The Importance of Nama Group Sediments and Fossils to the Debate About Animal Origins Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Discovery of Bilaterian-Type Through-Guts in Cloudinomorphs from the Terminal Ediacaran Period
ARTICLE https://doi.org/10.1038/s41467-019-13882-z OPEN Discovery of bilaterian-type through-guts in cloudinomorphs from the terminal Ediacaran Period James D. Schiffbauer 1,2*, Tara Selly 1,2*, Sarah M. Jacquet 1, Rachel A. Merz3, Lyle L. Nelson4, Michael A. Strange5, Yaoping Cai6 & Emily F. Smith 4 The fossil record of the terminal Ediacaran Period is typified by the iconic index fossil Cloudina and its relatives. These tube-dwellers are presumed to be primitive metazoans, but resolving 1234567890():,; their phylogenetic identity has remained a point of contention. The root of the problem is a lack of diagnostic features; that is, phylogenetic interpretations have largely centered on the only available source of information—their external tubes. Here, using tomographic analyses of fossils from the Wood Canyon Formation (Nevada, USA), we report evidence of recog- nizable soft tissues within their external tubes. Although alternative interpretations are plausible, these internal cylindrical structures may be most appropriately interpreted as digestive tracts, which would be, to date, the earliest-known occurrence of such features in the fossil record. If this interpretation is correct, their nature as one-way through-guts not only provides evidence for establishing these fossils as definitive bilaterians but also has implications for the long-debated phylogenetic position of the broader cloudinomorphs. 1 Department of Geological Sciences, University of Missouri, Columbia, MO 65211, USA. 2 X-ray Microanalysis Core, University of Missouri, Columbia, MO 65211, USA. 3 Biology Department, Swarthmore College, Swarthmore, PA 19081, USA. 4 Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA. -
A Revised Morphology of Cloudina with Ecological and Phylogenetic Implications Andrew J
A Revised Morphology of Cloudina with Ecological and Phylogenetic Implications Andrew J. Miller Departments of Earth and Planetary Sciences and of History Harvard University, Cambridge, MA 02138 [email protected] Abstract The conventional view of the Ediacaran index fossil Cloudina, as proposed by Grant (1990), depicts the shell structure as a series of nested test tubes. A digital serial-reconstruction of Cloudina and examination of thin sections indicates that only the bottom-most tube has a bottom and that the shell wall structure is not as well defined as previously thought. The conventional ecological reconstruction, as proposed by Seilacher (1999), puts Cloudina in a microbial mat framework. Evidence from fossils in situ and from the shape of Cloudina suggests that this interpretation is incorrect. Rather, I propose that Cloudina lived on seaweeds in the reef environment. I also introduce a new mode of inference in determining shell orientation based on gravitational forces. Given the morphological evidence, Cloudina appears to be more similar to pogonophoran or annelid worms and less similar than previously thought to cnidarian corals. Introduction Life in the Precambrian is seen by many in a Hobbesian view—sessile, benthic, and short. While this may accurately describe the functional behavior of Ediacaran communities, it overlooks the significant metazoan diversity that was present there, for within the Ediacaran period the first metazoans entered the fossil record and diversified. Even though the presence of metazoans in the Ediacaran has been known for over thirty years, relatively little is known about their phylogenic affinities, their structure, and their role in the ecosystem. -
Ediacaran) of Earth – Nature’S Experiments
The Early Animals (Ediacaran) of Earth – Nature’s Experiments Donald Baumgartner Medical Entomologist, Biologist, and Fossil Enthusiast Presentation before Chicago Rocks and Mineral Society May 10, 2014 Illinois Famous for Pennsylvanian Fossils 3 In the Beginning: The Big Bang . Earth formed 4.6 billion years ago Fossil Record Order 95% of higher taxa: Random plant divisions domains & kingdoms Cambrian Atdabanian Fauna Vendian Tommotian Fauna Ediacaran Fauna protists Proterozoic algae McConnell (Baptist)College Pre C - Fossil Order Archaean bacteria Source: Truett Kurt Wise The First Cells . 3.8 billion years ago, oxygen levels in atmosphere and seas were low • Early prokaryotic cells probably were anaerobic • Stromatolites . Divergence separated bacteria from ancestors of archaeans and eukaryotes Stromatolites Dominated the Earth Stromatolites of cyanobacteria ruled the Earth from 3.8 b.y. to 600 m. [2.5 b.y.]. Believed that Earth glaciations are correlated with great demise of stromatolites world-wide. 8 The Oxygen Atmosphere . Cyanobacteria evolved an oxygen-releasing, noncyclic pathway of photosynthesis • Changed Earth’s atmosphere . Increased oxygen favored aerobic respiration Early Multi-Cellular Life Was Born Eosphaera & Kakabekia at 2 b.y in Canada Gunflint Chert 11 Earliest Multi-Cellular Metazoan Life (1) Alga Eukaryote Grypania of MI at 1.85 b.y. MI fossil outcrop 12 Earliest Multi-Cellular Metazoan Life (2) Beads Horodyskia of MT and Aust. at 1.5 b.y. thought to be algae 13 Source: Fedonkin et al. 2007 Rise of Animals Tappania Fungus at 1.5 b.y Described now from China, Russia, Canada, India, & Australia 14 Earliest Multi-Cellular Metazoan Animals (3) Worm-like Parmia of N.E. -
1 Revision 2 1 K-Bentonites
1 Revision 2 2 K-Bentonites: A Review 3 Warren D. Huff 4 Department of Geology, University of Cincinnati, Cincinnati, OH 45221 USA 5 Email: [email protected] 6 Keywords: K-bentonite, bentonite, tephra, explosive volcanism, volcanic ash 7 Abstract 8 Pyroclastic material in the form of altered volcanic ash or tephra has been reported and described 9 from one or more stratigraphic units from the Proterozoic to the Tertiary. This altered tephra, 10 variously called bentonite or K-bentonite or tonstein depending on the degree of alteration and 11 chemical composition, is often linked to large explosive volcanic eruptions that have occurred 12 repeatedly in the past. K-bentonite and bentonite layers are the key components of a larger group of 13 altered tephras that are useful for stratigraphic correlation and for interpreting the geodynamic 14 evolution of our planet. Bentonites generally form by diagenetic or hydrothermal alteration under 15 the influence of fluids with high Mg content and that leach alkali elements. Smectite composition is 16 partly controlled by parent rock chemistry. Studies have shown that K-bentonites often display 17 variations in layer charge and mixed-layer clay ratios and that these correlate with physical 18 properties and diagenetic history. The following is a review of known K-bentonite and related 19 occurrences of altered tephra throughout the time scale from Precambrian to Cenozoic. 20 Introduction 21 Volcanic eruptions are often, although by no means always, associated with a profuse output 22 of fine pyroclastic material, tephra. Tephra is a term used to describe all of the solid material 23 produced from a volcano during an eruption (Thorarinsson, 1944). -
Maritime Sediments and Atlantic Geology
Maritime Sediments and Atlantic Geology Vol. 20 APRIL, 1984 No. 1 Systematic ichnology of the Middle Ordovician Trenton Group. St. Lawrence Lowland, eastern Canada D. TjJULLon and R.H. PlcJayiAM De.pcvitmejtt o-fL Qe.o£ogy, llrviveju>-ULy o/ New Bnuru>uxick, T/iejd£JU-d.on, N.B. £38 5A3 Carbonate sediments of the upper Middle Ordovician Trenton Group between Montreal and Quebec City in the St. Lawrence Lowland, eastern Canada, contain a diverse and abundant trace fossil assemblage consisting of Arenicolites sp., ?Calycraterion sp., Chondrites spp., Circulichnis montanus, Clematis- chnia sp., ?Conostichnus sp., Cruziana problematica, Cruziana sp., cf. Diplichnites sp., Furculosus car- pathicus, Helminthopsis hieroglyphica, Helminthopsis sp., Oichnus paraboloides, Palaeophycus tubularis, Palaeophycus sp., ?Plagiogmus sp., Planolites beverleyensis, P. montanus, Planolites sp., ?Rhizocorallium cf. R. irregulare, ?Rosselia sp., Scalarituba misouriensis, Scolicia sp., Skolithos linearis, Skolithos sp., Teichichnus rectus, Teichichnus sp., Trichichnus sp., Trypanites weisei, Vermiforichnus clarkei and Zoo- phycos sp. as well as informally diagnosed loop, oblique and pronged burrows and bryozoan borings. Of these forms, only Chondrites spp., Palaeophycus tubularis, Palaeophycus sp., Planolites spp., Teichichnus spp. and Trypanites weisei are abundant; the remainder are rare to only moderately common. Neverthe- less, in this paper we describe all the trace fossils in detail and in doing so attempt to resolve several current and controversial problems of nomenclature regarding certain ichnogenera. Sediments of the Trenton Group were deposited initially in lagoons followed in turn by offshore "bar", shallow and, finally, deeper offshore shelf environments. The trace fossils do not exhibit significant variation with respect to these broad depositional regimes and, instead, each environment is character- ized by assemblages typical of the Cruziana ichnofacies as recognized in clastic sequences. -
Mcmenamin FM
The Garden of Ediacara • Frontispiece: The Nama Group, Aus, Namibia, August 9, 1993. From left to right, A. Seilacher, E. Seilacher, P. Seilacher, M. McMenamin, H. Luginsland, and F. Pflüger. Photograph by C. K. Brain. The Garden of Ediacara • Discovering the First Complex Life Mark A. S. McMenamin C Columbia University Press New York C Columbia University Press Publishers Since 1893 New York Chichester, West Sussex Copyright © 1998 Columbia University Press All rights reserved Library of Congress Cataloging-in-Publication Data McMenamin, Mark A. The garden of Ediacara : discovering the first complex life / Mark A. S. McMenamin. p. cm. Includes bibliographical references and index. ISBN 0-231-10558-4 (cloth) — ISBN 0–231–10559–2 (pbk.) 1. Paleontology—Precambrian. 2. Fossils. I. Title. QE724.M364 1998 560'.171—dc21 97-38073 Casebound editions of Columbia University Press books are printed on permanent and durable acid-free paper. Printed in the United States of America c 10 9 8 7 6 5 4 3 2 1 p 10 9 8 7 6 5 4 3 2 1 For Gene Foley Desert Rat par excellence and to the memory of Professor Gonzalo Vidal This page intentionally left blank Contents Foreword • ix Preface • xiii Acknowledgments • xv 1. Mystery Fossil 1 2. The Sand Menagerie 11 3. Vermiforma 47 4. The Nama Group 61 5. Back to the Garden 121 6. Cloudina 157 7. Ophrydium 167 8. Reunite Rodinia! 173 9. The Mexican Find: Sonora 1995 189 10. The Lost World 213 11. A Family Tree 225 12. Awareness of Ediacara 239 13. Revenge of the Mole Rats 255 Epilogue: Parallel Evolution • 279 Appendix • 283 Index • 285 This page intentionally left blank Foreword Dorion Sagan Virtually as soon as earth’s crust cools enough to be hospitable to life, we find evidence of life on its surface. -
New High‐Resolution Age Data from the Ediacaran–Cambrian Boundary Indicate Rapid, Ecologically Driven Onset of the Cambrian Explosion
Received: 14 June 2018 | Revised: 6 October 2018 | Accepted: 19 October 2018 DOI: 10.1111/ter.12368 PAPER New high‐resolution age data from the Ediacaran–Cambrian boundary indicate rapid, ecologically driven onset of the Cambrian explosion Ulf Linnemann1 | Maria Ovtcharova2 | Urs Schaltegger2 | Andreas Gärtner1 | Michael Hautmann3 | Gerd Geyer4 | Patricia Vickers-Rich5,6,7 | Tom Rich6 | Birgit Plessen8 | Mandy Hofmann1 | Johannes Zieger1 | Rita Krause1 | Les Kriesfeld7 | Jeff Smith7 1Senckenberg Collections of Natural History Dresden, Museum of Mineralogy Abstract and Geology, Dresden, Germany The replacement of the late Precambrian Ediacaran biota by morphologically disparate 2Département des Sciences de la Terre, animals at the beginning of the Phanerozoic was a key event in the history of life on University of Geneva, Genève, Switzerland ‐ 3Paläontologisches Institut und Museum, Earth, the mechanisms and the time scales of which are not entirely understood. A Zürich, Switzerland composite section in Namibia providing biostratigraphic and chemostratigraphic data 4 Bayerische Julius-Maximilians-Universität, bracketed by radiometric dating constrains the Ediacaran–Cambrian boundary to Lehrstuhl für Geodynamik und Geomaterialforschung, Würzburg, Germany 538.6–538.8 Ma, more than 2 Ma younger than previously assumed. The U–Pb‐CA‐ID 5Department of Chemistry and TIMS zircon ages demonstrate an ultrashort time frame for the LAD of the Ediacaran Biotechnology, Swinburne University of Technology, Melbourne (Hawthorne), biota to the FAD of a complex, burrowing Phanerozoic biota represented by trace fos- Victoria, Australia sils to a 410 ka time window of 538.99 ± 0.21 Ma to 538.58 ± 0.19 Ma. The extre- 6 Museums Victoria, Melbourne, Victoria, mely short duration of the faunal transition from Ediacaran to Cambrian biota within Australia less than 410 ka supports models of ecological cascades that followed the evolution- 7School of Earth, Atmosphere and Environment, Monash University, ary breakthrough of increased mobility at the beginning of the Phanerozoic. -
E:\Published Issues\Episodes\20
540 by Shuhai Xiao1, Guy M. Narbonne2, Chuanming Zhou3, Marc Laflamme4, Dmitriy V. Grazhdankin5, Malgorzata Moczydlowska-Vidal6, Huan Cui7 Towards an Ediacaran Time Scale: Problems, Protocols, and Prospects 1 Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA. E-mail: [email protected] 2 Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada 3 Key Laboratory of Economic Stratigraphy and Palaeogeography, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China 4 University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada 5 Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of the Russian Academy of Sciences, prospekt Akademika Koptyuga 3, Novosibirsk 630090, Russia 6 Department of Earth Sciences, Uppsala University, Villavägen 16, SE 752 36 Uppsala, Sweden 7 Department of Geoscience and NASA Astrobiology Institute, University of Wisconsin, Madison, Wisconsin 53706, USA (Received: 23/12/2015; Accepted: 4/9/2016) DOI:10.18814/epiiugs/2016/v39i4/103886 The Ediacaran Period follows the Cryogenian data to constrain the age, duration, and global extent of Period in the wake of a snowball Earth glaciation and the Shuram negative δ13C excursion, to calibrate and precedes the Cambrian Period with its rising tide of correlate Ediacaran acanthomorph biozones, and to animal radiation. It is also the longest among all determine the temporal relationship among the Shuram stratigraphically -
RELATING EDIACARAN FRONDS 1 T. Alexander Dececchi *, Guy M
1 RELATING EDIACARAN FRONDS 2 T. Alexander Dececchi *, Guy M. Narbonne, Carolyn Greentree, and Marc 3 Laflamme 4 T. Alexander Dececchi* and Guy M. Narbonne, Department of Geological Sciences 5 and Geological Engineering, Kingston, Queen's University, Ontario, K7L 3N6, Canada. 6 E-mail: [email protected], [email protected]. 7 Carolyn Greentree, School of Earth, Atmosphere and Environment, Monash 8 University, Clayton, Victoria, 3800, Australia. Email [email protected]. 9 Marc Laflamme. Department of Chemical and Physical Sciences, University of 10 Toronto, Mississauga, 3359 Mississauga Road, Mississauga, Ontario, L5L 1C6, 11 Canada. E-mail: [email protected]. 12 13 Abstract 14 Ediacaran fronds are key components of terminal-Proterozoic ecosystems. They 15 represent one of the most widespread and common body forms ranging across all 16 major Ediacaran fossil localities and time slices postdating the Gaskiers glaciation, 17 but uncertainty over their phylogenetic affinities has led to uncertainty over issues 18 of homology and functional morphology between, and within, organisms displaying 19 this ecomorphology. Here we present the first large scale, multi-group cladistic 20 analysis of Ediacaran organisms, sampling 20 ingroup taxa with previously asserted 21 affinities to the Arboreomorpha, Erniettomorpha and Rangeomorpha. Using a newly 22 derived morphological character matrix that incorporates multiple axes of potential 23 phylogenetically informative data, including architectural, developmental, and 24 structural qualities, we seek to illuminate the evolutionary history of these 25 organisms. We find strong support for existing classification schema and devise 26 apomorphy-based definitions for each of the three frondose clades examined here. 27 Through a rigorous cladistics framework it is possible to discern the pattern of 28 evolution within, and between, these clades, including the identification of 29 homoplasies and functional constraints. -
Ediacaran Metazoan Reefs from the Nama Group, Namibia
Edinburgh Research Explorer Ediacaran metazoan reefs from the Nama Group, Namibia Citation for published version: Penny, AM, Wood, R, Curtis, A, Bowyer, F, Tostevin, R & Hoffman, KH 2014, 'Ediacaran metazoan reefs from the Nama Group, Namibia', Science, vol. 344, no. 6191, pp. 1504-1506. https://doi.org/10.1126/science.1253393 Digital Object Identifier (DOI): 10.1126/science.1253393 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Science General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 28. Sep. 2021 Ediacaran metazoan reefs from the Nama Group, Namibia Author list Penny, A. M.1, Wood, R.1, Curtis, A.1, Bowyer, F.1, Tostevin, R.2 and Hoffman, K.- H.3 Affiliations 1 School of GeoSciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW, UK 2University College London, Department of Earth Sciences, Gower Street, London WC1E 6BT, UK 3Geological Survey of Namibia, Private Bag 13297, Windhoek, Namibia Abstract Reef-building in metazoans represents an important ecological innovation, whereby individuals collectively enhance feeding efficiency and gain protection from competitors and predation. -
SI Appendix Specimen Analysis for L-System Parameter Coding
SI Appendix Specimen analysis for L-system parameter coding Avalofractus abaculus Alternate, self-similar branching is visible in exceptionally preserved, three- dimensional specimens from Spaniard’s Bay, Newfoundland, described by Narbonne et al. (4). Measurements taken from Fig. 3.1 of Narbonne et al. (4) were used to code y-axis branching angles for the 1st order branches (n=16 measurements gave a mean of 38°) and 2nd order branches (mean=47°, n=24). Preservation and photographic image resolution are not sufficient to allow measurement of branching angles for branches of order greater than 2. In the absence of evidence to the contrary, branches of order ≥ 3 were coded as having y-axis branching angles self-similar to those of 2nd order branches. An x-axis rotation of 15° was used to model pivoting (4) of the branches relative to their axis. The frond shape is ovate (4), with width approximately 47% of height (excluding basal stem and holdfast). Specimens preserve between four and eight imbricate primary (1st order) branches on left and right sides of the main stem (4). These interrelated morphological features were modeled using a moderate lateral branching delay and a moderate increase in lateral branch elongation rate, relative to the stem (see Table S1 for parameter values). The imprint of a bulbous holdfast (modeled as a sphere) is visible in one specimen (Fig. S1D; Fig. 3.4 of (4)). Holdfast diameter measured from this specimen is approximately 38% of maximum frond width. 1 Fig. S1. Avalofractus abaculus. (A) Specimen from Spaniard’s Bay, Newfoundland. Image reproduced with permission from Narbonne et al. -
Deconstructing an Ediacaran Frond: Three-Dimensional Preservation of Arborea from Ediacara, South Australia
Journal of Paleontology, 92(3), 2018, p. 323–335 Copyright © 2018, The Paleontological Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted distribution, and reproduction in any medium, provided the original work is properly cited. 0022-3360/18/0088-0906 doi: 10.1017/jpa.2017.128 Deconstructing an Ediacaran frond: three-dimensional preservation of Arborea from Ediacara, South Australia Marc Laflamme,1 James G. Gehling,2 and Mary L. Droser3 1Department of Chemical and Physical Sciences, 3359 Mississauga Road, Mississauga, Ontario L5L 1C6, Canada 〈marc.lafl[email protected]〉 2South Australian Museum, North Terrace, Adelaide, South Australia 5000, Australia 〈[email protected]〉 3Department of Earth Sciences, University of California, Riverside, California 92521, USA 〈[email protected]〉 Abstract.—Exquisitely preserved three-dimensional examples of the classic Ediacaran (late Neoproterozoic; 570–541 Ma) frond Charniodiscus arboreus Jenkins and Gehling, 1978 (herein referred to as Arborea arborea Glaessner in Glaessner and Daily, 1959) are reported from the Ediacara Member, Rawnsley Quartzite of South Australia, and allow for a detailed reinterpretation of its functional morphology and taxonomy. New specimens cast in three dimensions within sandy event beds showcase detailed branching morphology that highlights possible internal features that are strikingly different from rangeomorph and erniettomorph fronds. Combined with dozens of well-preserved two-dimensional impressions from the Flinders Ranges of South Australia, morphological variations within the traditional Arborea morphotype are interpreted as representing various stages of external molding. In rare cases, taphomorphs (morphological variants attributable to preservation) represent composite molding of internal features consisting of structural supports or anchoring sites for branching structures.