FIELDS 09FA Contents 1. Introduction 1 2. Basic Definitions 2 3. Examples
Total Page:16
File Type:pdf, Size:1020Kb
Load more
										Recommended publications
									
								- 
												  On Free Quasigroups and Quasigroup Representations Stefanie Grace Wang Iowa State UniversityIowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2017 On free quasigroups and quasigroup representations Stefanie Grace Wang Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Mathematics Commons Recommended Citation Wang, Stefanie Grace, "On free quasigroups and quasigroup representations" (2017). Graduate Theses and Dissertations. 16298. https://lib.dr.iastate.edu/etd/16298 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. On free quasigroups and quasigroup representations by Stefanie Grace Wang A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Mathematics Program of Study Committee: Jonathan D.H. Smith, Major Professor Jonas Hartwig Justin Peters Yiu Tung Poon Paul Sacks The student author and the program of study committee are solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2017 Copyright c Stefanie Grace Wang, 2017. All rights reserved. ii DEDICATION I would like to dedicate this dissertation to the Integral Liberal Arts Program. The Program changed my life, and I am forever grateful. It is as Aristotle said, \All men by nature desire to know." And Montaigne was certainly correct as well when he said, \There is a plague on Man: his opinion that he knows something." iii TABLE OF CONTENTS LIST OF TABLES .
- 
												  An Introduction to the Trace FormulaClay Mathematics Proceedings Volume 4, 2005 An Introduction to the Trace Formula James Arthur Contents Foreword 3 Part I. The Unrefined Trace Formula 7 1. The Selberg trace formula for compact quotient 7 2. Algebraic groups and adeles 11 3. Simple examples 15 4. Noncompact quotient and parabolic subgroups 20 5. Roots and weights 24 6. Statement and discussion of a theorem 29 7. Eisenstein series 31 8. On the proof of the theorem 37 9. Qualitative behaviour of J T (f) 46 10. The coarse geometric expansion 53 11. Weighted orbital integrals 56 12. Cuspidal automorphic data 64 13. A truncation operator 68 14. The coarse spectral expansion 74 15. Weighted characters 81 Part II. Refinements and Applications 89 16. The first problem of refinement 89 17. (G, M)-families 93 18. Localbehaviourofweightedorbitalintegrals 102 19. The fine geometric expansion 109 20. Application of a Paley-Wiener theorem 116 21. The fine spectral expansion 126 22. The problem of invariance 139 23. The invariant trace formula 145 24. AclosedformulaforthetracesofHeckeoperators 157 25. Inner forms of GL(n) 166 Supported in part by NSERC Discovery Grant A3483. c 2005 Clay Mathematics Institute 1 2 JAMES ARTHUR 26. Functoriality and base change for GL(n) 180 27. The problem of stability 192 28. Localspectraltransferandnormalization 204 29. The stable trace formula 216 30. Representationsofclassicalgroups 234 Afterword: beyond endoscopy 251 References 258 Foreword These notes are an attempt to provide an entry into a subject that has not been very accessible. The problems of exposition are twofold. It is important to present motivation and background for the kind of problems that the trace formula is designed to solve.
- 
												  Formal Power Series - Wikipedia, the Free EncyclopediaFormal power series - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Formal_power_series Formal power series From Wikipedia, the free encyclopedia In mathematics, formal power series are a generalization of polynomials as formal objects, where the number of terms is allowed to be infinite; this implies giving up the possibility to substitute arbitrary values for indeterminates. This perspective contrasts with that of power series, whose variables designate numerical values, and which series therefore only have a definite value if convergence can be established. Formal power series are often used merely to represent the whole collection of their coefficients. In combinatorics, they provide representations of numerical sequences and of multisets, and for instance allow giving concise expressions for recursively defined sequences regardless of whether the recursion can be explicitly solved; this is known as the method of generating functions. Contents 1 Introduction 2 The ring of formal power series 2.1 Definition of the formal power series ring 2.1.1 Ring structure 2.1.2 Topological structure 2.1.3 Alternative topologies 2.2 Universal property 3 Operations on formal power series 3.1 Multiplying series 3.2 Power series raised to powers 3.3 Inverting series 3.4 Dividing series 3.5 Extracting coefficients 3.6 Composition of series 3.6.1 Example 3.7 Composition inverse 3.8 Formal differentiation of series 4 Properties 4.1 Algebraic properties of the formal power series ring 4.2 Topological properties of the formal power series
- 
												  5. Polynomial Rings Let R Be a Commutative Ring. a Polynomial of Degree N in an Indeterminate (Or Variable) X with Coefficients5. polynomial rings Let R be a commutative ring. A polynomial of degree n in an indeterminate (or variable) x with coefficients in R is an expression of the form f = f(x)=a + a x + + a xn, 0 1 ··· n where a0, ,an R and an =0.Wesaythata0, ,an are the coefficients of f and n ··· ∈ ̸ ··· that anx is the highest degree term of f. A polynomial is determined by its coeffiecients. m i n i Two polynomials f = i=0 aix and g = i=1 bix are equal if m = n and ai = bi for i =0, 1, ,n. ! ! Degree··· of a polynomial is a non-negative integer. The polynomials of degree zero are just the elements of R, these are called constant polynomials, or simply constants. Let R[x] denote the set of all polynomials in the variable x with coefficients in R. The addition and 2 multiplication of polynomials are defined in the usual manner: If f(x)=a0 + a1x + a2x + a x3 + and g(x)=b + b x + b x2 + b x3 + are two elements of R[x], then their sum is 3 ··· 0 1 2 3 ··· f(x)+g(x)=(a + b )+(a + b )x +(a + b )x2 +(a + b )x3 + 0 0 1 1 2 2 3 3 ··· and their product is defined by f(x) g(x)=a b +(a b + a b )x +(a b + a b + a b )x2 +(a b + a b + a b + a b )x3 + · 0 0 0 1 1 0 0 2 1 1 2 0 0 3 1 2 2 1 3 0 ··· Let 1 denote the constant polynomial 1 and 0 denote the constant polynomial zero.
- 
												  Separable Commutative Rings in the Stable Module Category of Cyclic GroupsSEPARABLE COMMUTATIVE RINGS IN THE STABLE MODULE CATEGORY OF CYCLIC GROUPS PAUL BALMER AND JON F. CARLSON Abstract. We prove that the only separable commutative ring-objects in the stable module category of a finite cyclic p-group G are the ones corresponding to subgroups of G. We also describe the tensor-closure of the Kelly radical of the module category and of the stable module category of any finite group. Contents Introduction1 1. Separable ring-objects4 2. The Kelly radical and the tensor6 3. The case of the group of prime order 14 4. The case of the general cyclic group 16 References 18 Introduction Since 1960 and the work of Auslander and Goldman [AG60], an algebra A over op a commutative ring R is called separable if A is projective as an A ⊗R A -module. This notion turns out to be remarkably important in many other contexts, where the module category C = R- Mod and its tensor ⊗ = ⊗R are replaced by an arbitrary tensor category (C; ⊗). A ring-object A in such a category C is separable if multiplication µ : A⊗A ! A admits a section σ : A ! A⊗A as an A-A-bimodule in C. See details in Section1. Our main result (Theorem 4.1) concerns itself with modular representation theory of finite groups: Main Theorem. Let | be a separably closed field of characteristic p > 0 and let G be a cyclic p-group. Let A be a commutative and separable ring-object in the stable category |G- stmod of finitely generated |G-modules modulo projectives.
- 
												  LIE ALGEBRAS of CHARACTERISTIC PLIE ALGEBRAS OF CHARACTERISTIC p BY IRVING KAPLANSKY(') 1. Introduction. Recent publications have exhibited an amazingly large number of simple Lie algebras of characteristic p. At this writing one cannot envisage a structure theory encompassing them all; perhaps it is not even sensible to seek one. Seligman [3] picked out a subclass corresponding almost exactly to the simple Lie algebras of characteristic 0. He postulated restrictedness and the possession of a nonsingular invariant form arising from a restricted repre- sentation. In this paper our main purpose is to weaken his hypotheses by omitting the assumption that the form arises from a representation. We find no new algebras for ranks one and two. On the other hand, it is known that new algebras of this kind do exist for rank three, and at that level the in- vestigation will probably become more formidable. For rank one we are able to prove more. Just on the assumption of a non- singular invariant form we find only the usual three-dimensional algebra to be possible. Assuming simplicity and restrictedness permits in addition the survival of the Witt algebra. Still further information on algebras of rank one is provided by Theorems 1, 2 and 4. Characteristics two and three are exceptions to nearly all the results. In those two cases we are sometimes able to prove more, sometimes less; for the reader's convenience, these theorems are assembled in an appendix. In addi- tion, characteristic five is a (probably temporary) exception in Theorem 7. Two remarks on style, (a) Several proofs are broken up into a series of lemmas.
- 
												  Lecture 2 : Algebraic Extensions I ObjectivesLecture 2 : Algebraic Extensions I Objectives (1) Main examples of fields to be studied. (2) The minimal polynomial of an algebraic element. (3) Simple field extensions and their degree. Key words and phrases: Number field, function field, algebraic element, transcendental element, irreducible polynomial of an algebraic element, al- gebraic extension. The main examples of fields that we consider are : (1) Number fields: A number field F is a subfield of C. Any such field contains the field Q of rational numbers. (2) Finite fields : If K is a finite field, we consider : Z ! K; (1) = 1. Since K is finite, ker 6= 0; hence it is a prime ideal of Z, say generated by a prime number p. Hence Z=pZ := Fp is isomorphic to a subfield of K. The finite field Fp is called the prime field of K: (3) Function fields: Let x be an indeteminate and C(x) be the field of rational functions, i.e. it consists of p(x)=q(x) where p(x); q(x) are poly- nomials and q(x) 6= 0. Let f(x; y) 2 C[x; y] be an irreducible polynomial. Suppose f(x; y) is not a polynomial in x alone and write n n−1 f(x; y) = y + a1(x)y + ··· + an(x); ai(x) 2 C[x]: By Gauss' lemma f(x; y) 2 C(x)[y] is an irreducible polynomial. Thus (f(x; y)) is a maximal ideal of C(x)[y]=(f(x; y)) is a field. K is called the 2 function field of the curve defined by f(x; y) = 0 in C .
- 
												  Section X.51. Separable ExtensionsX.51 Separable Extensions 1 Section X.51. Separable Extensions Note. Let E be a finite field extension of F . Recall that [E : F ] is the degree of E as a vector space over F . For example, [Q(√2, √3) : Q] = 4 since a basis for Q(√2, √3) over Q is 1, √2, √3, √6 . Recall that the number of isomorphisms of { } E onto a subfield of F leaving F fixed is the index of E over F , denoted E : F . { } We are interested in when [E : F ]= E : F . When this equality holds (again, for { } finite extensions) E is called a separable extension of F . Definition 51.1. Let f(x) F [x]. An element α of F such that f(α) = 0 is a zero ∈ of f(x) of multiplicity ν if ν is the greatest integer such that (x α)ν is a factor of − f(x) in F [x]. Note. I find the following result unintuitive and surprising! The backbone of the (brief) proof is the Conjugation Isomorphism Theorem and the Isomorphism Extension Theorem. Theorem 51.2. Let f(x) be irreducible in F [x]. Then all zeros of f(x) in F have the same multiplicity. Note. The following follows from the Factor Theorem (Corollary 23.3) and Theo- rem 51.2. X.51 Separable Extensions 2 Corollary 51.3. If f(x) is irreducible in F [x], then f(x) has a factorization in F [x] of the form ν a Y(x αi) , i − where the αi are the distinct zeros of f(x) in F and a F .
- 
												  Math 210B. Inseparable Extensions Since the Theory of Non-Separable Algebraic Extensions Is Only Non-Trivial in Positive CharactMath 210B. Inseparable extensions Since the theory of non-separable algebraic extensions is only non-trivial in positive characteristic, for this handout we shall assume all fields have positive characteristic p. 1. Separable and inseparable degree Let K=k be a finite extension, and k0=k the separable closure of k in K, so K=k0 is purely inseparable. 0 This yields two refinements of the field degree: the separable degree [K : k]s := [k : k] and the inseparable 0 degree [K : k]i := [K : k ] (so their product is [K : k], and [K : k]i is always a p-power). pn Example 1.1. Suppose K = k(a), and f 2 k[x] is the minimal polynomial of a. Then we have f = fsep(x ) pn where fsep 2 k[x] is separable irreducible over k, and a is a root of fsep (so the monic irreducible fsep is n n the minimal polynomial of ap over k). Thus, we get a tower K=k(ap )=k whose lower layer is separable and n upper layer is purely inseparable (as K = k(a)!). Hence, K=k(ap ) has no subextension that is a nontrivial n separable extension of k0 (why not?), so k0 = k(ap ), which is to say 0 pn [k(a): k]s = [k : k] = [k(a ): k] = deg fsep; 0 0 n [k(a): k]i = [K : k ] = [K : k]=[k : k] = (deg f)=(deg fsep) = p : If one tries to prove directly that the separable and inseparable degrees are multiplicative in towers just from the definitions, one runs into the problem that in general one cannot move all inseparability to the \bottom" of a finite extension (in contrast with the separability).
- 
												  Chapter 2 C -AlgebrasChapter 2 C∗-algebras This chapter is mainly based on the first chapters of the book [Mur90]. Material bor- rowed from other references will be specified. 2.1 Banach algebras Definition 2.1.1. A Banach algebra C is a complex vector space endowed with an associative multiplication and with a norm k · k which satisfy for any A; B; C 2 C and α 2 C (i) (αA)B = α(AB) = A(αB), (ii) A(B + C) = AB + AC and (A + B)C = AC + BC, (iii) kABk ≤ kAkkBk (submultiplicativity) (iv) C is complete with the norm k · k. One says that C is abelian or commutative if AB = BA for all A; B 2 C . One also says that C is unital if 1 2 C , i.e. if there exists an element 1 2 C with k1k = 1 such that 1B = B = B1 for all B 2 C . A subalgebra J of C is a vector subspace which is stable for the multiplication. If J is norm closed, it is a Banach algebra in itself. Examples 2.1.2. (i) C, Mn(C), B(H), K (H) are Banach algebras, where Mn(C) denotes the set of n × n-matrices over C. All except K (H) are unital, and K (H) is unital if H is finite dimensional. (ii) If Ω is a locally compact topological space, C0(Ω) and Cb(Ω) are abelian Banach algebras, where Cb(Ω) denotes the set of all bounded and continuous complex func- tions from Ω to C, and C0(Ω) denotes the subset of Cb(Ω) of functions f which vanish at infinity, i.e.
- 
												  Notes on the Chern-Character Maakestad H* Department of Mathematics, NTNU, Trondheim, NorwayTheory an ie d L A p d p Maakestad, J Generalized Lie Theory Appl 2017, 11:1 e l z i i c l a a t Journal of Generalized Lie r DOI: 10.4172/1736-4337.1000253 i o e n n s e G ISSN: 1736-4337 Theory and Applications Research Article Open Access Notes on the Chern-Character Maakestad H* Department of Mathematics, NTNU, Trondheim, Norway Abstract Notes for some talks given at the seminar on characteristic classes at NTNU in autumn 2006. In the note a proof of the existence of a Chern-character from complex K-theory to any cohomology Lie theory with values in graded Q-algebras equipped with a theory of characteristic classes is given. It respects the Adams and Steenrod operations. Keywords: Chern-character; Chern-classes; Euler classes; Singular H* : Top→−Q algebras cohomology; De Rham-cohomology; Complex K-theory; Adams operations; Steenrod operations from the category of topological spaces to the category of graded commutative Q-algebras with respect to continuous maps of topological Introduction spaces. We say the theory satisfy the projective bundle property if the The aim of this note is to give an axiomatic and elementary following axioms are satisfied: For any rankn complex continuous treatment of Chern-characters of vectorbundles with values in a vectorbundle E over a compact space B There is an Euler class. class of cohomology-theories arising in topology and algebra. Given ∈ 2 uE H (P(E)) (1) a theory of Chern-classes for complex vectorbundles with values in → singular cohomology one gets in a natural way a Chern-character from Where π:P(E) B is the projective bundle associated to E.
- 
												  Formal Power Series Rings, Inverse Limits, and I-Adic Completions of RingsFormal power series rings, inverse limits, and I-adic completions of rings Formal semigroup rings and formal power series rings We next want to explore the notion of a (formal) power series ring in finitely many variables over a ring R, and show that it is Noetherian when R is. But we begin with a definition in much greater generality. Let S be a commutative semigroup (which will have identity 1S = 1) written multi- plicatively. The semigroup ring of S with coefficients in R may be thought of as the free R-module with basis S, with multiplication defined by the rule h k X X 0 0 X X 0 ( risi)( rjsj) = ( rirj)s: i=1 j=1 s2S 0 sisj =s We next want to construct a much larger ring in which infinite sums of multiples of elements of S are allowed. In order to insure that multiplication is well-defined, from now on we assume that S has the following additional property: (#) For all s 2 S, f(s1; s2) 2 S × S : s1s2 = sg is finite. Thus, each element of S has only finitely many factorizations as a product of two k1 kn elements. For example, we may take S to be the set of all monomials fx1 ··· xn : n (k1; : : : ; kn) 2 N g in n variables. For this chocie of S, the usual semigroup ring R[S] may be identified with the polynomial ring R[x1; : : : ; xn] in n indeterminates over R. We next construct a formal semigroup ring denoted R[[S]]: we may think of this ring formally as consisting of all functions from S to R, but we shall indicate elements of the P ring notationally as (possibly infinite) formal sums s2S rss, where the function corre- sponding to this formal sum maps s to rs for all s 2 S.