Compression of an Ideal Gas As a Classroom Example of Reversible and Irreversible Processes*

Total Page:16

File Type:pdf, Size:1020Kb

Compression of an Ideal Gas As a Classroom Example of Reversible and Irreversible Processes* Int. J. Engng Ed. Vol. 16, No. 6, pp. 524±528, 2000 0949-149X/91 $3.00+0.00 Printed in Great Britain. # 2000 TEMPUS Publications. Compression of an Ideal Gas as a Classroom Example of Reversible and Irreversible Processes* DONALD R. OLANDER Department of Nuclear Engineering, University of California, Berkeley, CA 94707, USA. E-mail: [email protected] The distinction between reversible and irreversible compression of an ideal gas in a cylinder with a frictionless piston is analyzed quantitatively.Reversible compression is achieved by moving small masses appropriately distributed vertically onto the piston as it descends and compresses the gas.In the past, this example has been used pedagogically in qualitative form only.Reversibility is demonstrated in several ways, most notably by showing the equality of the work done on the system and the work done by the surroundings. INTRODUCTION receiving heat from a reservoir at some arbitrary temperature To. The work done by the imaginary OF ALL THE CONCEPTS in thermodynamics, heat engine represents the irreversibility of the the one that most distresses students in university actual process. courses on this subject is reversibility of a process The purpose of this paper is to analyze a simple and its counterpart irreversibility. Many of the two process used in many textbooks to illustrate rever- dozen or so textbooks dealing with engineering sible and irreversible paths between fixed initial thermodynamics that have been published in the and final states. Specifically, the process is past three decades treat this topic qualitatively, described quantitatively rather than qualitatively, mainly by listing common sources of irreversibility which has been the approach heretofore. The (friction, unrestrained gas expansion, heat quantitative analysis presented here may be too exchange over a non-zero temperature difference, detailed for undergraduate thermodynamics etc.). Also noted as conditions for reversibility are: courses, but it will at least deepen the instructor's understanding of the process. A limitation on the speed at which a process Wang's extension of the classic Carnot theory of takes place: change must be sufficiently slow heat engines (1) is a different example of an that the system maintains internal equilibrium advanced thermodynamic analysis intended for at all times. pedagogical use. Returning the system from its final state to its initial state by the same path must leave both system and surroundings unchanged. ISOTHERMAL COMPRESSION OF AN . Work done by (or on) the system must be equal IDEAL GAS to the work done on (or by) the surroundings. Other texts describe irreversibility as a feature of a The process referred to above takes place in a process that increases the entropy of the system cylinder with a frictionless piston. The system and its surroundings, with equilibration of an contained in the cylinder consists of a simple initially non-equilibrium vapor/liquid mixture in substance such as water or an ideal gas. The an isolated vessel and free expansion of an ideal surroundings provide a fixed external pressure gas into a vacuum as common examples. A third and a means of changing the force on the piston, method, favored by texts intended for mechanical usually by adding or removing weights. The or chemical engineers, defines irreversibility as the thermal surroundings may be either a temperature difference between the work that a process could reservoir for isothermal processes or thermal have produced had it been conducted reversibly insulation for adiabatic processes. and the work actually produced. The portion of Several authors have used this device as a means the entropy change produced by irreversibilities is of demonstrating the distinction between reversible replaced by reversible entropy added to the system and irreversible processes with common initial and as reject heat from an imagined ideal heat engine final states [2±5]. Figure 1 depicts the reversible and irreversible methods of compressing an ideal gas between specified initial and final volumes. In * Accepted 12 June 2000. [2±5], the discussions of these two versions were 524 Compression of an Ideal Gas as a Reversible and Irreversible Processes 525 Fig. 1. Isothermal compression of an ideal gas. qualitative. The objective of the present paper is to compression process, the conditions of external quantitatively demonstrate the following features equilibrium, namely: of the process: T Tsurr and p psurr jmg=A 1 1. In the reversible version, the work done by the surroundings is identical to the work done on are satisfied. In equations (1), Tsurr and psurr are, the system. respectively, the constant temperature and 2. The work done by the surroundings in the constant pressure of the surroundings. The irreversible process is numerically compared to number of small masses added to the piston is the work performed in the reversible process. denoted by j (0 j N), g is the acceleration of gravity, and A is the cross-sectional area of the In both cases shown in Fig. 1, a total mass M is piston. The p-V work done on the ideal gas during added to the top of the piston. The only difference the reversible, isothermal compression from initial between the two methods is the way that the mass and final volumes Vo and Vf is: is placed on the piston's pedestal. In the reversible V0 process, the mass M is divided into a large number V0 N of small masses m such that M=Nm. The small Wrev pdV nRT ln 2 Vf masses are slid on to the piston one at a time from Vf shelves at different elevations. In the irreversible The work done by the surroundings consists of the version, the entire mass M is placed on the piston sum of the p-V work on the piston by the external at once. pressure and the loss to gravitational potential of In both cases, the cylinder contains n moles of the small masses: and ideal gas and is immersed in a constant- temperature bath. The thermal reservoir removes Wsurr psurr V0 À Vf ÁEp 3 heat as the small weights are added to maintain the ÁEp is calculated by summing the changes in the gas at temperature T during the entire reversible potential energy of each small mass as it is slid process. In the irreversible process, only the horizontally onto the stack on the pedestal. initial and final states are at temperature T; Detailed calculation of ÁE given in the appendix these are equilibrium states of the gas whereas p shows that Wrev =Wsurr, so a criterion of the state depicted in the lower middle panel of reversibility is satisfied for this process. Fig. 1 is not. In addition, the process can be reversed by sequentially sliding the small masses off the pedes- Reversible compression tal at their original elevations. When the initial Sliding a small mass onto the pedestal causes the state is recovered, exactly the same amount of heat piston to very slightly compress the gas in the that was released by the compression process will cylinder. Each addition of a small mass approx- have been absorbed during the expansion process. imates an infinitesimal equilibrium stage so that Both system and surroundings will have been the overall process is reversible. At all points in the restored to their original states. 526 D.Olander IRREVERSIBLE COMPRESSION Comparing this equation with equation (2) for Vo/Vf = 3 (as an example) shows that the ratio When the entire mass M is placed on the piston, of the reversible work of compression to the as in the bottom of Fig. 1, the system is not in irreversible work is: equilibrium with the surroundings. The piston W ln 3 rapidly descends, oscillates as the gas acts as a rev 0:55 spring, and eventually settles down to the final Wirr 3 À 1 elevation. Although equation (2) does not apply to this situation (because the process is not internally That is, the surroundings need to supply only reversible), equation (3) does. In this case, the about one half as much work for the reversible process as it does for the irreversible process. potential energy loss ÁEp is easily determined from the elevation change of the large mass, which Finally, simply sliding the large mass off the is directly related to the volume change of the gas piston in the final state in the lower portion of Fig. 1 returns the system (gas plus piston) to its by Áh =(Vo ±Vf)/A. The work done by the surroundings in this irreversible process is: initial state but leaves the surroundings with the large mass at a lower elevation than it was initially. Wirr psurr Vo À Vf Mg Vo À Vf =A Both of these consequences are characteristic of an irreversible process. (Strictly speaking, the p-V work term in this equation does not apply because of internal irreversibililties in the atmosphere of the surround- ings as the piston oscillates to its final resting CONCLUSIONS position. However, the final results are a reason- able representation of the work done to the extent Reversible compression of an ideal gas in a that pf > psurr.) piston-cylinder apparatus by the distributed At the final equilibrium state, the force balance weight method has been analyzed quantitatively. on the piston gives: The objective was to add an analytical structure to this often-used pedagogical tool to aid students in pf À psurr Mg=A thermodynamics courses to better grasp the Combining these two equations and using the concepts of reversible and irreversible processes. ideal gas law yields: For the reversible compression process, the equality of work done on the system with that done by the surroundings is demonstrated. The V0 Wirr pf V0 À Vf pf Vf À 1 ratio of the reversible and irreversible work Vf requirements for the isothermal version of the V0 process is determined as a function of the nRT À 1 4 compression ratio.
Recommended publications
  • Chapter 3. Second and Third Law of Thermodynamics
    Chapter 3. Second and third law of thermodynamics Important Concepts Review Entropy; Gibbs Free Energy • Entropy (S) – definitions Law of Corresponding States (ch 1 notes) • Entropy changes in reversible and Reduced pressure, temperatures, volumes irreversible processes • Entropy of mixing of ideal gases • 2nd law of thermodynamics • 3rd law of thermodynamics Math • Free energy Numerical integration by computer • Maxwell relations (Trapezoidal integration • Dependence of free energy on P, V, T https://en.wikipedia.org/wiki/Trapezoidal_rule) • Thermodynamic functions of mixtures Properties of partial differential equations • Partial molar quantities and chemical Rules for inequalities potential Major Concept Review • Adiabats vs. isotherms p1V1 p2V2 • Sign convention for work and heat w done on c=C /R vm system, q supplied to system : + p1V1 p2V2 =Cp/CV w done by system, q removed from system : c c V1T1 V2T2 - • Joule-Thomson expansion (DH=0); • State variables depend on final & initial state; not Joule-Thomson coefficient, inversion path. temperature • Reversible change occurs in series of equilibrium V states T TT V P p • Adiabatic q = 0; Isothermal DT = 0 H CP • Equations of state for enthalpy, H and internal • Formation reaction; enthalpies of energy, U reaction, Hess’s Law; other changes D rxn H iD f Hi i T D rxn H Drxn Href DrxnCpdT Tref • Calorimetry Spontaneous and Nonspontaneous Changes First Law: when one form of energy is converted to another, the total energy in universe is conserved. • Does not give any other restriction on a process • But many processes have a natural direction Examples • gas expands into a vacuum; not the reverse • can burn paper; can't unburn paper • heat never flows spontaneously from cold to hot These changes are called nonspontaneous changes.
    [Show full text]
  • Thermodynamic Entropy As an Indicator for Urban Sustainability?
    Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 00 (2017) 000–000 www.elsevier.com/locate/procedia Urban Transitions Conference, Shanghai, September 2016 Thermodynamic entropy as an indicator for urban sustainability? Ben Purvisa,*, Yong Maoa, Darren Robinsona aLaboratory of Urban Complexity and Sustainability, University of Nottingham, NG7 2RD, UK bSecond affiliation, Address, City and Postcode, Country Abstract As foci of economic activity, resource consumption, and the production of material waste and pollution, cities represent both a major hurdle and yet also a source of great potential for achieving the goal of sustainability. Motivated by the desire to better understand and measure sustainability in quantitative terms we explore the applicability of thermodynamic entropy to urban systems as a tool for evaluating sustainability. Having comprehensively reviewed the application of thermodynamic entropy to urban systems we argue that the role it can hope to play in characterising sustainability is limited. We show that thermodynamic entropy may be considered as a measure of energy efficiency, but must be complimented by other indices to form part of a broader measure of urban sustainability. © 2017 The Authors. Published by Elsevier Ltd. Peer-review under responsibility of the organizing committee of the Urban Transitions Conference. Keywords: entropy; sustainability; thermodynamics; city; indicators; exergy; second law 1. Introduction The notion of using thermodynamic concepts as a tool for better understanding the problems relating to “sustainability” is not a new one. Ayres and Kneese (1969) [1] are credited with popularising the use of physical conservation principles in economic thinking. Georgescu-Roegen was the first to consider the relationship between the second law of thermodynamics and the degradation of natural resources [2].
    [Show full text]
  • The Concept of Irreversibility: Its Use in the Sustainable Development and Precautionary Principle Literatures
    The Electronic Journal of Sustainable Development (2007) 1(1) The concept of irreversibility: its use in the sustainable development and precautionary principle literatures Dr. Neil A. Manson* *Dr. Neil A. Manson is an assistant professor of philosophy at the University of Mississippi. Email: namanson =a= olemiss.edu (replace =a= with @) Writers on sustainable development and the Precautionary Principle frequently invoke the concept of irreversibil- ity. This paper gives a detailed analysis of that concept. Three senses of “irreversible” are distinguished: thermody- namic, medical, and economic. For each sense, an ontology (a realm of application for the term) and a normative status (whether the term is purely descriptive or partially evaluative) are identified. Then specific uses of “irreversible” in the literatures on sustainable development and the Precautionary Principle are analysed. The paper concludes with some advice on how “irreversible” should be used in the context of environmental decision-making. Key Words irreversibility; sustainability; sustainable development; the Precautionary Principle; cost-benefit analysis; thermody- namics; medicine; economics; restoration I. Introduction “idea people” as a political slogan (notice the alliteration in “compassionate conservatism”) with the content to be The term “compassionate conservatism” entered public provided later. The whole point of a political slogan is to consciousness during the 2000 U.S. presidential cam- tap into some vaguely held sentiment. Political slogans paign. It was created in response to the charge (made are not meant to be sharply defined, for sharp defini- frequently during the Reagan era, and repeated after the tions draw sharp boundaries and sharp boundaries force Republican takeover of Congress in 1994) that Repub- undecided voters out of one’s constituency.
    [Show full text]
  • The Influence of Thermodynamic Ideas on Ecological Economics: an Interdisciplinary Critique
    Sustainability 2009, 1, 1195-1225; doi:10.3390/su1041195 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Article The Influence of Thermodynamic Ideas on Ecological Economics: An Interdisciplinary Critique Geoffrey P. Hammond 1,2,* and Adrian B. Winnett 1,3 1 Institute for Sustainable Energy & the Environment (I•SEE), University of Bath, Bath, BA2 7AY, UK 2 Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK 3 Department of Economics, University of Bath, Bath, BA2 7AY, UK; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-12-2538-6168; Fax: +44-12-2538-6928. Received: 10 October 2009 / Accepted: 24 November 2009 / Published: 1 December 2009 Abstract: The influence of thermodynamics on the emerging transdisciplinary field of ‗ecological economics‘ is critically reviewed from an interdisciplinary perspective. It is viewed through the lens provided by the ‗bioeconomist‘ Nicholas Georgescu-Roegen (1906–1994) and his advocacy of ‗the Entropy Law‘ as a determinant of economic scarcity. It is argued that exergy is a more easily understood thermodynamic property than is entropy to represent irreversibilities in complex systems, and that the behaviour of energy and matter are not equally mirrored by thermodynamic laws. Thermodynamic insights as typically employed in ecological economics are simply analogues or metaphors of reality. They should therefore be empirically tested against the real world. Keywords: thermodynamic analysis; energy; entropy; exergy; ecological economics; environmental economics; exergoeconomics; complexity; natural capital; sustainability Sustainability 2009, 1 1196 ―A theory is the more impressive, the greater the simplicity of its premises is, the more different kinds of things it relates, and the more extended is its area of applicability.
    [Show full text]
  • Thermodynamics of Irreversible Processes. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes
    DOCUMENT RESUME ED 195 434 SE 033 595 AUTHOR Levin, Michael: Gallucci, V. F. TITLE Thermodynamics of Irreversible Processes. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes. TNSTITUTION Washington Univ., Seattle. Center for Quantitative Science in Forestry, Fisheries and Wildlife. SPONS AGENCY National Science Foundation, Washington, D.C. PUB DATE Oct 79 GRANT NSF-GZ-2980: NSF-SED74-17696 NOTE 87p.: For related documents, see SE 033 581-597. EDFS PRICE MF01/PC04 Plus Postage. DESCRIPTORS *Biology: College Science: Computer Assisted Instruction: Computer Programs: Ecology; Energy: Environmental Education: Evolution; Higher Education: Instructional Materials: *Interdisciplinary Approach; *Mathematical Applications: Physical Sciences; Science Education: Science Instruction; *Thermodynamics ABSTRACT These materials were designed to be used by life science students for instruction in the application of physical theory tc ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This module describes the application of irreversible thermodynamics to biology. It begins with explanations of basic concepts such as energy, enthalpy, entropy, and thermodynamic processes and variables. The First Principle of Thermodynamics is reviewed and an extensive treatment of the Second Principle of Thermodynamics is used to demonstrate the basic differences between reversible and irreversible processes. A set of theoretical and philosophical questions is discussed. This last section uses irreversible thermodynamics in exploring a scientific definition of life, as well as for the study of evolution and the origin of life. The reader is assumed to be familiar with elementary classical thermodynamics and differential calculus. Examples and problems throughout the module illustrate applications to the biosciences.
    [Show full text]
  • Equilibrium and Non-Equilibrium Thermodynamics: Concept of Entropy Part-2
    Equilibrium and Non-equilibrium Thermodynamics: Concept of Entropy Part-2 v Entropy Production v Onsager’s reciprocal relations Dr. Rakesh Kumar Pandey Associate Professor, Department of Chemistry MGCU, Bihar Numerical: Calculate the standard entropy change for the following process at 298 K: H2O(g)⟶H2O(l) o The value of the standard entropy change at room temperature, ΔS 298, is the difference between the standard entropy of the product, H2O(l), and the standard entropy of the reactant, H2O(g). o o o ΔS 298 = S 298(H2O (l))−S 298(H2O(g)) (70.0 Jmol−1K−1)−(188.8Jmol−1K−1) =−118.8 Jmol−1K−1 Use the data of Standard Molar Entropy Values of Selected Substances at 25°C to calculate ΔS° for each reaction. 1) H2(g)+1/2O2 (g)→H2O(l) 2) CH3OH(l) + HCl(g) → CH3Cl(g) + H2O(l) 3) H2(g) + Br2(l) → 2HBr(g) 4) Zn(s) + 2HCl(aq) → ZnCl2(s) + H2(g) For standard molar entropy values see the following webpage: https://www.chem.wisc.edu/deptfiles/genchem/netorial/modules/thermodynamics/table.htm Note: Students should also try more numerical questions Entropy Production: In a reversible process, net change in the entropy of the system and surroundings is zero therefore, it is only possible to produce entropy in an irreversible process. Entropy production (or generation) is the amount of entropy which is produced in any irreversible processes. This can be achieved via heat and mass transfer processes including motion of bodies, heat exchange, fluid flow, substances expanding or mixing, deformation of solids, and any irreversible thermodynamic cycle, including thermal machines such as power plants, heat engines, refrigerators, heat pumps, and air conditioners.
    [Show full text]
  • The Carnot Cycle, Reversibility and Entropy
    entropy Article The Carnot Cycle, Reversibility and Entropy David Sands Department of Physics and Mathematics, University of Hull, Hull HU6 7RX, UK; [email protected] Abstract: The Carnot cycle and the attendant notions of reversibility and entropy are examined. It is shown how the modern view of these concepts still corresponds to the ideas Clausius laid down in the nineteenth century. As such, they reflect the outmoded idea, current at the time, that heat is motion. It is shown how this view of heat led Clausius to develop the entropy of a body based on the work that could be performed in a reversible process rather than the work that is actually performed in an irreversible process. In consequence, Clausius built into entropy a conflict with energy conservation, which is concerned with actual changes in energy. In this paper, reversibility and irreversibility are investigated by means of a macroscopic formulation of internal mechanisms of damping based on rate equations for the distribution of energy within a gas. It is shown that work processes involving a step change in external pressure, however small, are intrinsically irreversible. However, under idealised conditions of zero damping the gas inside a piston expands and traces out a trajectory through the space of equilibrium states. Therefore, the entropy change due to heat flow from the reservoir matches the entropy change of the equilibrium states. This trajectory can be traced out in reverse as the piston reverses direction, but if the external conditions are adjusted appropriately, the gas can be made to trace out a Carnot cycle in P-V space.
    [Show full text]
  • Lecture 11 Second Law of Thermodynamics
    LECTURE 11 SECOND LAW OF THERMODYNAMICS Lecture instructor: Kazumi Tolich Lecture 11 2 ¨ Reading chapter 18.5 to 18.10 ¤ The second law of thermodynamics ¤ Heat engines ¤ Refrigerators ¤ Air conditions ¤ Heat pumps ¤ Entropy Second law of thermodynamics 3 ¨ The second law of thermodynamics states: Thermal energy flows spontaneously from higher to lower temperature. Heat engines are always less than 100% efficient at using thermal energy to do work. The total entropy of all the participants in any physical process cannot decrease during that process. Heat engines 4 ¨ Heat engines depend on the spontaneous heat flow from hot to cold to do work. ¨ In each cycle, the hot reservoir supplies heat �" to the engine which does work �and exhausts heat �$ to the cold reservoir. � = �" − �$ ¨ The energy efficiency of a heat engine is given by � � = �" Carnot’s theorem and maximum efficiency 5 ¨ The maximum-efficiency heat engine is described in Carnot’s theorem: If an engine operating between two constant-temperature reservoirs is to have maximum efficiency, it must be an engine in which all processes are reversible. In addition, all reversible engines operating between the same two temperatures, �$ and �", have the same efficiency. ¨ This is an idealization; no real engine can be perfectly reversible. ¨ The maximum efficiency of a heat engine (Carnot engine) can be written as: �$ �*+, = 1 − �" Quiz: 1 6 ¨ Consider the heat engine at right. �. denotes the heat extracted from the hot reservoir, and �/ denotes the heat exhausted to the cold reservoir in one cycle. What is the work done by this engine in one cycle in Joules? Quiz: 11-1 answer 7 ¨ 4000 J ¨ � = �.
    [Show full text]
  • Lecture 2: Reversibility and Work September 20, 2018 1 / 18 Some More Definitions?
    ...Thermodynamics Equilibrium implies the existence of a thermodynamic quantity Mechanical equilibrium implies Pressure Thermal Equilibrium implies Temperature Zeroth LAW of thermodynamics: There exists a single quantity which determines thermal equilibrium Named by RH Fowler, great great grandsupervisor to Prof Ackland Graeme Ackland Lecture 2: Reversibility and Work September 20, 2018 1 / 18 Some more definitions? Process: when the state variables change in time. Reversible Process: when every step for the system and its surroundings can be reversed. A reversible process involves a series of equilibrium states. Irreversible Process - when the direction of the arrow of time is important. IRREVERSIBILITY DEFINES THE CONCEPT OF TIME. Graeme Ackland Lecture 2: Reversibility and Work September 20, 2018 2 / 18 Reversible processes Reversible processes are quasistatic - system is in equilibrium and the trajectory can be drawn on a PV indicator diagram. Irreversible processes procede via non-equilibrium states, with gradients of T and P, where the system would continue to change if the external driving force is removed (e.g. stirring) It is possible to get between two states of a system by reversible OR irreversible process. The final state of the system is the same regardless of reversibility, but the surroundings are different. Graeme Ackland Lecture 2: Reversibility and Work September 20, 2018 3 / 18 How to tell if a process is reversible Consider a process between equilibrium endpoints (starting point and finishing point) eg compression of gas by a piston from state (P1,V1) to (P2, V2). For a reversible process, every (infinitesimal) step { for both the system and its surroundings { can be reversed.
    [Show full text]
  • Heat Engines ∆=+E QW Thermo Processes Int • Adiabatic – No Heat Exchanged
    Chapter 19 Heat Engines ∆=+E QW Thermo Processes int • Adiabatic – No heat exchanged – Q = 0 and ∆Eint = W • Isobaric – Constant pressure – W = P (Vf – Vi) and ∆Eint = Q + W • Isochoric – Constant Volume – W = 0 and ∆Eint = Q • Isothermal – Constant temperature V W= nRT ln i ∆Eint = 0 and Q = -W Vf C and C P V Note that for all ideal gases: where R = 8.31 J/mol K is the universal gas constant. Slide 17-80 Heat Engines Refrigerators Important Concepts 2nd Law: Perfect Heat Engine Can NOT exist! No energy is expelled to the cold reservoir It takes in some amount of energy and does an equal amount of work e = 100% It is an impossible engine No Free Lunch! Limit of efficiency is a Carnot Engine Reversible and Irreversible Processes The reversible process is an idealization. All real processes on Earth are irreversible. Example of an approximate reversible process: The gas is compressed isothermally The gas is in contact with an energy reservoir Continually transfer just enough energy to keep the temperature constant The change in entropy is equal to zero for a reversible process and increases for irreversible processes. Section 22.3 The Maximum Efficiency Qc TTcc =andec = 1 − QThh Th Qc Tc Qh Th COPC = = COPH = = W TThc− W TThc− Heat Engines . In a steam turbine of a modern power plant, expanding steam does work by spinning the turbine. The steam is then condensed to liquid water and pumped back to the boiler to start the process again. First heat is transferred to the water in the boiler to create steam, and later heat is transferred out of the water to an external cold reservoir, in the condenser.
    [Show full text]
  • Thermodynamics of Irreversible Processes Deals with Systems Which Are Not at Equilibrium but Are Nevertheless Stationary
    Materials Science & Metallurgy Part III Course M16 Materials Modelling H. K. D. H. Bhadeshia Lecture 11: Irreversible Processes Thermodynamics generally deals with measurable properties of materials, formulated on the basis of equilibrium. Thus, properties such as entropy and free energy are, on an appropriate scale, static and time–invariant during equilibrium. There are other parameters not relevant to the discussion of equilibrium: thermal conductivity, diffusivity and viscosity, but which are interesting because they can describe a second kind of time–independence, that of the steady– state (Denbigh, 1955). Thus, the concentration profile does not change during steady–state diffusion, even though energy is being dissipated by the diffusion. The thermodynamics of irreversible processes deals with systems which are not at equilibrium but are nevertheless stationary. The theory in effect uses thermodynamics to deal with kinetic phenomena. There is nevertheless, a distinction between the thermodynamics of irreversible processes and kinetics (Denbigh). The former applies strictly to the steady–state, whereas there is no such restriction on kinetic theory. Reversibility A process whose direction can be changed by an infinitesimal alteration in the external con- ditions is called reversible. Consider the example illustrated in Fig. 1, which deals with the response of an ideal gas contained at uniform pressure within a cylinder, any change being achieved by the motion of the piston. For any starting point on the P/V curve, if the applica- tion of an infinitesimal force causes the piston to move slowly to an adjacent position still on the curve, then the process is reversible since energy has not been dissipated.
    [Show full text]
  • Chapter 19 Chemical Thermodynamics
    Chapter 19 Chemical Thermodynamics Kinetics How fast a rxn. proceeds Equilibrium How far a rxn proceeds towards completion Thermodynamics Study of energy relationships & changes which occur during chemical & physical processes 1 A) First Law of Thermodynamics Law of Conservation of Energy : Energy can be neither created nor destroyed but may be converted from one form to another. Energy lost = Energy gained by system by surroundings 1) Internal Energy, E E = total energy of the system Actual value of E cannot be determined Only ΔE 2 2) Relating ΔE to Heat & Work 2 types of energy exchanges occur between system & surroundings Heat & Work + q : heat absorbed, endothermic ! q : heat evolved, exothermic + w : work done on the system ! w : work done by the system a) First Law ΔE = q + w 3 3) System and Surroundings System = portion we single out for study - focus attention on changes which occur w/in definite boundaries Surroundings = everything else System : Contents of rx. flask Surround. : Flask & everything outside it Agueous soln. rx : System : dissolved ions & molecules Surround : H2O that forms the soln. 4 B) Thermodynamic State & State Functions Thermodynamic State of a System defined by completely specifying ALL properites of the system - P, V, T, composition, physical st. 1) State Function prop. of a system determined by specifying its state. depends only on its present conditions & NOT how it got there ΔE = Efinal ! Einitial independent of path taken to carry out the change - Also is an extensive prop. 5 C) Enthalpy In ordinary chem. rx., work generally arises as a result of pressure-volume changes Inc.
    [Show full text]