Supplemental Content Appendix Table 1. List of Drugs and Drug

Total Page:16

File Type:pdf, Size:1020Kb

Supplemental Content Appendix Table 1. List of Drugs and Drug Supplemental Content Appendix Table 1. List of drugs and drug classes Alprazolam, chlordiazepoxide, clonazepam, clorazepate, diazepam, estazolam, flurazepam, halazepam, Benzodiazepenes lorazepam, midazolam, oxazepam, prazepam, quazepam, temazepam, triazolam Antidepressants SSRI Citalopram, escitalopram, paroxetine, fluoxetine, fluvoxamine, sertraline SNRI Desvenlafaxine, duloxetine, levomilnacipran, milnacipran, tofenacin, venlafaxine SMS Vilazodone, vortioxetine SARI Etoperidone, trazodone, nefazodone NRI Reboxetine, viloxazine Amitriptyline, butriptyline, clomipramine, desipramine, dosulepin, imipramine, iprindole, lofepramine, TCAs melitracen, nortriptyline, protriptyline, trimipramine, opipramol, tianeptine TeCAs Amoxapine, maprotiline, mianserin, mirtazapine, setiptiline MAOIs Isocarboxazid, phenelzine, tranylcypromine, selegiline, metralindole, moclobemide, pirlindole, toloxatone Antipsychotics Chlorpromazine, thioridazine, mesoridazine, levomepromazine, loxapine, molindone, perphenazine, typical thiothixene, trifluoperazine, haloperidol, fluphenazine, droperidol, zuclopenthixol, prochlorperazine Amisulpride, aripiprazole, asenapine, blonanserine, clotiapine, clozapine, iloperidone, lurasidone, atypical mosapramine, olanzapine, paliperidone, perospirone, quetiapine, remoxipride, risperidone, sertindole, sulpiride, ziprasidone, zotepine Antiasthma Medications bronchodilators Salmeterol, metaproterenol, terbutaline, albuterol, ipratropium, formoterol, levalbuterol ,pirbuterol, Fluticasone, flunisolide, ciclesonide, mometasone, triamcinolone, prednisone, budesonide, corticosteroids beclomethasone, leukotriene Zafirlukast, montelukast, zileuton inhibitors Other Theophylline, omalizumab Key: SSRI=selective serotonin reuptake inhibitor; SNRI=serotonin/norepinephrine reuptake inhibitor; SMS=serotonin modulator/stimulator; SARI=serotonin antagonist/reuptake inhibitor; NRI=norepinephrine reuptake inhibitor; TCA=tricyclic antidepressant; TeCA=tetracyclic antidepressant; MAOI=monamine oxidase inhibitor Appendix Table 1. List of drugs and drug classes (cont.) Antihypertensives Loop diuretics Bumetanide, ethacrynic acid, furosemide, torsemide Epitizide, hydrochlorothiazide, chlorothiazide, Thiazide Diuretics bendroflumethiazide, indapamide, chlorthalidone, metolazone, polythiazide Potassium sparing Diuretics Amiloride, triamterene, spironolactone Atenolol, metoprolol, nadolol, nebivolol, oxprenolol, pindolol, Beta Blockers propranolol, timolol Doxazosin, phentolamine, indoramin, phenoxybenzamine, Alpha Blockers prazosin, terazosin, tolazoline Mixed Alpha/Beta Blockers Bucindolol, carvedilol, labetalol Amlodipine, clinidipine, felodipine, isradipine, lercanidipine, Calcium Channel Blockers levamlodipine, nicardipine, nifedipine, nimodipine, nitrendipine, diltiazem, verapamil Captopril, enalapril, fosinopril, lisinopril, perindopril, quinapril, Ace inhibitors ramipril, trandolapril, benazepril, moexipril Candesartan, eprosartan, irbesartan, losartan, olmesartan, ARBs telmisartan, valsartan Aldosterone antagonists Eplenerone, spironolactone Alpha 2 agonists Clonidine, guanabenz, guanfacine, methyldopa, moxonidine Hydralazine, guanethidine, mecamyalamine, reserpine, Miscellaneous minoxidil, deserpidine, aliskiren Antidiabetes Medications insulin Glyburide, glimepiride, glipizide, tolbutamide, acetohexamide, sulfonylureas tolazamide, chlorpropamide, gliclazide, gliquidone biguanides metformin alpha-glucosidase Inhibitors Acarbose, miglitol, voglibose meglitinides Repaglinide, nateglinide thiazolidinediones Pioglitzone, rosiglitazone .
Recommended publications
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0190743 A1 Bain Et Al
    US 2012O190743A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0190743 A1 Bain et al. (43) Pub. Date: Jul. 26, 2012 (54) COMPOUNDS FOR TREATING DISORDERS Publication Classification OR DISEASES ASSOCATED WITH (51) Int. Cl NEUROKININ 2 RECEPTORACTIVITY A6II 3L/23 (2006.01) (75) Inventors: Jerald Bain, Toronto (CA); Joel CD7C 69/30 (2006.01) Sadavoy, Toronto (CA); Hao Chen, 39t. ii; C Columbia, MD (US); Xiaoyu Shen, ( .01) Columbia, MD (US) A6IPI/00 (2006.01) s A6IP 29/00 (2006.01) (73) Assignee: UNITED PARAGON A6IP II/00 (2006.01) ASSOCIATES INC., Guelph, ON A6IPI3/10 (2006.01) (CA) A6IP 5/00 (2006.01) A6IP 25/00 (2006.01) (21) Appl. No.: 13/394,067 A6IP 25/30 (2006.01) A6IP5/00 (2006.01) (22) PCT Filed: Sep. 7, 2010 A6IP3/00 (2006.01) CI2N 5/071 (2010.01) (86). PCT No.: PCT/US 10/48OO6 CD7C 69/33 (2006.01) S371 (c)(1) (52) U.S. Cl. .......................... 514/552; 554/227; 435/375 (2), (4) Date: Apr. 12, 2012 (57) ABSTRACT Related U.S. Application Data Compounds, pharmaceutical compositions and methods of (60) Provisional application No. 61/240,014, filed on Sep. treating a disorder or disease associated with neurokinin 2 4, 2009. (NK) receptor activity. Patent Application Publication Jul. 26, 2012 Sheet 1 of 12 US 2012/O190743 A1 LU 1750 15OO 1250 OOO 750 500 250 O O 20 3O 40 min SampleName: EM2OO617 Patent Application Publication Jul. 26, 2012 Sheet 2 of 12 US 2012/O190743 A1 kixto CFUgan <tro CFUgan FIG.2 Patent Application Publication Jul.
    [Show full text]
  • Drug Class Review Beta Adrenergic Blockers
    Drug Class Review Beta Adrenergic Blockers Final Report Update 4 July 2009 Update 3: September 2007 Update 2: May 2005 Update 1: September 2004 Original Report: September 2003 The literature on this topic is scanned periodically. The purpose of this report is to make available information regarding the comparative effectiveness and safety profiles of different drugs within pharmaceutical classes. Reports are not usage guidelines, nor should they be read as an endorsement of, or recommendation for, any particular drug, use, or approach. Oregon Health & Science University does not recommend or endorse any guideline or recommendation developed by users of these reports. Mark Helfand, MD, MPH Kim Peterson, MS Vivian Christensen, PhD Tracy Dana, MLS Sujata Thakurta, MPA:HA Drug Effectiveness Review Project Marian McDonagh, PharmD, Principal Investigator Oregon Evidence-based Practice Center Mark Helfand, MD, MPH, Director Oregon Health & Science University Copyright © 2009 by Oregon Health & Science University Portland, Oregon 97239. All rights reserved. Final Report Update 4 Drug Effectiveness Review Project TABLE OF CONTENTS INTRODUCTION .......................................................................................................................... 6 Purpose and Limitations of Evidence Reports........................................................................................ 8 Scope and Key Questions .................................................................................................................... 10 METHODS.................................................................................................................................
    [Show full text]
  • Strategies for Managing Sexual Dysfunction Induced by Antidepressant Medication
    King’s Research Portal DOI: 10.1002/14651858.CD003382.pub3 Document Version Publisher's PDF, also known as Version of record Link to publication record in King's Research Portal Citation for published version (APA): Taylor, M. J., Rudkin, L., Bullemor-Day, P., Lubin, J., Chukwujekwu, C., & Hawton, K. (2013). Strategies for managing sexual dysfunction induced by antidepressant medication. Cochrane Database of Systematic Reviews, (5). https://doi.org/10.1002/14651858.CD003382.pub3 Citing this paper Please note that where the full-text provided on King's Research Portal is the Author Accepted Manuscript or Post-Print version this may differ from the final Published version. If citing, it is advised that you check and use the publisher's definitive version for pagination, volume/issue, and date of publication details. And where the final published version is provided on the Research Portal, if citing you are again advised to check the publisher's website for any subsequent corrections. General rights Copyright and moral rights for the publications made accessible in the Research Portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognize and abide by the legal requirements associated with these rights. •Users may download and print one copy of any publication from the Research Portal for the purpose of private study or research. •You may not further distribute the material or use it for any profit-making activity or commercial gain •You may freely distribute the URL identifying the publication in the Research Portal Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Withdrawing Diuretic Drugs Prescribed for Ankle Oedema
    Diuretic drug cessation in general practice : withdrawing diuretic drugs prescribed for ankle oedema Citation for published version (APA): de Jonge, J-W. (1993). Diuretic drug cessation in general practice : withdrawing diuretic drugs prescribed for ankle oedema. Rijksuniversiteit Limburg. https://doi.org/10.26481/dis.19931201jj Document status and date: Published: 01/01/1993 DOI: 10.26481/dis.19931201jj Document Version: Publisher's PDF, also known as Version of record Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • The In¯Uence of Medication on Erectile Function
    International Journal of Impotence Research (1997) 9, 17±26 ß 1997 Stockton Press All rights reserved 0955-9930/97 $12.00 The in¯uence of medication on erectile function W Meinhardt1, RF Kropman2, P Vermeij3, AAB Lycklama aÁ Nijeholt4 and J Zwartendijk4 1Department of Urology, Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands; 2Department of Urology, Leyenburg Hospital, Leyweg 275, 2545 CH The Hague, The Netherlands; 3Pharmacy; and 4Department of Urology, Leiden University Hospital, P.O. Box 9600, 2300 RC Leiden, The Netherlands Keywords: impotence; side-effect; antipsychotic; antihypertensive; physiology; erectile function Introduction stopped their antihypertensive treatment over a ®ve year period, because of side-effects on sexual function.5 In the drug registration procedures sexual Several physiological mechanisms are involved in function is not a major issue. This means that erectile function. A negative in¯uence of prescrip- knowledge of the problem is mainly dependent on tion-drugs on these mechanisms will not always case reports and the lists from side effect registries.6±8 come to the attention of the clinician, whereas a Another way of looking at the problem is drug causing priapism will rarely escape the atten- combining available data on mechanisms of action tion. of drugs with the knowledge of the physiological When erectile function is in¯uenced in a negative mechanisms involved in erectile function. The way compensation may occur. For example, age- advantage of this approach is that remedies may related penile sensory disorders may be compen- evolve from it. sated for by extra stimulation.1 Diminished in¯ux of In this paper we will discuss the subject in the blood will lead to a slower onset of the erection, but following order: may be accepted.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • Appendix 13C: Clinical Evidence Study Characteristics Tables
    APPENDIX 13C: CLINICAL EVIDENCE STUDY CHARACTERISTICS TABLES: PHARMACOLOGICAL INTERVENTIONS Abbreviations ............................................................................................................ 3 APPENDIX 13C (I): INCLUDED STUDIES FOR INITIAL TREATMENT WITH ANTIPSYCHOTIC MEDICATION .................................. 4 ARANGO2009 .................................................................................................................................. 4 BERGER2008 .................................................................................................................................... 6 LIEBERMAN2003 ............................................................................................................................ 8 MCEVOY2007 ................................................................................................................................ 10 ROBINSON2006 ............................................................................................................................. 12 SCHOOLER2005 ............................................................................................................................ 14 SIKICH2008 .................................................................................................................................... 16 SWADI2010..................................................................................................................................... 19 VANBRUGGEN2003 ....................................................................................................................
    [Show full text]
  • NORPRAMIN® (Desipramine Hydrochloride Tablets USP)
    NORPRAMIN® (desipramine hydrochloride tablets USP) Suicidality and Antidepressant Drugs Antidepressants increased the risk compared to placebo of suicidal thinking and behavior (suicidality) in children, adolescents, and young adults in short-term studies of major depressive disorder (MDD) and other psychiatric disorders. Anyone considering the use of NORPRAMIN or any other antidepressant in a child, adolescent, or young adult must balance this risk with the clinical need. Short-term studies did not show an increase in the risk of suicidality with antidepressants compared to placebo in adults beyond age 24; there was a reduction in risk with antidepressants compared to placebo in adults aged 65 and older. Depression and certain other psychiatric disorders are themselves associated with increases in the risk of suicide. Patients of all ages who are started on antidepressant therapy should be monitored appropriately and observed closely for clinical worsening, suicidality, or unusual changes in behavior. Families and caregivers should be advised of the need for close observation and communication with the prescriber. NORPRAMIN is not approved for use in pediatric patients. (See WARNINGS: Clinical Worsening and Suicide Risk, PRECAUTIONS: Information for Patients, and PRECAUTIONS: Pediatric Use.) DESCRIPTION NORPRAMIN® (desipramine hydrochloride USP) is an antidepressant drug of the tricyclic type, and is chemically: 5H-Dibenz[bƒ]azepine-5-propanamine,10,11-dihydro-N-methyl-, monohydrochloride. 1 Reference ID: 3536021 Inactive Ingredients The following inactive ingredients are contained in all dosage strengths: acacia, calcium carbonate, corn starch, D&C Red No. 30 and D&C Yellow No. 10 (except 10 mg and 150 mg), FD&C Blue No. 1 (except 25 mg, 75 mg, and 100 mg), hydrogenated soy oil, iron oxide, light mineral oil, magnesium stearate, mannitol, polyethylene glycol 8000, pregelatinized corn starch, sodium benzoate (except 150 mg), sucrose, talc, titanium dioxide, and other ingredients.
    [Show full text]
  • The Effects of Antipsychotic Treatment on Metabolic Function: a Systematic Review and Network Meta-Analysis
    The effects of antipsychotic treatment on metabolic function: a systematic review and network meta-analysis Toby Pillinger, Robert McCutcheon, Luke Vano, Katherine Beck, Guy Hindley, Atheeshaan Arumuham, Yuya Mizuno, Sridhar Natesan, Orestis Efthimiou, Andrea Cipriani, Oliver Howes ****PROTOCOL**** Review questions 1. What is the magnitude of metabolic dysregulation (defined as alterations in fasting glucose, total cholesterol, low density lipoprotein (LDL) cholesterol, high density lipoprotein (HDL) cholesterol, and triglyceride levels) and alterations in body weight and body mass index associated with short-term (‘acute’) antipsychotic treatment in individuals with schizophrenia? 2. Does baseline physiology (e.g. body weight) and demographics (e.g. age) of patients predict magnitude of antipsychotic-associated metabolic dysregulation? 3. Are alterations in metabolic parameters over time associated with alterations in degree of psychopathology? 1 Searches We plan to search EMBASE, PsycINFO, and MEDLINE from inception using the following terms: 1 (Acepromazine or Acetophenazine or Amisulpride or Aripiprazole or Asenapine or Benperidol or Blonanserin or Bromperidol or Butaperazine or Carpipramine or Chlorproethazine or Chlorpromazine or Chlorprothixene or Clocapramine or Clopenthixol or Clopentixol or Clothiapine or Clotiapine or Clozapine or Cyamemazine or Cyamepromazine or Dixyrazine or Droperidol or Fluanisone or Flupehenazine or Flupenthixol or Flupentixol or Fluphenazine or Fluspirilen or Fluspirilene or Haloperidol or Iloperidone
    [Show full text]
  • New Prohibited Substances Addition to Procedures Using Triple Quadrupole LC/MS2 Technique
    Poster MANFRED DONIKE WORKSHOP Pop V, Bican G, Pop A, Lamor M, Zorio M New prohibited substances addition to procedures using triple quadrupole LC/MS2 technique Romanian Doping Control Laboratory, Bucharest, ROMANIA Abstract New substances are added each year to the different classes of substances of WADA’s Prohibited List and have to be included in the test menu of each accredited doping control laboratory. For the analysis of some of these compounds the technique of choice is the LC/MS2 technique. Furthermore, with the decrease of MRPL levels, for stimulants from 500 ng/mL to 100 ng/mL and for narcotics from 200 ng/mL to 50 ng/mL, beginning from the entering in force on 1 January 2013 of the new WADA Technical Document TD2013MRPL, some of the compounds analyzed by the current GC/MS based procedure for stimulants and narcotics needed to be transferred to the LC/MS2 based procedure in order to lower their limit of detection. This paper-work presents the optimal conditions for preparation, separation and identification of new substances introduced to the LC/MS2 technique based procedures during the year 2012. Introduction Liquid chromatography coupled with mass spectrometry is increasingly used in doping control laboratories [1]. The current work presents the optimization of the LC/MS2 detection parameters and the introduction of the prohibited substances in the existent procedures, depending on the characteristics of the studied compounds. The studied compounds are benzthiazide, cyclopenthiazide, cyclothiazide, epitizide, hydroflumethiazide and polythiazide (thiazide diuretic compounds), tramadol and its O-desmethyl metabolite (narcotic compound from the monitoring program [2]), cyclazodone, pentetrazole, prolintane, propylhexedrine and selegiline (stimulants transferred from the GC/MS- to the LC/MS2-based procedure due to the decreasing of the MRPL levels for stimulants and narcotics [3]).
    [Show full text]
  • Risk of Recurrent Overdose Associated with Prescribing Patterns of Psychotropic Medications After Nonfatal Overdose
    Journal name: Neuropsychiatric Disease and Treatment Article Designation: Original Research Year: 2017 Volume: 13 Neuropsychiatric Disease and Treatment Dovepress Running head verso: Okumura and Nishi Running head recto: Risk of recurrent overdose with benzodiazepines open access to scientific and medical research DOI: http://dx.doi.org/10.2147/NDT.S128278 Open Access Full Text Article ORIGINAL RESEARCH Risk of recurrent overdose associated with prescribing patterns of psychotropic medications after nonfatal overdose Yasuyuki Okumura1 Objective: We aimed to estimate risk of recurrent overdose associated with psychosocial Daisuke Nishi2 assessment by psychiatrists during hospitalization for nonfatal overdose and prescribing patterns of psychotropic medications after discharge. 1Research Department, Institute for Health Economics and Policy, Methods: A retrospective cohort study was conducted using a nationwide claims database Association for Health Economics in Japan. We classified patients aged 19–64 years hospitalized for nonfatal overdose between Research and Social Insurance and Welfare, Tokyo, 2Department of October 2012 and September 2013 into two cohorts: 1) those who had consulted a psychiatrist Mental Health Policy and Evaluation, prior to overdose (n=6,790) and 2) those who had not (n=4,950). All patients were followed up National Institute of Mental Health, from 90 days before overdose until 365 days after discharge. National Center of Neurology and Psychiatry, Kodaira, Japan Results: Overall, 15.3% of patients with recent psychiatric treatment had a recurrent overdose within 365 days, compared with 6.0% of those without psychiatric treatment. Psychosocial For personal use only. assessment during hospital admission had no significant effect on subsequent overdose, irrespec- tive of treatment by psychiatrists before overdose.
    [Show full text]
  • Fatal Toxicity of Antidepressant Drugs in Overdose
    BRITISH MEDICAL JOURNAL VOLUME 295 24 OCTOBER 1987 1021 Br Med J (Clin Res Ed): first published as 10.1136/bmj.295.6605.1021 on 24 October 1987. Downloaded from PAPERS AND SHORT REPORTS Fatal toxicity of antidepressant drugs in overdose SIMON CASSIDY, JOHN HENRY Abstract dangerous in overdose, thus meriting investigation of their toxic properties and closer consideration of the circumstances in which A fatal toxicity index (deaths per million National Health Service they are prescribed. Recommendations may thus be made that prescriptions) was calculated for antidepressant drugs on sale might reduce the number offatalities. during the years 1975-84 in England, Wales, and Scotland. The We used national mortality statistics and prescription data tricyclic drugs introduced before 1970 had a higher index than the to compile fatal toxicity indices for the currently available anti- mean for all the drugs studied (p<0-001). In this group the depressant drugs to assess the comparative safety of the different toxicity ofamitriptyline, dibenzepin, desipramine, and dothiepin antidepressant drugs from an epidemiological standpoint. Owing to was significantly higher, while that ofclomipramine, imipramine, the nature of the disease these drugs are particularly likely to be iprindole, protriptyline, and trimipramine was lower. The mono- taken in overdose and often cause death. amine oxidase inhibitors had intermediate toxicity, and the antidepressants introduced since 1973, considered as a group, had significantly lower toxicity than the mean (p<0-001). Ofthese newer drugs, maprotiline had a fatal toxicity index similar to that Sources ofinformation and methods of the older tricyclic antidepressants, while the other newly The statistical sources used list drugs under their generic and proprietary http://www.bmj.com/ introduced drugs had lower toxicity indices, with those for names.
    [Show full text]