulchra was present on one 57.200-000, Penedo, Alagoas, Brazil. individual; the Winged Pearl Oyster (Pteria sterna; 0.1−0.4 g, and 11−13 mm length) and shell-loving oyster (Ostrea conchaphila; CARETTA CARETTA (Loggerhead Seaturtle). EPIBIONT BI- 27.7 g, and 53 mm length) were present in two and one turtles, VALVES. The neritic waters of the Baja California Peninsula respectively. The size of the oysters suggests that they were at- (BCP) are one of the most important aggregation areas of juve- tached to the turtles for several months (Frick et al. 2002. Bull. niles of the North Pacific population of the Loggerhead Seatur- Mar. Sci. 70[3]:953−956). tle. Though they nest exclusively at Japanese rookeries (Bowen The ranges of the three epibiont species are within the limits et al. 1995. Proc. Natl. Acad. Sci. 92:3731−3734), some juveniles of the tropical and subtropical habitats from California to Peru feed and grow to maturity in a relatively small area near the BCP, (Abbott 1974. American Seashells: The Marine Mollusca of the At- eventually returning to their Japanese breeding grounds (Nich- lantic and Pacific Coasts of North America, 2nd ed. Van Nostrand ols et al. 2000. Bull. Mar.
    [Show full text]
  • Variable Changes in Cranial Structures Underlie Transitions to Durophagy in Moray Eels
    http://www.jstor.org/stable/10.1086/675810 . Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press, The American Society of Naturalists, The University of Chicago are collaborating with JSTOR to digitize, preserve and extend access to The American Naturalist. http://www.jstor.org This content downloaded from 128.120.194.194 on Fri, 2 May 2014 08:16:53 AM All use subject to JSTOR Terms and Conditions vol. 183, no. 6 the american naturalist june 2014 E-Article Imperfect Morphological Convergence: Variable Changes in Cranial Structures Underlie Transitions to Durophagy in Moray Eels David C. Collar,1,*JoshuaS.Reece,2 Michael E. Alfaro,3 Peter C. Wainwright,1 and Rita S. Mehta4 1. Department of Evolution and Ecology, University of California, Davis, California 95616; 2. Department of Biology, Valdosta State University, Valdosta, Georgia 31698; 3. Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California 90095; 4. Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California 95060 Submitted October 8, 2013; Accepted December 27, 2013; Electronically published April 24, 2014 Online enhancement: appendixes. Dryad data: http://dx.doi.org/10.5061/dryad.h9r37.
    [Show full text]
  • (Crustacea) As Predators on Mollusca Through Geologic Time
    PALAIOS, 2010, v. 25, p. 167–182 Research Article DOI: 10.2110/palo.2009.p09-054r THE DECAPODA (CRUSTACEA) AS PREDATORS ON MOLLUSCA THROUGH GEOLOGIC TIME CARRIE E. SCHWEITZER1* and RODNEY M. FELDMANN 2 1Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. NW, North Canton, Ohio 44720, USA; 2Department of Geology, Kent State University, Kent, Ohio 44242, USA e-mail: [email protected] ABSTRACT decapods and lineages known to have modern congeners that are durophagous. The relationship between predator and prey is a persistent theme in There are five major means by which decapods crush shells or eat marine paleontology. Herein we focus on the decapod Crustacea, the shelled prey that, as they require specialization of the appendages (see shrimps, lobsters, and crabs, and their role as predators on the Mollusca Lau, 1987 on extant forms), might be recorded in the body fossil record. through geologic time. Five major means by which decapods crush shells There are also several types of feeding that may only chip the shells or or eat shelled prey might be recorded in the body-fossil record, as they simply pry them open, which are often not apparent in the fossil record. require specialization of the appendages. These include use of (1) All types of feeding on shelled organisms must affect evolution of the heterochelous first pereiopods, (2) molariform teeth on the fingers of shelled organism, based on recent studies that illustrate how predation the chelae, (3) a curved proximal tooth on the movable finger of the chela, takes precedence over other aspects of the environment in driving (4) calcified mandibles, and (5) flattened pereiopods (walking legs).
    [Show full text]
  • A Dental Microwear Texture Analysis of the Mio−Pliocene Hyaenids from Langebaanweg, South Africa
    A dental microwear texture analysis of the Mio−Pliocene hyaenids from Langebaanweg, South Africa DEANO D. STYNDER, PETER S. UNGAR, JESSICA R. SCOTT, and BLAINE W. SCHUBERT Stynder, D.D., Ungar, P.S., Scott, J.R., and Schubert, B.W. 2012. A dental microwear texture analysis of the Mio−Plio− cene hyaenids from Langebaanweg, South Africa. Acta Palaeontologica Polonica 57 (3): 485–496. Hyaenids reached their peak diversity during the Mio−Pliocene, when an array of carnivorous species emerged alongside dwindling civet−like and mongoose−like insectivorous/omnivorous taxa. Significantly, bone−cracking morphological ad− aptations were poorly developed in these newly−emerged species. This, their general canid−like morphology, and the ab− sence/rarity of canids in Eurasia and Africa at the time, has led researchers to hypothesise that these carnivorous Mio−Pliocene hyaenas were ecological vicars to modern canids. To shed further light on their diets and foraging strate− gies, we examine and compare the dental microwear textures of Hyaenictitherium namaquensis, Ikelohyaena abronia, Chasmaporthetes australis, and Hyaenictis hendeyi from the South African Mio−Pliocene site of Langebaanweg with those of the extant feliforms Crocuta crocuta, Acinonyx jubatus, and Panthera leo (caniforms are not included because homologous wear facets are not directly comparable between the suborders). Sample sizes for individual fossil species are small, which limits confidence in assessments of variation between the extinct taxa; however, these Mio−Pliocene hyaenas exhibit surface complexity and textural fill volume values that are considerably lower than those exhibited by the living hyaena, Crocuta crocuta. Dental microwear texture analysis thus supports interpretations of craniodental evidence suggesting low bone consumption in carnivorous Mio−Pliocene hyaenas.
    [Show full text]
  • Morphological and Functional Bases of Durophagy in the Queen Triggerfish, Balistes Vetula (Pisces, Tetraodontiformes)
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/229737590 Morphological and functional bases of durophagy in the Queen Triggerfish, Balistes vetula (Pisces, Tetraodontiformes) Article in Journal of Morphology · February 1993 DOI: 10.1002/jmor.1052150202 CITATIONS READS 60 99 2 authors: Ralph G Turingan Peter C Wainwright Florida Institute of Technology University of California, Davis 62 PUBLICATIONS 1,214 CITATIONS 239 PUBLICATIONS 14,278 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Retinal topography maps in R: New tools for the analysis and visualization of spatial retinal data View project Ecomorphology View project All content following this page was uploaded by Ralph G Turingan on 18 December 2017. The user has requested enhancement of the downloaded file. JOURNAL OF MORPHOLOGY 215:101-118 (1993) Morphological and Functional Bases of Durophagy in the Queen Triggerfish, Balistes vetula (Pisces, Tetraodontiformes) RALPH G. TURINGAN AND PETER C. WAINWRIGHT Department ofMarine Sciences, llniuersity of Puerto Rico, Mayagiiez, Puerto Rico 00681 (R.G.T.); Department of Biological Science, Florida State University, Tallahassee, Florida 32306-3050 (P.C.W.) ABSTRACT Tetraodontiform fishes are characterized by jaws specialized for powerful biting and a diet dominated by hard-shelled prey. Strong biting by the oral jaws is an unusual feature among teleosts. We present a functional morphological analysis of the feeding mechanism of a representative tetraodon- tiform, Balistes vetula. As is typical for the order, long, sharp, strong teeth are mounted on the short, robust jaw bones of B. vetula.
    [Show full text]
  • Feeding Behaviour and Bone Utilization by Theropod Dinosaurs
    Feeding behaviour and bone utilization by theropod dinosaurs DAVID W. E. HONE AND OLIVER W. M. RAUHUT Hone, D.W.E. & Rauhut, O.W.M. 2009: Feeding behaviour and bone utilization by theropod dinosaurs. Lethaia, 10.1111/j.1502-3931.2009.00187.x Examples of bone exploitation by carnivorous theropod dinosaurs are relatively rare, representing an apparent waste of both mineral and energetic resources. A review of the known incidences and possible ecological implications of theropod bone use concludes that there is currently no definitive evidence supporting the regular deliberate ingestion of bone by these predators. However, further investigation is required as the small bones of juvenile dinosaurs missing from the fossil record may be absent as a result of thero- pods preferentially hunting and consuming juveniles. We discuss implications for both hunting and feeding in theropods based on the existing data. We conclude that, like modern predators, theropods preferentially hunted and ate juvenile animals leading to the absence of small, and especially young, dinosaurs in the fossil record. The traditional view of large theropods hunting the adults of large or giant dinosaur species is therefore considered unlikely and such events rare. h Behaviour, carnivory, palaeoecology, preda- tion, resource utilization. David W. E. Hone [[email protected]], Institute of Vertebrate Paleontology & Paleoanthro- pology, Xhizhimenwai Dajie 142, Beijing 100044, China; Oliver W. M. Rauhut [[email protected]], Bayerische Staatssammlung fu¨r Pala¨ontologie und Geolo- gie and Department fu¨r Geo- und Umweltwissenschaften, Ludwig-Maximilians-Universita¨t Munich, Richard-Wagner-Str. 10, 80333 Munich, Germany; manuscript received on 18 ⁄ 01 ⁄ 2009; manuscript accepted on 20 ⁄ 05 ⁄ 2009.
    [Show full text]