Instability of Repetitive DNA Sequences: the Role of Replication in Multiple Mechanisms

Total Page:16

File Type:pdf, Size:1020Kb

Instability of Repetitive DNA Sequences: the Role of Replication in Multiple Mechanisms Colloquium Instability of repetitive DNA sequences: The role of replication in multiple mechanisms Malgorzata Bzymek* and Susan T. Lovett† Department of Biology and Rosenstiel Basic Medical Sciences Research, Center MS029, Brandeis University, 415 South Street, Waltham, MA 02454-9110 Rearrangements between tandem sequence homologies of various neuromuscular disorders, such as Fragile X, Huntington’s dis- lengths are a major source of genomic change and can be delete- ease, and myotonic muscular dystrophy, are associated with rious to the organism. These rearrangements can result in either expansion of a trinucleotide repeat array (8). Given that local deletion or duplication of genetic material flanked by direct se- rearrangements between dispersed or tandem repetitive se- quence repeats. Molecular genetic analysis of repetitive sequence quences contribute significantly to genetic instability in pro- instability in Escherichia coli has provided several clues to the karyotes and eukaryotes, an important question is whether there underlying mechanisms of these rearrangements. We present are underlying common mechanisms for these rearrangements. evidence for three mechanisms of RecA-independent sequence rearrangements: simple replication slippage, sister-chromosome Materials and Methods exchange-associated slippage, and single-strand annealing. We Bacterial Strains and Growth. All strains used are derived from the discuss the constraints of these mechanisms and contrast their E. coli K-12 strain AB1157 [FϪ thi-1 hisG4 ⌬(gpt-proA)62 argE3 properties with RecA-dependent homologous recombination. Rep- thr-1 leuB6 kdgK51 rfbD1 ara-14 lacY1 galK2 xyl-5 mtl-1 tsx-33 lication plays a critical role in the two slipped misalignment supE44 rpsL31 racϪ ␭Ϫ; ref. 9] and carry the additional mutant mechanisms, and difficulties in replication appear to trigger rear- alleles indicated. Experimental strains were constructed by P1 rangements via all these mechanisms. virA transduction (10). Details of the constructions are available on request from the authors and will be published elsewhere. LB ␮ ͞ n bacteria, systematic study of repetitive sequence instability medium was supplemented with 100 g ml ampicillin or 15 ␮ ͞ Ihas provided some insights into the molecular mechanisms of g ml tetracycline. repetitive sequence rearrangement. In this paper, we will review the genetic properties of tandem repeat rearrangements in Deletion Assays. Plasmid pMB301 was constructed by ligation of Ј Escherichia coli that are informative about the mechanisms of synthetic oligonucleotides of the sequence 5 GATCTTGGG these processes. Although repetitive sequences can rearrange to AGCTTGTTCT TGAGCATTCA AACTCCTAGA GGAA- Ј either increase or decrease the number of repetitive elements, GAAGAA CGTAGC and 5 GATCGCTACG TTCTTCTTCC the process of deletion of repeated DNA sequences has been TCTAGGAGTT TGAATGCTC AAGAACAAGC TCCCAA more widely characterized and will dominate our discussion. in the BglII site of pSTL57 (11). The appropriate construction Nonetheless, many of the properties of repeat amplification (or was confirmed by DNA sequence analysis. Deletion between the expansion) are similar to those defined for repeat deletion (1). 101-bp direct repeats in tetA on plasmids pSTL57 and pMB301 We will propose and contrast several molecular mechanisms by was assayed as described (11) by determination of the number of which tandem repeats rearrange: homologous recombination, tetracycline-resistant colony-forming units (cfu) in the ampicil- simple slipped misalignment, sister-chromosome slipped mis- lin-resistant population for a total of 8–64 independent isolates. alignment, and single-strand annealing. We present new data in Deletion rates were calculated by the method of the median (12) ϭ ͞ support of a single-strand annealing mechanism. The homolo- by using the following formula: deletion rate M N, where M gous recombination pathways have been well studied in E. coli is the calculated number of deletion events and N is the final r (2) and mediate interactions of repeated DNA in many contexts. average number of Ap cells in the 1-ml cultures. M is solved by This article will focus on the other more genetically elusive interpolation from experimental determination of r0, the median r ϭ ϩ molecular mechanisms. These mechanisms contribute to rear- number of Tc cells, by using the formula r0 M(1.24 lnM). A 95% confidence interval was determined as described (13). rangements between repeats found in direct orientation and COLLOQUIUM constitute the RecA-independent recombination pathways of E. coli. Discussion of RecA-independent recombination can be Linear Transformation Assays. Purified pSTL57 plasmid DNA found subsumed under the term ‘‘illegitimate’’ recombina- (prepared with miniprep kits from Qiagen, Chatsworth, CA) was tion—we favor the more descriptive and specific ‘‘RecA- subjected to digestion by BglII restriction endonuclease, which independent’’ recombination to denote these pathways. cleaves between the two 101-bp direct repeats in this plasmid. Rearrangements between repetitive sequence elements un- The linear fragment was isolated by agarose gel electorophoresis derlie many examples of genomic instability in both prokaryotes and purified (QIAquick gel purification kit from Qiagen). and eukaryotes. A large subset of mutations that inactivate genes Electroporation (ref. 14; Bio-Rad Gene Pulser) was used to are deletion events between two short regions of sequence homology, both in bacteria and in humans (3–5). In addition to This paper results from the National Academy of Sciences colloquium, ‘‘Links Between rearrangements between dispersed repeated DNA sequences, Recombination and Replication: Vital Roles of Recombination,’’ held November 10–12, instability of repeated sequences juxtaposed in tandem is also 2000, in Irvine, CA. observed. Rearrangements causing either addition or deletion of Abbreviations: ssDNA, single-strand DNA; DSB, double-strand break; SCE, sister-chromo- one or more of the sequence repeats can arise. In humans, some exchange. deletion or duplication between repeated DNA sequences con- *Present address: Department of Molecular and Cellular Biology, Harvard University, 7 tributes to human genetic disease, both of nuclear genes and in Divinity Avenue, Cambridge, MA 02138. the mitochondrial genome (4, 6, 7). Several genetically inherited †To whom reprint requests should be addressed. E-mail: [email protected]. www.pnas.org͞cgi͞doi͞10.1073͞pnas.111008398 PNAS ͉ July 17, 2001 ͉ vol. 98 ͉ no. 15 ͉ 8319–8325 Downloaded by guest on September 27, 2021 transform100 ng of cleaved and purified DNA into the appro- exhibit a Tex phenotype (30–32). The function of Uup is not priate bacterial strains. Uncut and purified pBR322 DNA was known but it appears to be a general suppressor of RecA- transformed in parallel as a control for the efficiency of trans- independent rearrangements because RecA-independent tan- formation. After serial dilution in 56͞2 buffer (15), the number dem repeat deletion (unassociated with transposons) is also of transformants was determined by plating on LB medium enhanced in uup mutants (32). Some tex mutants (including containing 100 ␮g͞ml ampicillin. Plating within experiments was those inactivating the dam mutHLS uvrD- dependent mismatch performed in duplicate. repair pathway) appear to be somewhat specific to transposon deletion, by stabilizing a mismatched stem-loop structure Results and Discussion formed by the long inverted repeats of the transposon (32), Homology-Dependent, RecA-Independent Recombination. Deletion which is stimulatory to the excision events. Other tex genes may or duplication of tandem repeat sequences in E. coli shows weak have more general effects on deletion, including ssb [single- or no dependence on RecA DNA pairing and strand exchange strand DNA (ssDNA) binding protein], topA (topoisomerase I), protein (11, 16–19). In contrast, homologous genetic recombi- polA (DNA polymerase I), and recBC (subunits of Exonuclease nation scored by conjugation crosses is highly dependent on the V). Increased persistence of ssDNA during replication (as in ssb RecA, with reductions by greater than five orders of magnitude or polA mutants) may encourage slipped mispairing (described seen in recA mutant strains (20). Although RecA-independent below). Mutations in topoisomerase I may increase the proba- tandem repeat rearrangements can occur between very short bility of secondary structure formation of the inverted repeats by regions of sequence homology, it is nonetheless homology- elevating supercoiling density. Inactivation of the potent driven. The homology dependence of repeat deletion is quite RecBCD exonuclease may encourage rearrangements by stabi- striking (16, 17, 21), with large repeats deleting at very high rates lizing broken DNA molecules (see below). in the population. So, although short sequence homologies suffer The role of special sequences in promoting high-efficiency deletion rarely, in the range of spontaneous point mutations, RecA-independent recombination is largely unexplored. Be- deletion of large repeats approaches the efficiency of homolo- cause many of the models for RecA-independent recombination gous RecA-dependent recombination. RecA-dependent recom- invoke strand displacement during DNA replication, replication bination of tandem repeats, on the other hand, appears to stall sites might be imagined to be hotspots for deletion. In require a threshold of minimal homology, although that minimal
Recommended publications
  • Chi Subunit of Polymerase III Holoenzyme May Have Function in Addition to Facilitating DNA Replication
    Chi Subunit of Polymerase III Holoenzyme May Have Function in Addition to Facilitating DNA Replication Master’s Thesis Presented to The Faculty of the Graduate School of Arts and Sciences Brandeis University Department of Biochemistry Dr. Susan Lovett, Advisor In Partial Fulfillment of the Requirements for the Degree Master of Science in Biochemistry by Taku Harada May 2018 Copyright by Taku Harada © 2018 Acknowledgments I would like to thank my advisor Dr. Susan Lovett. Thank you for sharing this opportunity to explore the E. coli genome with you. I had a wonderful experience. Along the way, your unwavering support and encouragement was irreplaceable. I am greatly fortunate and appreciative. Thank you to my mentor Dr. Alex Ferazzoli. No amount of words could ever describe the gratitude I have for you. You were a mentor for me in science and life. Thank you for always supporting and encouraging me to learn even if, at times, it meant failure. I attribute my success to your investment and confidence in me. Most importantly, your enthusiasm and joyous personality is inspirational and made every day a good day. Thank you to Ariana, Dr. Cooper, Laura, Vinny, Julie, McKay and everyone who worked in the Lovett lab during my stay. You all welcomed me in and provided a supportive environment that extended beyond the lab walls. I am very fortunate to have worked with all of you. Thank you to all my friends. Special thanks Adib, Eli, Jessie, and Rich. My four years at Brandeis have been phenomenal because of your support and motivation. I look forward to many more years of friendship.
    [Show full text]
  • DNA POLYMERASE III HOLOENZYME: Structure and Function of a Chromosomal Replicating Machine
    Annu. Rev. Biochem. 1995.64:171-200 Copyright Ii) 1995 byAnnual Reviews Inc. All rights reserved DNA POLYMERASE III HOLOENZYME: Structure and Function of a Chromosomal Replicating Machine Zvi Kelman and Mike O'Donnell} Microbiology Department and Hearst Research Foundation. Cornell University Medical College. 1300York Avenue. New York. NY }0021 KEY WORDS: DNA replication. multis ubuni t complexes. protein-DNA interaction. DNA-de penden t ATPase . DNA sliding clamps CONTENTS INTRODUCTION........................................................ 172 THE HOLO EN ZYM E PARTICL E. .......................................... 173 THE CORE POLYMERASE ............................................... 175 THE � DNA SLIDING CLAM P............... ... ......... .................. 176 THE yC OMPLEX MATCHMAKER......................................... 179 Role of ATP . .... .............. ...... ......... ..... ............ ... 179 Interaction of y Complex with SSB Protein .................. ............... 181 Meclwnism of the yComplex Clamp Loader ................................ 181 Access provided by Rockefeller University on 08/07/15. For personal use only. THE 't SUBUNIT . .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. 182 Annu. Rev. Biochem. 1995.64:171-200. Downloaded from www.annualreviews.org AS YMMETRIC STRUC TURE OF HOLO EN ZYM E . 182 DNA PO LYM ER AS E III HOLO ENZ YME AS A REPLIC ATING MACHINE ....... 186 Exclwnge of � from yComplex to Core .................................... 186 Cycling of Holoenzyme on the LaggingStrand
    [Show full text]
  • Connecting Replication and Repair: Yoaa, a Helicase-Related Protein, Promotes Azidothymidine Tolerance Through Association with Chi, an Accessory Clamp Loader Protein
    RESEARCH ARTICLE Connecting Replication and Repair: YoaA, a Helicase-Related Protein, Promotes Azidothymidine Tolerance through Association with Chi, an Accessory Clamp Loader Protein Laura T. Brown, Vincent A. Sutera, Jr., Shen Zhou, Christopher S. Weitzel¤, Yisha Cheng, Susan T. Lovett* a11111 Department of Biology and Rosenstiel Basic Medical Sciences Research Center MS029, Brandeis University, Waltham, Massachusetts, United States of America ¤ Current address: Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States of America * [email protected] OPEN ACCESS Abstract Citation: Brown LT, Sutera VA, Jr., Zhou S, Weitzel CS, Cheng Y, Lovett ST (2015) Connecting Elongating DNA polymerases frequently encounter lesions or structures that impede prog- Replication and Repair: YoaA, a Helicase-Related ress and require repair before DNA replication can be completed. Therefore, directing repair Protein, Promotes Azidothymidine Tolerance through Association with Chi, an Accessory Clamp Loader factors to a blocked fork, without interfering with normal replication, is important for proper Protein. PLoS Genet 11(11): e1005651. doi:10.1371/ cell function, and it is a process that is not well understood. To study this process, we have journal.pgen.1005651 employed the chain-terminating nucleoside analog, 3’ azidothymidine (AZT) and the E. coli Editor: Lyle A. Simmons, University of Michigan, genetic system, for which replication and repair factors have been well-defined. By using UNITED STATES high-expression suppressor screens, we identified yoaA, encoding a putative helicase, and Received: April 28, 2015 holC, encoding the Chi component of the replication clamp loader, as genes that promoted Accepted: October 14, 2015 tolerance to AZT.
    [Show full text]
  • Tobias Viehboeck1, Harald Gruber-Vodicka2, Patrick Hyden3, Thomas Rattei3, Silvia Bulgheresi1
    Genomics of marine nematode symbionts Tobias Viehboeck1, Harald Gruber-Vodicka2, Patrick Hyden3, Thomas Rattei3, Silvia Bulgheresi1 - Laxus oneistus and Robbea hypermnestrae, two free-living nematodes (subfamily Stilbonematinae) live in a binary symbiotic association with chemoautotrophic, S-oxidizing Gammaproteobacteria, Candidatus Thiosymbion oneisti and Ca. T. hypermnestrae, respectively rchaea Biology and Ecogenomics - Each symbiont 9sattached to the nematode cuticle by one pole as to ensheath its host VIENNA © U. Dirks © N. Leisch © N. Leisch © N. Leisch Laxus oneistus 150 µm Robbea hypermnestrae 150 µm Ca. Thiosymbion oneisti 2 µm Ca. Thiosymbion hypermnestrae 1 µm Illumina - Nanopore Hybrid assembly Single-cell sequencing - A single-worm metagenome was sequenced on Illumina HiSeq 2x100 bp, - FACS & WGA-XTM at the Bigelow SCGC assembled (SPAdes 3.11), binned with gbtools - 10 single-amplified genomes for sequencing on Illumina NextSeq 550 - A symbiont isolate was sequenced on a MinION (Oxford Nanopore 2x150 bp (12M reads/cell) Technologies, ONT) - thereof 3 for ONT sequencing A A A A A A A A A A A B A A A A A A A A A A A B A A A A A A A A A A A B A A A A A A A A A A A B - The Illumina assembly was scaffolded with ultra long reads 03:23 04:02 08:55 02:03 05:30 03:22 03:41 02:00 06:56 02:08 02:48 02:04 02:05 02:04 03:30 02:04 02:29 B A A A A A A A A A A B A A A A A A A A A A A B B A A A A A A A A A A B A A A A A A A A A A A B 09:24 03:57 02:25 03:19 02:22 02:24 02:14 02:06 02:33 02:45 03:24 02:47 02:03 01:57 02:30 02:35 01:44 10:18
    [Show full text]
  • Structure, Function, and Therapeutic Targeting of SSB Protein Interactions
    Structure, function, and therapeutic targeting of SSB protein interactions By Aimee H. Marceau A dissertation submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy (Microbiology) at the UNIVERSITY OF WISCONSIN-MADISON 2012 Date of final oral examination: 09/21/2012 The dissertation is approved by the following members of the Final Oral Committee: James L. Keck, Professor, Biomolecular Chemistry Joseph Dillard, Professor, Medical Microbiology & Immunology Michael Cox, Professor, Biochemistry Michael G. Thomas, Professor, Bacteriology Warren E. Rose, Professor, Pharmacy i Structure, function, and therapeutic targeting of SSB protein interactions Aimee Helen Marceau Under the supervision of Professor James L. Keck University of Wisconsin-Madison ABSTRACT DNA unwinding creates single-stranded (ss) DNA intermediates that serve as templates for diverse cellular functions. Exposed ssDNA results in two specific problems for the cell; first, ssDNA is thermodynamically less stable than dsDNA, which leads to spontaneous formation of duplex secondary structures that impede genome maintenance processes. Second, relative to dsDNA, ssDNA is hypersensitive to chemical and nucleolytic attacks that can cause damage to the genome. These potential problems are solved by encoding specialized ssDNA-binding proteins (SSBs) that bind to and stabilize ssDNA structures required for essential genomic processes. The SSB protein in bacteria contains two functionally distinct regions; the N-terminal oligonucleotide/oligosaccharide binding (OB) fold is responsible for oligomerization and ssDNA ii binding, while the flexible amphipathic C-terminal tail (SSB-Ct) is the site of its essential interactions with many proteins involved in DNA processing and genome maintenance. SSB is directly involved with the replication process in bacteria.
    [Show full text]
  • Purification of Escherichia Coli Yoaa, a Putative Helicase Master's Thesis
    Purification of Escherichia coli YoaA, a Putative Helicase Master’s Thesis Presented to The Faculty of the Graduate School of Arts and Sciences Brandeis University Department of Biochemistry Dr. Susan Lovett, Advisor In Partial Fulfillment of the Requirements for the Degree Master of Science in Biochemistry by Mark Gregory May 2019 Copyright by Mark Gregory © 2019 Acknowledgements I would like to thank my advisor Dr. Susan Lovett. Thank you for sharing with me the incredible opportunity to work in her laboratory. I am grateful for your patience, optimism, encouragement and knowledge throughout the entirety of my work at your laboratory. Thank you to my mentor Vincent Sutera. Thank you for the time and support you gave me in allowing me to develop as a scientist. You instilled in me the importance of being organized in my thinking when carrying out my experiments and devising the next plans of action. These are qualities that go beyond the laboratory setting and will stay with me for the rest of my life. I would also like to thank everyone who worked with me in the Lovett lab. You were all very welcoming and provided a supportive environment during my experience. Thank you to all my friends. Special thanks to Elena for motivation and support. Thank you to the faculty in the Biochemistry Department for nourishing my love of biochemistry throughout my research. Thank you to my family for encouraging me and providing me with the support to always be ambitious. iii ABSTRACT Purification of Escherichia coli YoaA, a Putative Helicase A thesis presented to the Department of Biochemistry Graduate School of Arts and Sciences Brandeis University Waltham, Massachusetts By Mark Gregory All cells must maintain their genomic integrity to survive.
    [Show full text]
  • Architecture and Conservation of the Bacterial DNA Replication Machinery, an Underexploited Drug Target
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Research Online University of Wollongong Research Online Faculty of Science - Papers (Archive) Faculty of Science, Medicine and Health 2012 Architecture and conservation of the bacterial DNA replication machinery, an underexploited drug target Andrew Robinson University of Wollongong, [email protected] Rebecca J. Causer University of Wollongong, [email protected] Nicholas E. Dixon University of Wollongong, [email protected] Follow this and additional works at: https://ro.uow.edu.au/scipapers Part of the Life Sciences Commons, Physical Sciences and Mathematics Commons, and the Social and Behavioral Sciences Commons Recommended Citation Robinson, Andrew; Causer, Rebecca J.; and Dixon, Nicholas E.: Architecture and conservation of the bacterial DNA replication machinery, an underexploited drug target 2012, 352-372. https://ro.uow.edu.au/scipapers/2996 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Architecture and conservation of the bacterial DNA replication machinery, an underexploited drug target Abstract "New antibiotics with novel modes of action are required to combat the growing threat posed by multi- drug resistant bacteria. Over the last decade, genome sequencing and other high-throughput techniques have provided tremendous insight into the molecular processes underlying cellular functions in a wide range of bacterial species. We can now use these data to assess the degree of conservation of certain aspects of bacterial physiology, to help choose the best cellular targets for development of new broad- spectrum antibacterials.
    [Show full text]
  • Characterization of Yoaa As It Relates to DNA Replication and Repair
    Characterization of YoaA as it Relates to DNA Replication and Repair Senior Thesis Presented to The Faculty of the School of Arts and Sciences Brandeis University Undergraduate Program in Biology Susan T. Lovett, Advisor In partial fulfillment of the requirements of the degree of Bachelor of Science by Gabriela Giordano May 2021 Copyright by Gabriela Giordano Acknowledgments I would like to thank my advisor Dr. Susan T. Lovett for all of the direction she provided throughout this project. I greatly appreciate the trust she put in me as a researcher in her lab and admire the supportive and engaging lab environment she has created. A big thank you goes to my mentor Vincent A. Sutera, whom I owe for almost everything I’ve learned as a member of the Lovett Lab. I appreciate him taking me on as a mentee and continuing to have faith in me until the end. He has always given me the opportunity to learn something new when I needed a challenge and has pushed me to become more independent in my work. A special thanks goes to David Glass who has answered every question I’ve ever had, taught me how to use the multiplate reader, and was always there for a good laugh. A final thank you goes to Yonatan Zur, without whom I could have never made it this far. Whether it was showing me where items in the lab are kept, taking plates out of the incubator, Sunday Zoom calls about experiments, or Saturday thesis work outside, I have always been able to count on Yonatan and could not possibly thank him enough.
    [Show full text]
  • The Topoisomerase IV Parc Subunit Colocalizes with the Caulobacter Replisome and Is Required for Polar Localization of Replication Origins
    The topoisomerase IV ParC subunit colocalizes with the Caulobacter replisome and is required for polar localization of replication origins Sherry C. Wang*† and Lucy Shapiro*‡ *Department of Developmental Biology, Stanford University School of Medicine, Beckman Center B300, 279 Campus Drive, Stanford, CA 94305; and †Cancer Biology Program, Stanford Medical School, Stanford, CA 94305 Contributed by Lucy Shapiro, April 9, 2004 The process of bacterial DNA replication generates chromosomal motile swarmer cell and a stalked cell (Fig. 1A). In the swarmer topological constraints that are further confounded by simulta- cell, which is unable to initiate DNA replication, the origin of neous transcription. Topoisomerases play a key role in ensuring replication is located at the flagellated pole (1). DNA replication orderly replication and partition of DNA in the face of a continu- initiates when the swarmer cell differentiates into a stalked cell ously changing DNA tertiary structure. In addition to topological and replisome components assemble onto the replication origin constraints, the cellular position of the replication origin is strictly at the stalked cell pole (14). A copy of the replicated origin controlled during the cell cycle. In Caulobacter crescentus, the moves rapidly to the pole opposite the stalk in what is thought origin of DNA replication is located at the cell pole. Upon initiation to be an active process [see the companion article by Viollier et of DNA replication, one copy of the duplicated origin sequence al. (15) in this issue of PNAS], and as DNA replication proceeds, rapidly appears at the opposite cell pole. To determine whether the the replisome progresses from the stalked pole to the division maintenance of DNA topology contributes to the dynamic posi- plane (14).
    [Show full text]
  • Systematic Identification of Synthetic Lethal Mutations With
    Genes Genet. Syst. (2016) 91, p. 183–188 Systematic identification of synthetic lethal mutations with reduced-genome Escherichia coli: synthetic genetic interactions among yoaA, xthA and holC related to survival from MMS exposure Keisuke Watanabe, Kento Tominaga, Maiko Kitamura and Jun-ichi Kato* Department of Biological Sciences, Graduate Schools of Science and Engineering, Tokyo Metropolitan University, Minamiohsawa, Hachioji, Tokyo 192-0397, Japan (Received 22 October 2015, accepted 25 January 2016; J-STAGE Advance published date: 2 May 2016) Reduced-genome Escherichia coli strains lacking up to 38.9% of the parental chromosome have been constructed by combining large-scale chromosome deletion mutations. Functionally redundant genes involved in essential processes can be systematically identified using these reduced-genome strains. One large-scale chromosome deletion mutation could be introduced into the wild-type strain but not into the largest reduced-genome strain, suggesting a synthetic lethal interac- tion between genes removed by the deletion and those already absent in the reduced-genome strain. Thus, introduction of the deletion mutation into a series of reduced-genome mutants could allow the identification of other chromosome deletion mutations responsible for the synthetic lethal phenotype. We identified a synthetic lethality caused by disruption of nfo and xthA, two genes encoding apurinic/apyrimidinic (AP) endonucleases involved in the DNA base excision repair pathway, and two other large-scale chromosome deletions. We constructed temperature-sensitive mutants harboring quadruple-deletion mutations in the affected genes/chromosome regions. Using these mutants, we identified two multi-copy suppressors: holC, encoding the chi subunit of DNA polymerase III, and yoaA, encoding a putative DNA helicase.
    [Show full text]
  • Supplementary Materials: Modular Diversity of the BLUF Proteins and Their Potential for the Development of Diverse Optogenetic Tools
    Appl. Sci. 2019, 9, x FOR PEER REVIEW 1 of 10 Supplementary Materials: Modular Diversity of the BLUF Proteins and Their Potential for the Development of Diverse Optogenetic Tools Manish Singh Kaushik, Ramandeep Sharma, Sindhu KandothVeetil, Sandeep Kumar Srivastava and Suneel Kateriya Table S1. String analysis [1] output showing the details of query proteins, domains, interacting proteins and annotated functions. S. No. Query protein Domain Interacting Partner Annotation JD73_03740 C-di-GMP phosphodiesterase YeaP Diguanylate cyclase JD73_23680 Diguanylate cyclase JD73_23675 Diguanylate cyclase YdaM Diguanylate cyclase EAL (Diguanylate 1. JD73_24940 AriR Regulator of acid resistance cyclase) YcgZ Two-component-system connector protein HTH-type transcriptional regulator, MerR YcgE domain protein JD73_25605 Regulatory protein MerR GJ12_01945 Transcriptional regulator AMSG_00147 Phosphodiesterase AMSG_00905 Phosphodiesterase AMSG_01576 Uncharacterized protein Adenylyl cyclase-associated protein belongs to AMSG_01591 the CAP family AMSG_04591 DNA-directed RNA polymerase subunit beta CHD (class III AMSG_08774 Uncharacterized protein 2. AMSG_04679 nucleotydyl cGMP-dependent 3',5'-cGMP cyclase) AMSG_08967 phosphodiesterase A Adenylate/guanylate cyclase with GAF and AMSG_09378 PAS/PAC sensor 3,4-dihydroxy-2-butanone 4-phosphate AMSG_10048 synthase AMSG_11978 DNA helicase Hhal_0366 Multi-sensor hybrid histidine kinase Hhal_0474 CheA signal transduction histidine kinase Hhal_0522 Putative CheW protein Hhal_0934 CheA signal transduction histidine
    [Show full text]
  • Identification, Isolation, and Overexpression of the Gene Encoding the * Subunit of DNA Polymerase III Holoenzyme JEFFREY R
    JOURNAL OF BACTERIOLOGY, Sept. 1993, p. 5604-5610 Vol. 175, No. 17 0021-9193/93/175604-07$02.00/0 Copyright © 1993, American Society for Microbiology Identification, Isolation, and Overexpression of the Gene Encoding the * Subunit of DNA Polymerase III Holoenzyme JEFFREY R. CARTER,' MARY ANN FRANDEN,1 RUEDI AEBERSOLD,2 AND CHARLES S. McHENRY'* Department ofBiochemistry, Biophysics and Genetics, The University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, Colorado 80262,1 and The Biomedical Research Centre and Department ofBiochemistry, University ofBritish Columbia, Vancouver, British Columbia, Canada, V6T 1Z32 Received 26 April 1993/Accepted 16 June 1993 The gene encoding the 4 subunit of DNA polymerase m holoenzyme, holD, was identified and isolated by an approach in which peptide sequence data were used to obtain a DNA hybridization probe. The gene, which maps to 99.3 centisomes, was sequenced and found to be identical to a previously uncharacterized open reading frame that overlaps the 5' end of riml by 29 bases, contains 411 bp, and is predicted to encode a protein of 15,174 Da. When expressed in a plasmid that also expressed hoiC, holD directed expression of the * subunit to about 3% of total soluble protein. DNA polymerase III holoenzyme (referred to here as contribution of X and 4, to holoenzyme requires purification holoenzyme) is the 10-subunit replicative enzyme of Esche- of large quantities of each subunit. In this report, we present richia coli. Several biochemical properties distinguish this a vital step toward this objective: the identification, isola- polymerase from the nonreplicative polymerases of E.
    [Show full text]