Preliminary Bulk Density Mapping of the Upper and Lower Bakken Member Shales of Southeastern Saskatchewan: a Potential Indicator for Oil Generation and Expulsion

Total Page:16

File Type:pdf, Size:1020Kb

Preliminary Bulk Density Mapping of the Upper and Lower Bakken Member Shales of Southeastern Saskatchewan: a Potential Indicator for Oil Generation and Expulsion Preliminary Bulk Density Mapping of the Upper and Lower Bakken Member Shales of Southeastern Saskatchewan: A Potential Indicator for Oil Generation and Expulsion Dan Kohlruss 1 and Kosta Stamatinos 2 Kohlruss, D. and Stamatinos, K. (2014): Preliminary bulk density mapping of the Upper and Lower Bakken Member shales of southeastern Saskatchewan: a potential indicator for oil generation and expulsion; in Summary of Investigations 2014, Volume 1, Saskatchewan Geological Survey, Sask. Ministry of the Economy, Misc. Rep. 2014-4.1, Paper A-2, 7p. Abstract The use of bulk density coupled with formation resistivity of shale source rocks is a possible method of identifying the level of maturity of the rocks, and their potential for oil generation and oil expulsion. The Late Devonian to Early Mississippian Bakken Formation shales of the Williston Basin are extremely rich source rocks and in some areas of the basin have been responsible for generating and expelling vast amounts of oil. Migration of this oil into suitable stratigraphic traps has resulted in unprecedented economic gain in parts of Saskatchewan, Manitoba, North Dakota and Montana. Studies of the Bakken Formation in central Williston Basin in North Dakota have identified areas where its shales are, without question, thermally mature and have generated and expelled oil. However, Bakken Formation shales in northeastern Williston Basin in Saskatchewan have been examined and reported as being thermally immature, with no evidence of oil generation or expulsion. This paper will illustrate how mapping bulk density and formation resistivity has identified anomalous areas in southeast Saskatchewan where Bakken Formation shale source rocks may indeed be thermally mature and may indeed have expelled oil, contrary to previous studies’ findings. Keywords: Bakken Formation, source rocks, tight oil, bulk density, formation resistivity, Late Devonian, Early Mississippian, southeast Saskatchewan. 1. Introduction Southeastern Saskatchewan’s tight oil (low permeability) Bakken oil play has become an astonishing success story. Favourable economic conditions have enabled the use of horizontal wells combined with multistage fracturing to liberate oil from the Bakken’s extremely low permeability (<1 millidarcy (mD)) reservoir rocks in the Viewfield, Ryerson and Roche Percee oil pools (Figure 1). As of November 30, 2014 there were 2591 producing Bakken Formation oil wells in southeast Saskatchewan. Since 1956, Bakken wells have cumulatively produced 25.8 million cubic metres (m3) of oil at a current rate of 9754 m3/day. The majority of this production has occurred since 2005 and has been from the Viewfield oil pool. An emerging Bakken Formation and Torquay Formation (Bakken-sourced oil) oil play along the Saskatchewan– North Dakota–Montana border (Figure 1) has been of interest recently because it offers new opportunities for oil production from the Bakken. This emerging oil play is likely an extension of the Bakken shale oil play in North Dakota, in central Williston Basin, which is reliant on close vertical proximity of thermally mature Bakken shale source rocks and juxtaposed reservoir rocks, including Middle Bakken siltstones and sandstones as well as the Torquay’s silty dolostones. The location of the new production in Saskatchewan supports a theory that mature Bakken source rocks may extend farther north than previously thought. The purpose of this paper is to use non-standard techniques of bulk density and formation resistivity mapping to strengthen the theory that primary migration of oil from Upper and Lower Bakken shales into Middle Bakken siltstones and sandstones and Torquay Formation silty dolostones has occurred north of the Canada–US international border. 1 Saskatchewan Ministry of the Economy, Saskatchewan Geological Survey, 201 Dewdney Avenue East, Regina, SK S4N 4G3. 2 Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, SK S7N 5E2. Saskatchewan Geological Survey 1 Summary of Investigations 2014, Volume 1 Figure 1 – General location of the study area. The green polygons represent existing Bakken shale oil pools, while the region in red represents new Bakken Formation and Torquay Formation tight oil production along the Canada–US international border. Oil produced from the Torquay Formation is Bakken-sourced oil. Inset shows study area in the context of the location of the Williston Basin (thin black outline) and the Bakken Formation (Exshaw Formation in Alberta; area coloured in green). Abbreviations on inset: AB = Alberta, SASK = Saskatchewan, MAN = Manitoba, MT = Montana, ND = North Dakota. 2. Study Area The study area is bounded to the east by the Saskatchewan–Manitoba border, to the south by the Saskatchewan–US (North Dakota and Montana) international border, to the west by the Third Meridian (W3) and to the north by the northern boundary of Township 12 (Figure 1). The study area includes all Saskatchewan’s tight oil Bakken production. For the purposes of this paper, tight oil is defined as reservoirs with low permeability (<1 mD) that require horizontal drilling and multistage fracturing to stimulate production. 3. General Stratigraphy The Three Forks Group Bakken Formation is comprised of siltstone and sandstone (Middle Bakken Member) between upper and lower black, organic-rich shales (Upper and Lower Bakken members; Figure 2). The Bakken Formation overlies argillaceous siltstones and silty dolostones of the Devonian Torquay and Big Valley formations. Where present, the underlying Big Valley Formation is unconformable with the Lower Bakken Member shale (Christopher, 1961). Where the Torquay underlies the Bakken, the contact at the base of the Lower Bakken is relatively sharp and also unconformable. In the eastern portion of the study area (approximately Ranges 30 to 33W1M), the Lower Bakken and lowermost portion of the Middle Bakken are absent and the Middle Bakken is in sharp contact with Torquay Formation silty dolostones (Nickel, 2010). The Bakken Formation is overlain by organic-rich fossiliferous limestones of the Souris Valley Beds (Lodgepole Formation) of the Madison Group, which conformably overlie the Upper Bakken Member shale (Christopher, 1961). Saskatchewan Geological Survey 2 Summary of Investigations 2014, Volume 1 Figure 2 – Stratigraphic chart of the Devonian– Mississippian units within the Saskatchewan, Three Forks and Madison groups in southeast Saskatchewan (modified from Nickel, 2010). 4. Source Rock, Thermal Maturity and Primary versus Secondary Oil Migration in the Bakken Formation of Saskatchewan Oil in Saskatchewan’s Viewfield pool has been sourced from the Upper and Lower Bakken shales. The oil is not locally sourced, however (i.e., not primary), but has migrated up-dip from central Williston Basin in North Dakota, where the shales are known to be thermally mature and the majority of oil pools are a result of primary oil migration. The oil travelled northward into Saskatchewan and was stratigraphically trapped where the Middle Bakken Member reservoir rocks pinch out. The Bakken Upper and Lower shale members in Canada are comprised of highly organic, black, carbonaceous and pyritic shales with total organic carbon (TOC) contents averaging slightly less than 12% in the Lower Member and nearly 18% in the Upper Member (Kreis et al., 2006). Although areas in North Dakota have been identified as having thermally mature source rocks, it has been reported that the Upper and Lower Bakken Member shales are not thermally mature anywhere in Canada (Osadetz et al., 1992; Osadetz and Snowdon, 1995). The indicators of thermal maturity—Tmax and hydrogen index—reported for the Bakken shale in Saskatchewan have been found to be too low and too high, respectively, suggesting that Bakken shales in Saskatchewan have not generated or expelled oil. Drilling and production from the Bakken and Torquay formations along the Saskatchewan–US international border suggests otherwise, and perhaps unorthodox oil exploration techniques such as using shale resistivity and/or shale bulk density mapping could reveal possible thermal maturity in these rocks. a) Shale Resistivity and Oil Generation Several authors (e.g., Meissner, 1978; Schmoker and Hester, 1990; Kreis et al., 2006) have linked an increase in shale resistivity to either migrated (secondary) or generated (primary) oil within the Bakken Formation. In particular, the research undertaken by Schmoker and Hester (1990) found that resistivity values greater than 35 ohm-m in US Bakken shales correspond with the commencement of oil generation. b) Shale Bulk Density and Oil Maturity According to Jarvie et al. (2011) immature Bakken shales, like those found in Saskatchewan, are partially kerogen- supported, based on their high TOC, and subsequently have very low bulk density (< 2.00 to 2.10 grams per cubic centimetre (g/cc)). They state that, as the kerogen in the shale matures (that is, as increased burial depth results in increased temperature and pressure), it becomes pliable and loses strength. This will cause the kerogen to begin to convert to bitumen and oil. The development of pressure from this process can induce microfractures, and oil is expelled from the thermally weakened kerogen through these fractures. Eventually the kerogen compacts, resulting in Saskatchewan Geological Survey 3 Summary of Investigations 2014, Volume 1 an increase in the shale’s bulk density and an increase in oil content as the source rocks become progressively more mature. Jarvie et al.’s (2011) work
Recommended publications
  • Modern Shale Gas Development in the United States: a Primer
    U.S. Department of Energy • Office of Fossil Energy National Energy Technology Laboratory April 2009 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe upon privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. Modern Shale Gas Development in the United States: A Primer Work Performed Under DE-FG26-04NT15455 Prepared for U.S. Department of Energy Office of Fossil Energy and National Energy Technology Laboratory Prepared by Ground Water Protection Council Oklahoma City, OK 73142 405-516-4972 www.gwpc.org and ALL Consulting Tulsa, OK 74119 918-382-7581 www.all-llc.com April 2009 MODERN SHALE GAS DEVELOPMENT IN THE UNITED STATES: A PRIMER ACKNOWLEDGMENTS This material is based upon work supported by the U.S. Department of Energy, Office of Fossil Energy, National Energy Technology Laboratory (NETL) under Award Number DE‐FG26‐ 04NT15455. Mr. Robert Vagnetti and Ms. Sandra McSurdy, NETL Project Managers, provided oversight and technical guidance.
    [Show full text]
  • Bakken – the Biggest Oil Resource in the United States?
    Winter 2011 Oil & Natural Gas Program Newsletter Bakken – The Biggest Oil Resource in the United States? The announcement of the acquisition of large acreage positions in the Bakken play has become a fairly regular event. Leasing activity in the Bakken has exploded over the last five years and bonus payments per acre CONTENTS have jumped. Total lease bonus payments exceeded $100 million in 2009 (Figure 1). Bakken – The Biggest Oil Resource in the United States? ...1 The heightened acquisition activity is driven by the Bakken’s immense potential. In 2008, the United States Geological Survey (USGS) estimated Commentary ...................................2 that the U.S. portion of the Bakken formation contains between 3 and 4.3 Successful Oil Production in billion barrels (a mean of 3.63 billion barrels) of undiscovered, recoverable the Bakken Formation .................6 oil, ranking it among the very largest U.S. oil plays. The Bakken—An Unconventional Petroleum The number of producing wells and Reservoir System ................9 and volume of oil production has Crude Souring in the Bakken ....11 grown with the growth in leasing and drilling (Figure 2). Production Geomechanical Study has reached nearly 8 million barrels of the Bakken .................................13 per month from roughly 4500 Bakken Requires Outlet for producing wells. Increased Production ................. 16 E&P Snapshots ............................ 18 The Bakken Formation Upcoming Meetings and The Bakken petroleum system is Presentations ............................... 20 part of a larger depositional system CONTACTS laid down in the Williston Basin during the Phanerozoic period with Roy Long Figure 1: Lease payments in North Dakota’s portion sediments up to 16,000 feet thick.
    [Show full text]
  • Evolution of Oil Production in the Bakken Formation
    EvolutionEvolution ofof OilOil ProductionProduction inin thethe BakkenBakken FormationFormation JulieJulie A.A. LeFeverLeFever NorthNorth DakotaDakota GeologicalGeological SurveySurvey PlaysPlays ofof thethe BakkenBakken FormationFormation ¾¾ ConventionalConventional BakkenBakken (pre(pre--1987)1987) ¾¾ CycleCycle 11 –– AntelopeAntelope StructureStructure (1950s(1950s –– 60s)60s) ¾¾ CycleCycle 22 –– DepositionalDepositional EdgeEdge (1970s(1970s –– 80s)80s) ¾¾ HorizontalHorizontal DrillingDrilling ofof thethe BakkenBakken ShaleShale (post(post--1987)1987) ¾¾ HorizontalHorizontal DrillingDrilling ofof thethe BakkenBakken MiddleMiddle MemberMember (2001(2001 toto present)present) ConventionalConventional BakkenBakken CycleCycle 11 –– AntelopeAntelope FieldField ¾¾DiscoveryDiscovery WellWell ¾¾ StanolindStanolind -- #1#1 WoodrowWoodrow StarrStarr ¾¾ InitialInitial PotentialPotential (536(536 BO;BO; 0.10.1 BW)BW) ¾¾ AntelopeAntelope FieldField ¾¾ 5252 wells;wells; 12.512.5 millionmillion BO;BO; 1010 BCFBCF GasGas ¾¾ ““SanishSanish SandSand”” ¾¾ CompletionCompletion MethodMethod Conventional Bakken Exploration between Cycles ¾¾ElkhornElkhorn RanchRanch ¾¾ ShellShell OilOil Co.Co. -- #41X#41X--55--11 GovernmentGovernment ¾¾NessonNesson AnticlineAnticline ¾¾ #1#1 B.E.B.E. HoveHove ¾¾ IPIP -- 756756 BOPD,BOPD, 33 BWPDBWPD ¾¾ CompletionCompletion MethodMethod ConventionalConventional BakkenBakken CycleCycle 22 –– DepositionalDepositional LimitLimit ¾¾StratigraphyStratigraphy && StructureStructure ¾¾ ThinThin BakkenBakken ¾¾ MultipleMultiple PaysPays
    [Show full text]
  • L'.3350 Deposmon and DISSOLUTION of the MIDDLE DEVONIAN PRAIRIE FORMATION, Williston BASIN, NORTH DAKOTA and MONTANA By
    l'.3350 DEPOsmON AND DISSOLUTION OF THE MIDDLE DEVONIAN PRAIRIE FORMATION, WilLISTON BASIN, NORTH DAKOTA AND MONTANA by: Chris A. Oglesby T-3350 A thesis submined to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Master of Science (Geology). Golden, Colorado Date f:" /2 7 /C''i::-- i ; Signed: Approved: Lee C. Gerhard Thesis Advisor Golden, Colorado - 7 Date' .' Samuel S. Adams, Head Department of Geology and Geological Engineering II T-3350 ABSTRACf Within the Williston basin, thickness variations of the Prairie Formation are common and are interpreted to originate by two processes, differential accumulation of salt during deposition, and differential removal of salt by dissolution. Unambiguous evidence for each process is rare because the Prairie/Winnipegosis interval is seldom cored within the U.S. portion of the basin. Therefore indirect methods, utilizing well logs, provide the principal method for identifying characteristics of the two processes. The results of this study indicate that the two processes can be distinguished using correlations within the Prairie Formation. Several regionally correlative upward-brining, and probably shoaling-upward sequences occur within the Prairie Formation .. Near the basin center, the lowermost sequence is transitional with the underlying Winnipegosis Formation. This transition is characterized by thinly laminated carbonates that become increasingly interbedded with anhydrites of the basin-centered Ratner Member, the remainder of the sequence progresses up through halite and culminates in the halite-dominated Esterhazy potash beds. Two overlying sequences also brine upwards, however, these sequences lack the basal anhydrite and instead begin with halite and culminate in the Belle Plaine and Mountrail potash Members, respectively.
    [Show full text]
  • Case 21-10570-MFW Doc 257 Filed 04/14/21 Page 1 of 127 Case 21-10570-MFW Doc 257 Filed 04/14/21 Page 2 of 127
    Case 21-10570-MFW Doc 257 Filed 04/14/21 Page 1 of 127 Case 21-10570-MFW Doc 257 Filed 04/14/21 Page 2 of 127 Exhibit A Case 21-10570-MFW Doc 257 Filed 04/14/21 Page 3 of 127 Exhibit A Served via First-Class Mail Name Attention Address 1 Address 2 Address 3 City State Zip 110 42ND ST WEST LLC 8620 WOLFF CT WESTMINSTER CO 80031 1280 ROYALTIES LLC 5460 S QUEBEC ST STE 335 GREENWOOD VILLAGE CO 80111 13D RESEARCH LLC 6115 ESTATE SMITH BAY BOX 2 SUITE 333 ST THOMAS VI 00802 14 DEZAVALA LLC 14 DEZAVALA PL SAN ANTONIO TX 78231 24 HOUR FLEX & RPS PLAN ADMINISTRATORS P.O. BOX 561552 DENVER CO 80256 26TH STREET LIQUOR INC 105 26TH ST E WILLISTON ND 58801 3 FORKS SERVICES PO BOX 2594 WILLISTON ND 58802 361 SERVICES INC 1401 17TH ST STE 600 DENVER CO 80202 3LAND INC 3101 46TH AVE SE MANDAN ND 58554 42 INTERESTS LLC 2825 BLEDSOE ST FORT WORTH TX 76107 4J MINERAL TRUST DTD 5-25-11 LEONARD W JONES TRUSTEE 6735 59TH ST NW BERTHOLD ND 58718 LOUISE KADANE & MICHAEL L 4K TR PURSUANT DTD 3/1/70 GUSTAFSON TTEE 4809 COLE AVE STE 100 LB 114 DALLAS TX 75205 4TH DIMENSION SURVEYING & CONSULTING INC 14945 COCHISE ST WILLISTON ND 55801 801 LLC PO BOX 900 ARTESIA NM 88211-0900 829 CLINTON INVESTMENTS LLC- CASH SERIES 2 417 LATHROP UNIT 4W RIVER FOREST IL 60305 909 WIRT ROAD PARTNERS 909 WIRT ROAD HOUSTON TX 77024 A & A MARKET INC BOX 1 WILLISTON ND 58802-0001 A C WIENERS A DUANE AHMANN ADDRESS REDACTED A G FERGUSON & ASSOCIATES INC 219 W 11TH HOUSTON TX 77008 A GENE MARTIN FAMILY MINERAL TRUST GENE A AND GENE DAVID MARTIN TT 9021 SUTTERS GOLD DR SACRAMENTO CA 95826
    [Show full text]
  • Mannville Group of Saskatchewan
    Saskatchewan Report 223 Industry and Resources Saskatchewan Geological Survey Jura-Cretaceous Success Formation and Lower Cretaceous Mannville Group of Saskatchewan J.E. Christopher 2003 19 48 Printed under the authority of the Minister of Industry and Resources Although the Department of Industry and Resources has exercised all reasonable care in the compilation, interpretation, and production of this report, it is not possible to ensure total accuracy, and all persons who rely on the information contained herein do so at their own risk. The Department of Industry and Resources and the Government of Saskatchewan do not accept liability for any errors, omissions or inaccuracies that may be included in, or derived from, this report. Cover: Clearwater River Valley at Contact Rapids (1.5 km south of latitude 56º45'; latitude 109º30'), Saskatchewan. View towards the north. Scarp of Middle Devonian Methy dolomite at right. Dolomite underlies the Lower Cretaceous McMurray Formation outcrops recessed in the valley walls. Photo by J.E. Christopher. Additional copies of this digital report may be obtained by contacting: Saskatchewan Industry and Resources Publications 2101 Scarth Street, 3rd floor Regina, SK S4P 3V7 (306) 787-2528 FAX: (306) 787-2527 E-mail: [email protected] Recommended Citation: Christopher, J.E. (2003): Jura-Cretaceous Success Formation and Lower Cretaceous Mannville Group of Saskatchewan; Sask. Industry and Resources, Report 223, CD-ROM. Editors: C.F. Gilboy C.T. Harper D.F. Paterson RnD Technical Production: E.H. Nickel M.E. Opseth Production Editor: C.L. Brown Saskatchewan Industry and Resources ii Report 223 Foreword This report, the first on CD to be released by the Petroleum Geology Branch, describes the geology of the Success Formation and the Mannville Group wherever these units are present in Saskatchewan.
    [Show full text]
  • Bakken Production Optimization Program Executive Summary Years
    Bakken Production Optimization Program EXECUTIVE SUMMARY A premier public–private partnership harnessing the best minds in North Dakota and in industry to maximize productivity of the Bakken oil play while simultaneously reducing its environmental footprint. 2 BAKKEN PRODUCTION OPTIMIZATION PROGRAM This summary of Bakken Production Optimization Program (BPOP) achievements at the end of calendar year 2015 was produced at the request of the North Dakota Industrial Commission (NDIC) and the associated Oil and Gas Research Program, which funded a portion of the work performed in this program. This summary is intended for public distribution and is intended to relay the ongoing successes of this premier public–private partnership in advancing North Dakota’s economic and environmental interests directly related to exploration and production of oil from the Bakken and Three Forks Formations. EXECUTIVE SUMMARY 1 4 PROGRAM INTRODUCTION 6 Anticipated Outcomes 8 Partnership and Members 10 OPTIMIZATION OF WELLSITE OPERATIONS 12 Flaring Reduction 14 Water Opportunities Assessment 16 TENORM Waste Disposal 18 Spills Remediation 20 THE HAWKINSON PROJECT 23 Need for the Project 24 Industry Firsts 26 Results 27 Conclusions 28 PROGRAM WORK CONTINUES 2 BAKKEN PRODUCTION OPTIMIZATION PROGRAM BAKKEN PRODUCTION OPTIMIZATION PROGRAM EXECUTIVE SUMMARY 3 In June 2013, a consortium comprising the Energy & Environmental BAKKEN Research Center (EERC), Continental Resources, Inc., and several of the largest oil producers in the state was awarded North Dakota Oil PRODUCTION
    [Show full text]
  • Nano-Petrophysics Study of the Three Forks Formation in The
    NANO-PETROPHYSICS STUDY OF THE THREE FORKS FORMATION IN THE WILLISTON BASIN, NORTH DAKOTA, U.S.A. by DANIEL SAMUEL BAAH Presented to the Faculty of the Graduate School of The University of Texas at Arlington in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE IN GEOLOGY THE UNIVERSITY OF TEXAS AT ARLINGTON May 2015 Copyright © by Daniel Samuel Baah 2015 All Rights Reserved ii Acknowledgements I would like to begin by thanking God Almighty for His strength, love and grace throughout my research project. Special thanks to my supervisor Dr. Qinhong Hu and my other committee members, Dr. John Wickham and Dr. William Griffith for their support and guidance throughout the project. I would also like to thank the Ms. Julie LeFever and the staff of the Wilson M. Laird Core and Sample Library and the North Dakota Geological Survey for allowing me to use their facilities, photographs, and samples. Lastly, I would like to thank my parents and siblings for their persistent love and support throughout my lifetime of education. Their support in my educational pursuits, their suggestions to improve my work, and also the necessary tools I have needed to succeed in life have ultimately guided me to this point. April 3, 2015 iii Abstract NANO-PETROPHYSICS STUDY OF THE THREE FORKS FORMATION IN THE WILLISTON, NORTH DAKOTA, U.S.A. Daniel Samuel Baah, M.S. The University of Texas at Arlington, 2015 Supervising Professor: Max Qinhong Hu The Late Devonian Three Forks Formation has increasingly become one of the productive plays in the Williston Basin, North Dakota.
    [Show full text]
  • Williston Basin Project (Targeted Geoscience Initiative II): Summary Report on Paleozoic Stratigraphy, Mapping and Hydrocarbon A
    Williston Basin Project (Targeted Geoscience Initiative II): Summary report on Paleozoic stratigraphy, mapping and GP2008-2 hydrocarbon assessment, southwestern Manitoba By M.P.B. Nicolas and D. Barchyn GEOSCIENTIFIC PAPER Geoscientific Paper GP2008-2 Williston Basin Project (Targeted Geoscience Initiative II): Summary report on Paleozoic stratigraphy, mapping and hydrocarbon assessment, southwestern Manitoba by M.P.B. Nicolas and D. Barchyn Winnipeg, 2008, reprinted with minor revisions January, 2009 Science, Technology, Energy and Mines Mineral Resources Division Hon. Jim Rondeau John Fox Minister Assistant Deputy Minister John Clarkson Manitoba Geological Survey Deputy Minister E.C. Syme Director ©Queen’s Printer for Manitoba, 2008, reprinted with minor revisions, January 2009 Every possible effort is made to ensure the accuracy of the information contained in this report, but Manitoba Science, Technol- ogy, Energy and Mines does not assume any liability for errors that may occur. Source references are included in the report and users should verify critical information. Any digital data and software accompanying this publication are supplied on the understanding that they are for the sole use of the licensee, and will not be redistributed in any form, in whole or in part, to third parties. Any references to proprietary software in the documentation and/or any use of proprietary data formats in this release do not constitute endorsement by Manitoba Science, Technology, Energy and Mines of any manufacturer’s product. When using information from this publication in other publications or presentations, due acknowledgment should be given to the Manitoba Geological Survey. The following reference format is recommended: Nicolas, M.P.B, and Barchyn, D.
    [Show full text]
  • Infrastructure Constraints in the Bakken
    U.S. Department of Energy Washington, DC 20585 Date: August 8, 2014 To: Members of the Public From: Quadrennial Energy Review Task Force Secretariat and Energy Policy and Systems Analysis Staff, United States Department of Energy Re: QER Public Stakeholder Meeting: Infrastructure Constraints in the Bakken 1. Introduction On January 9, 2014, President Obama issued a Presidential Memorandum establishing a Quadrennial Energy Review (QER). The Secretary of Energy provides support to the QER Task Force, including coordination of activities related to the preparation of the QER report, policy analysis and modeling, and stakeholder engagement. On Friday, August 8, 2014, at 11:00 AM CDT at the Bismarck State College, National Energy Center of Excellence, Bavendick Stateroom (No. 415), located at 1200 Schafer Street, in Bismarck, North Dakota, the U.S. Department of Energy (DOE), acting as the Secretariat for the QER Task Force, will hold a public meeting to discuss and receive comments on issues surrounding the infrastructure constraints in further developing shale resources in the Bakken region. There will be an opportunity for public comment via an open microphone session following panel discussions. Written comments can be submitted to [email protected]. The session will also be webcast at www.energy.gov/live. 2. Background Over the past decade, the energy profile of the United States has undergone a dramatic transformation. A major component of this shift has been the ability to unlock fossil fuel resources from diverse shale formations around the country. America’s economy and infrastructure will continue to adapt to the abundance of accessible shale and natural gas resources and the decreased carbon emissions, lower imports, and enhanced industrial competitiveness.
    [Show full text]
  • Conodont Biostratigraphy of the Bakken and Lower Lodgepole Formations (Devonian and Mississippian), Williston Basin, North Dakota Timothy P
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects 1986 Conodont biostratigraphy of the Bakken and lower Lodgepole Formations (Devonian and Mississippian), Williston Basin, North Dakota Timothy P. Huber University of North Dakota Follow this and additional works at: https://commons.und.edu/theses Part of the Geology Commons Recommended Citation Huber, Timothy P., "Conodont biostratigraphy of the Bakken and lower Lodgepole Formations (Devonian and Mississippian), Williston Basin, North Dakota" (1986). Theses and Dissertations. 145. https://commons.und.edu/theses/145 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. CONODONT BIOSTRATIGRAPHY OF THE BAKKEN AND LOWER LODGEPOLE FORMATIONS (DEVONIAN AND MISSISSIPPIAN), WILLISTON BASIN, NORTH DAKOTA by Timothy P, Huber Bachelor of Arts, University of Minnesota - Morris, 1983 A Thesis Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Master of Science Grand Forks, North Dakota December 1986 This thesis submitted by Timothy P. Huber in partial fulfillment of the requirements for the Degree of Master of Science from the University of North Dakota has been read by the Faculty Advisory Committee under whom the work has been done, and is hereby approved. This thesis meets the standards for appearance and conforms to the style and format requirements of the Graduate School at the University of North Dakota and is hereby approved.
    [Show full text]
  • Geologic and Petrophysical Analysis of the Three Forks Formation: Charlson Field, Williston Basin - North Dakota Bailey Jo Bubach
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2015 Geologic And Petrophysical Analysis Of The Three Forks Formation: Charlson Field, Williston Basin - North Dakota Bailey Jo Bubach Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Bubach, Bailey Jo, "Geologic And Petrophysical Analysis Of The Three Forks Formation: Charlson Field, Williston Basin - North Dakota" (2015). Theses and Dissertations. 1748. https://commons.und.edu/theses/1748 This Thesis is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. GEOLOGIC AND PETROPHYSICAL ANALYSIS OF THE THREE FORKS FORMATION: CHARLSON FIELD, WILLISTON BASIN – NORTH DAKOTA by Bailey Jo Bubach Bachelor of Science, University of North Dakota, 2012 Master of Science, University of North Dakota, 2015 A Thesis Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Master of Science Grand Forks, North Dakota August 2015 PERMISSION Title Geologic and Petrophysical Analysis of the Three Forks Formation Charlson Field: Williston Basin - North Dakota Department Harold Hamm School of Geology and Geological Engineering Degree Master of Science In presenting this thesis in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection. I further agree that permission for extensive copying for scholarly purposes may be granted by the professor who supervised my thesis work or, in his absence, by the Chairperson of the department or the dean of the School of Graduate Studies.
    [Show full text]