The Acoela: on Their Kind and Kinships, Especially with Nemertodermatids and Xenoturbellids (Bilateria Incertae Sedis)

Total Page:16

File Type:pdf, Size:1020Kb

The Acoela: on Their Kind and Kinships, Especially with Nemertodermatids and Xenoturbellids (Bilateria Incertae Sedis) Org Divers Evol (2013) 13:267–286 DOI 10.1007/s13127-012-0112-4 REVIEW The Acoela: on their kind and kinships, especially with nemertodermatids and xenoturbellids (Bilateria incertae sedis) Johannes G. Achatz & Marta Chiodin & Willi Salvenmoser & Seth Tyler & Pedro Martinez Received: 19 April 2012 /Accepted: 12 September 2012 /Published online: 29 September 2012 # The Author(s) 2012. This article is published with open access at Springerlink.com Abstract Acoels are among the simplest worms and there- understanding these animals. Taking all available data into fore have often been pivotal in discussions of the origin of consideration, clear-cut conclusions cannot be made; howev- the Bilateria. Initially thought primitive because of their er, in our view it becomes successively clearer that acoelo- “planula-like” morphology, including their lumenless diges- morphs are a “basal” but “divergent” branch of the Bilateria. tive system, they were subsequently dismissed by many mor- phologists as a specialized clade of the Platyhelminthes. Keywords Acoelomorpha . Xenoturbella . Morphology . However, since molecular phylogenies placed them outside Development . Systematics . Phylogeny the Platyhelminthes and outside all other phyla at the base of the Bilateria, they became the focus of renewed debate and research. We review what is currently known of acoels, in- Introduction cluding information regarding their morphology, develop- ment, systematics, and phylogenetic relationships, and put Acoels are bilaterally symmetric, microscopic worms, typical- some of these topics in a historical perspective to show how ly in the millimeter-size range, that are found predominantly the application of new methods contributed to the progress in in benthic marine habitats. They can easily be recognized by the presence of a characteristic statocyst at the anterior end J. G. Achatz : M. Chiodin : P. Martinez (see sensory organs; Figs. 1, 2a, b, d). Most are translucent or Department of Genetics, University of Barcelona, somewhat milky, but some are colored by pigmentation, by Av. Diagonal, edifici annex, planta 2a, algal symbionts, or by glandular secretions called rhabdoids 08028 Barcelona, Spain (Figs. 1, 2a, b, 5a). Their body shapes correlate with their J. G. Achatz (*) : W. Salvenmoser habitat: species living in sand are long and slender, those mov- Department of Evolutionary Developmental Biology, ing on or in mud are compact and droplet-shaped, those moving University of Innsbruck, on or beneath stones and corals are broad and flat, epiphytic Technikerstrasse 25, species have ventrally enrolled sides, and pelagic species have a 6020 Innsbruck, Austria e-mail: [email protected] disc-shaped body or enrolled sides (Figs. 1, 3, 5a). Acoels are acoelomate, the space between gut and body S. Tyler wall being filled with parenchymal cells that occasionally School of Biology and Ecology, University of Maine, contain chordoid vacuoles and the insunk bodies of epidermal 5751 Murray Hall, ‘ ’ Orono, ME 04469, USA and gland cells. The name acoel comes from their lack of a cavity in the gut, which is typically a solid syncytium. P. Martinez (*) Of the nearly 400 described species (Tyler et al. 2012,The Institució Catalana de Recerca i Estudis Avançats (ICREA), Turbellarian Taxonomic Database, http://turbellaria.umaine. Passeig Lluís Companys, 23, – 08010 Barcelona, Spain edu; Wallberg 2012, The Stylet Diversity and Systematics e-mail: [email protected] of Acoela and Nemertodermatida, http://acoela.myspecies. 268 J.G. Achatz et al. at the tip where the doublets 4–7 terminate (Tyler 1979; Ehlers 1985; Smith and Tyler 1985a; Smith et al. 1986; Rieger et al. 1991). Even more distinctive of the cilia is their rootlet system, which interconnects them: from the major, rostrally directed rootlet on each cilium, two lateral rootlets project and connect to the tips of the adjacent cilia, and from a caudal rootlet two bundles of fibers project to join the knee-like bend of those same adjacent rootlets (Hendelberg and Hedlund 1974;see Fig. 1 F in Rieger et al. 1991). Glands Unicellular glands that typically richly populate the epidermis include the above-mentioned rhabdoid glands (Smith et al. 1982), which may be colored, and mucous glands. Glands occurring at special positions include sag- Fig. 1 Images of various live acoels found in a beaker of sublittoral ittocytes that produce needle-shaped extrusomes (sagitto- sand from the Indian Ocean. Animals are oriented with the anterior end cysts, Fig. 4c) predominantly near the reproductive organs; to the top. Note the statocyst in all and mature oocytes in some animals. prominent mucous glands of the frontal organ that discharge Scale bar: 200 μm together through a pore at the anterior terminal end of the body (Smith and Tyler 1985b, 1986; Klauser et al. 1986; info), by far the majority are free-living, but seven are para- Smith et al. 1986;Riegeretal.1991;Figs.2b, 3); and sites or endosymbionts in the digestive system of echinoderms frontal glands of a variety of types that discharge near the (Jennings 1971), and two are found in fresh water (Ax and anterior tip. The nuclei of all these gland cells with the Dörjes 1966; Faubel and Kolasa 1978). Their diet varies as exception of most pigment cells are usually positioned be- much as their habitat, ranging from bacteria and unicellular low the body-wall musculature. algae to crustaceans, small bivalves, and worms (including other acoels); some are known for cannibalism (e.g., Sensory organs Specifically distinctive of acoels, the stato- Conaperta flavibacillum). cyst comprises a lithocyte bearing one statolith encompassed in a capsule formed by two lining parietal cells (Ehlers 1985; Figs. 2d, 3, 4a). Occasionally, animals that have been repro- Morphology duced asexually may lack the statocyst (Hanson 1960, Hendelberg and Åkesson 1988; Åkesson et al. 2001; see Epidermis Like most microscopic worms, acoels move pre- Fig. 5a), whereas panther worms (Hofsteniidae) have been dominantly by ciliary gliding. The epidermis is multiciliated, reported to occasionally possess more statoliths after regener- and the cilia have the common configuration of nine periph- ation of the anterior body region (Steinböck 1966). eral microtubule doublets and two central microtubules (9×2 In a small percentage of species paired eyespots, which +2). The shape of the cilia is distinctive, having a marked shelf are probably photoreceptive, occur at the anterior end Fig. 2 Images of sensory structures of live Symsagittifera roscoffensis. eyes, white arrow to statocyst, black arrow to frontal organ. c Eye of an a Hatchling. Arrowheads point to eyes, arrow to statocyst. Note adult. Asterisk marks nucleus, arrowhead points to concrements. d absence of symbionts and presence of orange rhabdoids. b Anterior Statocyst of an adult. Abbreviations: l lithocyte; p parietal cells. Scale end of adult with symbionts and rhabdoids. White arrowheads point to bars: a 100 μm; b 50 μm; c 10 μm; d 10 μm The Acoela: on their kind and kinships 269 Fig. 3 Image of a mature and live specimen of Isodiametra pulchra without (left) and with superimposed colors (right)to illustrate the general morphology of acoels. From top to bottom: yellow: frontal organ (fo); red: nervous system (ns); green: central syncytium (cs); cyan: testes (t); pink: ovaries (o); gray: mouth; purple: female copulatory organs (fco) composed of seminal bursa, bursal nozzle, and vestibulum (from posterior to anterior); white: chordoid vacuoles (cv); blue: false seminal vesicles and prostatoid glands (fsv); orange: male copulatory organ (cop) composed of muscular seminal vesicle and invaginated penis. Scale bar: 100 μm (Figs. 2a, b, c). Lanfranchi (1990) described the eyespots of Mamkaev 1985), and such eyespots have subsequently been Otocelis rubropunctata as specialized epidermal cells with recognized to be characteristic for a derived group within the typical 9×2+2 cilia and with pigment granules and many Acoela, the Convolutida (Hooge and Tyler 2005; Achatz et synapses and axonemal outgrowths on the basal surface, but al. 2010). In all likelihood, many species of the Acoela can he was unable to prove photoreceptive function. Yamasu detect light (and behave accordingly) through photorecep- (1991) suggested the photoreceptive capacity of the eyes of tive sensory cells of the epidermis—cells that are difficult to Praesagittifera naikaiensis by relating experimental ablation identify because they are not accompanied by pigment cells. with behavioral assays. In this and some other species, the Other known sensory organs in acoels are single-celled eyespots don’t have ciliary or rhabdomeric elements but receptors, which are mostly monociliary. These can be clas- consist of a pigment cell containing a vacuole with refractive sified into several types on a morphological basis (Todt and inclusions called concrements and up to three nerve cells to Tyler 2007 and references therein), each type occurring in a relay the stimulus. The same configuration of cells has also specific region of the body that is species-specific (Todt and long been known in Convoluta convoluta (Popova and Tyler 2007; Bery et al. 2010). Fig. 4 Electron micrographs of structures with phylogenetic signifi- apparatus of Convolutriloba hastifera consisting of a sagittocyst (black cance. a Statocyst of a hatchling of Isodiametra pulchra with two arrowhead) and a wrapping muscle mantle. Abbreviations: m muscle parietal cells (p) and a lithocyte (l). b Sperm of Convoluta niphoni mantle; n nucleus of muscle mantle; rb refractive body; p parietal cell. (Convolutidae) with axial microtubules (white arrow) and axonemes Scale bars: a 4 μm; b 0.5 μm; c 2 μm without central microtubules (white arrowheads). c Extrusion 270 J.G. Achatz et al. Fig. 5 a Image of a live specimen of Convolutriloba retrogemma reproducing asexually by budding. White arrowheads point to buds. Note the reversed polarity. b, c CLSM projections showing muscles (blue) and serotonin- like immunoreactive nervous system (red) in dorsal (b) and central (c) planes of a mature Isodiametra pulchra. White arrowheads point to neurite bundles, asterisk marks the position of the statocyst.
Recommended publications
  • Platyhelminthes, Nemertea, and "Aschelminthes" - A
    BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol. III - Platyhelminthes, Nemertea, and "Aschelminthes" - A. Schmidt-Rhaesa PLATYHELMINTHES, NEMERTEA, AND “ASCHELMINTHES” A. Schmidt-Rhaesa University of Bielefeld, Germany Keywords: Platyhelminthes, Nemertea, Gnathifera, Gnathostomulida, Micrognathozoa, Rotifera, Acanthocephala, Cycliophora, Nemathelminthes, Gastrotricha, Nematoda, Nematomorpha, Priapulida, Kinorhyncha, Loricifera Contents 1. Introduction 2. General Morphology 3. Platyhelminthes, the Flatworms 4. Nemertea (Nemertini), the Ribbon Worms 5. “Aschelminthes” 5.1. Gnathifera 5.1.1. Gnathostomulida 5.1.2. Micrognathozoa (Limnognathia maerski) 5.1.3. Rotifera 5.1.4. Acanthocephala 5.1.5. Cycliophora (Symbion pandora) 5.2. Nemathelminthes 5.2.1. Gastrotricha 5.2.2. Nematoda, the Roundworms 5.2.3. Nematomorpha, the Horsehair Worms 5.2.4. Priapulida 5.2.5. Kinorhyncha 5.2.6. Loricifera Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS This chapter provides information on several basal bilaterian groups: flatworms, nemerteans, Gnathifera,SAMPLE and Nemathelminthes. CHAPTERS These include species-rich taxa such as Nematoda and Platyhelminthes, and as taxa with few or even only one species, such as Micrognathozoa (Limnognathia maerski) and Cycliophora (Symbion pandora). All Acanthocephala and subgroups of Platyhelminthes and Nematoda, are parasites that often exhibit complex life cycles. Most of the taxa described are marine, but some have also invaded freshwater or the terrestrial environment. “Aschelminthes” are not a natural group, instead, two taxa have been recognized that were earlier summarized under this name. Gnathifera include taxa with a conspicuous jaw apparatus such as Gnathostomulida, Micrognathozoa, and Rotifera. Although they do not possess a jaw apparatus, Acanthocephala also belong to Gnathifera due to their epidermal structure. ©Encyclopedia of Life Support Systems (EOLSS) BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS – Vol.
    [Show full text]
  • Spermiogenesis in the Acoel Symsagittifera Roscoffensis: Nucleus-Plasma
    bioRxiv preprint doi: https://doi.org/10.1101/828251; this version posted November 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Spermiogenesis in the acoel Symsagittifera roscoffensis: nucleus-plasma membrane contact sites and microtubules. Matthew J. Hayes1, Anne-C. Zakrzewski2, Tim P. Levine1 and Maximilian J. Telford2 1University College London Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK 2 Centre for Life’s Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK Running title: Contact sites and microtubule rearrangements in spermiogenesis Summary sentence: During spermiogenesis in the acoel flatworm Symsagittifera roscoffensis, two previously unidentified contact sites contribute to the structure of the mature spermatozoon and the axonemal structures show direct continuity between doublet and dense core microtubules. Keywords: Contact-site, acrosome, gamete biology, spermatid, spermatogenesis, spermiogenesis, acoel. bioRxiv preprint doi: https://doi.org/10.1101/828251; this version posted November 1, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Symsagittifera roscoffensis is a small marine worm found in the intertidal zone of sandy beaches around the European shores of the Atlantic. S. roscoffensis is a member of the Acoelomorpha, a group of flatworms formerly classified with the Platyhelminthes, but now recognised as Xenacoelomorpha, a separate phylum of disputed affinity.
    [Show full text]
  • Xenacoelomorpha's Significance for Understanding Bilaterian Evolution
    Available online at www.sciencedirect.com ScienceDirect Xenacoelomorpha’s significance for understanding bilaterian evolution Andreas Hejnol and Kevin Pang The Xenacoelomorpha, with its phylogenetic position as sister biology models are the fruitfly Drosophila melanogaster and group of the Nephrozoa (Protostomia + Deuterostomia), plays the nematode Caenorhabditis elegans, in which basic prin- a key-role in understanding the evolution of bilaterian cell types ciples of developmental processes have been studied in and organ systems. Current studies of the morphological and great detail. It might be because the field of evolutionary developmental diversity of this group allow us to trace the developmental biology — EvoDevo — has its origin in evolution of different organ systems within the group and to developmental biology and not evolutionary biology that reconstruct characters of the most recent common ancestor of species under investigation are often called ‘model spe- Xenacoelomorpha. The disparity of the clade shows that there cies’. Criteria for selected representative species are cannot be a single xenacoelomorph ‘model’ species and primarily the ease of access to collected material and strategic sampling is essential for understanding the evolution their ability to be cultivated in the lab [1]. In some cases, of major traits. With this strategy, fundamental insights into the a supposedly larger number of ancestral characters or a evolution of molecular mechanisms and their role in shaping dominant role in ecosystems have played an additional animal organ systems can be expected in the near future. role in selecting model species. These arguments were Address used to attract sufficient funding for genome sequencing Sars International Centre for Marine Molecular Biology, University of and developmental studies that are cost-intensive inves- Bergen, Thormøhlensgate 55, 5008 Bergen, Norway tigations.
    [Show full text]
  • Zootaxa, Platyhelminthes, Acoela, Acoelomorpha, Convolutidae
    Zootaxa 1008: 1–11 (2005) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1008 Copyright © 2005 Magnolia Press ISSN 1175-5334 (online edition) Waminoa brickneri n. sp. (Acoela: Acoelomorpha) associated with corals in the Red Sea MAXINA V. OGUNLANA1, MATTHEW D. HOOGE1,4, YONAS I. TEKLE3, YEHUDA BENAYAHU2, ORIT BARNEAH2 & SETH TYLER1 1Department of Biological sciences, The University of Maine, 5751 Murray Hall, Orono, ME 04469-5751, USA., e-mail: [email protected], [email protected], [email protected] 2 Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv, 69978, Israel., e-mail: [email protected] 3 Department of Systematic Zoology, Evolutionary Biology Centre, Upsala University, Norbyvägen 18D, SE- 752 36 Uppsala, Sweden., e-Mail: [email protected] 4 Author of correspondence Abstract While the majority of acoels live in marine sediments, some, usually identified as Waminoa sp., have been found associated with corals, living closely appressed to their external surfaces. We describe a new species collected from the stony coral Plesiastrea laxa in the Red Sea. Waminoa brickneri n. sp. can infest corals in high numbers, often forming clusters in non-overlapping arrays. It is bronze-colored, owing to the presence of two types of dinoflagellate endosymbionts, and speckled white with small scattered pigment spots. Its body is disc-shaped, highly flattened and cir- cular in profile except for a small notch at the posterior margin where the reproductive organs lie. The male copulatory organ is poorly differentiated, but comprises a seminal vesicle weakly walled by concentrically layered muscles, and a small penis papilla with serous glands at its juncture with the male pore.
    [Show full text]
  • A Phylogenetic Analysis of Myosin Heavy Chain Type II Sequences Corroborates That Acoela and Nemertodermatida Are Basal Bilaterians
    A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians I. Ruiz-Trillo*, J. Paps*, M. Loukota†, C. Ribera†, U. Jondelius‡, J. Bagun˜ a` *, and M. Riutort*§ *Departament de Gene`tica and †Departament de Biologia Animal, Universitat Barcelona, Av. Diagonal, 645 08028 Barcelona, Spain; and ‡Evolutionary Biology Centre, University Uppsala, Norbyva¨gen 18D, 752 36 Uppsala, Sweden Communicated by James W. Valentine, University of California, Berkeley, CA, June 28, 2002 (received for review April 15, 2002) Bilateria are currently subdivided into three superclades: Deuter- across all bilaterians. However different, this scheme also suited ostomia, Ecdysozoa, and Lophotrochozoa. Within this new taxo- alternative hypotheses such as the ‘‘set-aside cells’’ theory (13, nomic frame, acoelomate Platyhelminthes, for a long time held to 14) and the colonial ancestor theory (15). be basal bilaterians, are now considered spiralian lophotrochozo- This new status quo was soon questioned. A SSU-based study ans. However, recent 18S rDNA [small subunit (SSU)] analyses have using a large set of Platyhelminthes acoels and other metazoans shown Platyhelminthes to be polyphyletic with two of its orders, showed acoels to be the extant earliest branching bilaterians the Acoela and the Nemertodermatida, as the earliest extant (16), turning Platyhelminthes into a polyphyletic group. In bilaterians. To corroborate such position and avoid the criticisms of addition, Jenner (17) noted that phylogenies put forward to back saturation and long-branch effects thrown on the SSU molecule, the new metazoan molecular trees (10–12, 18) were incomplete we have searched for independent molecular data bearing good and heavily pruned.
    [Show full text]
  • Frontiers in Zoology Biomed Central
    Frontiers in Zoology BioMed Central Research Open Access Myogenesis in the basal bilaterian Symsagittifera roscoffensis (Acoela) Henrike Semmler*1, Xavier Bailly2 and Andreas Wanninger1 Address: 1University of Copenhagen, Department of Biology, Research Group for Comparative Zoology, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark and 2Station Station Biologique de Roscoff, Place Georges Teissier BP74, F-29682 Roscoff Cedex, France Email: Henrike Semmler* - [email protected]; Xavier Bailly - [email protected]; Andreas Wanninger - [email protected] * Corresponding author Published: 19 September 2008 Received: 5 May 2008 Accepted: 19 September 2008 Frontiers in Zoology 2008, 5:14 doi:10.1186/1742-9994-5-14 This article is available from: http://www.frontiersinzoology.com/content/5/1/14 © 2008 Semmler et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: In order to increase the weak database concerning the organogenesis of Acoela – a clade regarded by many as the earliest extant offshoot of Bilateria and thus of particular interest for studies concerning the evolution of animal bodyplans – we analyzed the development of the musculature of Symsagittifera roscoffensis using F-actin labelling, confocal laserscanning microscopy, and 3D reconstruction software. Results: At 40% of development between egg deposition and hatching short subepidermal fibres form. Muscle fibre development in the anterior body half precedes myogenesis in the posterior half. At 42% of development a grid of outer circular and inner longitudinal muscles is present in the bodywall.
    [Show full text]
  • Comparative Analysis of Acoel Embryonic Development
    Comparative analysis of acoel embryonic development Viviana Cetrangolo Thesis for the degree of Philosophiae Doctor (PhD) University of Bergen, Norway 2020 Comparative analysis of acoel embryonic development Viviana Cetrangolo ThesisAvhandling for the for degree graden of philosophiaePhilosophiae doctorDoctor (ph.d (PhD). ) atved the Universitetet University of i BergenBergen Date of defense:2017 02.10.2020 Dato for disputas: 1111 © Copyright Viviana Cetrangolo The material in this publication is covered by the provisions of the Copyright Act. Year: 2020 Title: Comparative analysis of acoel embryonic development Name: Viviana Cetrangolo Print: Skipnes Kommunikasjon / University of Bergen ! ! ! ! ! ! ! ! ! ! ! ! ! !!!!"##!$%&$!'()!$()*%!! +()!,%&-./0! !"##!$%&$!'()!,%&-./! !!!!!!!!!!!!!!!!,%&-./1!'()0! !!!!!!!!!!!!!2%/!(-#'!#&1$3-.!$4)$%! !!!!!!!!!!!!51!,%&-./0! !!!!!!!!!!!!"#$%&'%!()$*+,! ! ! ! ! ""! "#$%&'$($#!%&)$*+&,%&'! #$%!&'()!*(%+%,-%.!",!-$"+!-$%+"+!&/+!0',.10-%.!",!-$%!2/3'(/-'(4!'5!-$%!6('57!8(!9%:,'2;!/-! </(+!=,-%(,/-"',/2!>%,-(%!5'(!?/(",%!?'2%012/(!@"'2'A4;!B,"C%(+"-4!'5!@%(A%,;!D'(&/47!#$%! -$%+"+!"+!*/(-!'5!-$%!6$8!*('A(/E!'5!-$%!8%*/(-E%,-!'5!@"'2'A"0/2!<0"%,0%+!'5!-$%!B,"C%(+"-4! '5!@%(A%,7! ! ! """! -#.&+/0%12%,%&'3! =!&'12.!2")%!-'!+-/(-!-'!-$/,)!E4!+1*%(C"+'(!6('57!8(!F,.(%/+!9%:,'27!G"(+-24;!5'(!A"C",A!E%! -$%!'**'(-1,"-4!-'!0'E%!-'!$"+!2/3!&$%,!=!&/+!/!5(%+$24!A(/.1/-%.!/,.!,/HC%!+-1.%,-;!/,.! +%0',./("24!5'(!-%/0$",A!E%!-$/-!-$%!6$8!0/,!3%!/!(%/224!$/(.!-"E%!'5!4'1(!2"5%;!31-!"5!4'1!/(%! E'-"C/-%.!%,'1A$!/,.!*1+$!4'1(+%25!-$('1A$!-$%!."55"012-"%+;!"-!5",/224!0'E%+!-'!/,!%,.I!<';!
    [Show full text]
  • Acoela, Acoelomorpha) from British Waters
    Arxius de Miscel·lània Zoològica, 11 (2013): 153–157 ISSN:Vila–Farré 1698– et0476 al. First record of Oligochoerus limnophilus (Acoela, Acoelomorpha) from British waters M. Vila–Farré, M. Álvarez–Presas & J. G. Achatz Vila–Farré, M., Álvarez–Presas, M. & Achatz, J. G., 2013. First record of Oligochoerus limnophilus (Acoela, Acoelomorpha) from British waters. Arxius de Miscel·lània Zoològica, 11: 153–157, Doi: https://doi.org/10.32800/amz.2013.11.0153 Abstract First record of Oligochoerus limnophilus (Acoela, Acoelomorpha) from British waters.— We report the occurrence of the acoel Oligochoerus limnophilus (Acoelomorpha) from the British Islands, based on specimens captured in the river Thames (locally known as the river Isis) in Oxford, England, thereby considerably widening the distributional range of the species that had formerly been reported only from continental Europe. We further present live images and CLSM–projections of systematically informative structures that corroborate a close relationship with the genus Convoluta Ørsted, 1843. Key words: Acoela, Oligochoerus, Limnic, Thames. Resumen Primera cita de Oligochoerus limnophilus (Acoela, Acoelomorpha) en aguas británicas.— Informamos de la existencia de poblaciones del acelo Oligochoerus limnophilus (Acoelo- morpha) en las islas Birtánicas, basándonos en los especímenes capturados en el río Támesis (también conocido localmente como río Isis) a su paso por Oxford, Inglaterra, ampliando así considerablemente el área de distribución de la especie, restringida hasta ahora al continente europeo. La información gráfca que aportamos, imágenes de especí- menes vivos y proyecciones CLSM de estructuras seleccionadas por su valor sistemático, corrobora su estrecha relación con los miembros del género Convoluta Ørsted, 1843. Palabras clave: Acoela, Oligochoerus, Límnico, Támesis.
    [Show full text]
  • Nemertean and Phoronid Genomes Reveal Lophotrochozoan Evolution and the Origin of Bilaterian Heads
    Nemertean and phoronid genomes reveal lophotrochozoan evolution and the origin of bilaterian heads Author Yi-Jyun Luo, Miyuki Kanda, Ryo Koyanagi, Kanako Hisata, Tadashi Akiyama, Hirotaka Sakamoto, Tatsuya Sakamoto, Noriyuki Satoh journal or Nature Ecology & Evolution publication title volume 2 page range 141-151 year 2017-12-04 Publisher Springer Nature Macmillan Publishers Limited Rights (C) 2017 Macmillan Publishers Limited, part of Springer Nature. Author's flag publisher URL http://id.nii.ac.jp/1394/00000281/ doi: info:doi/10.1038/s41559-017-0389-y Creative Commons Attribution 4.0 International (http://creativecommons.org/licenses/by/4.0/) ARTICLES https://doi.org/10.1038/s41559-017-0389-y Nemertean and phoronid genomes reveal lophotrochozoan evolution and the origin of bilaterian heads Yi-Jyun Luo 1,4*, Miyuki Kanda2, Ryo Koyanagi2, Kanako Hisata1, Tadashi Akiyama3, Hirotaka Sakamoto3, Tatsuya Sakamoto3 and Noriyuki Satoh 1* Nemerteans (ribbon worms) and phoronids (horseshoe worms) are closely related lophotrochozoans—a group of animals including leeches, snails and other invertebrates. Lophotrochozoans represent a superphylum that is crucial to our understand- ing of bilaterian evolution. However, given the inconsistency of molecular and morphological data for these groups, their ori- gins have been unclear. Here, we present draft genomes of the nemertean Notospermus geniculatus and the phoronid Phoronis australis, together with transcriptomes along the adult bodies. Our genome-based phylogenetic analyses place Nemertea sis- ter to the group containing Phoronida and Brachiopoda. We show that lophotrochozoans share many gene families with deu- terostomes, suggesting that these two groups retain a core bilaterian gene repertoire that ecdysozoans (for example, flies and nematodes) and platyzoans (for example, flatworms and rotifers) do not.
    [Show full text]
  • The Evolution of Bilaterian Body‐Plan: Perspectives from the Developmental Genetics of the Acoela (Acoelomorpha)
    The evolution of bilaterian body‐plan: perspectives from the developmental genetics of the Acoela (Acoelomorpha) Marta Chiodin ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB.
    [Show full text]
  • Summary of Thesis 4
    Contents List of Papers 2 Abstract 3 Introduction 5 Biodiversity – why should we care? 5 Marine meiofauna 6 What are Nemertodermatida 7 General morphology 8 Ultrastructure 8 Historical overview of the taxon 9 Phylogenetic position 11 Classification 12 Methods 13 Sampling 13 Infrastructure and general workflow 14 Fixation 16 Abundance and patchiness 18 Collection effort for this thesis 19 Confocal Laser Scanning Microscopy (CLSM) 20 Principal of CLSM 20 Phalloidin staining of F-actin 21 Immunolabelling of the nervous system 22 Molecular Analyses 24 DNA extraction, amplification & sequencing 25 Data properties 26 Phylogenetic analyses 27 Discussion and future perspectives 27 Literature cited 33 Acknowledgements 39 List of papers Paper I Meyer-Wachsmuth I, Raikova OI, Jondelius U (2013): The muscular system of Nemertoderma westbladi and Meara stichopi (Nemertodermatida, Acoelomorpha). Zoomorphology 132: 239–252. doi:10.1007/s00435-013-0191-6. Paper II Meyer-Wachsmuth I, Curini Galletti, M, Jondelius U (in press): Hyper-cryptic marine meiofauna: species complexes in Nemertodermatida. PLOS One 9: e107688. doi:10.1371/journal.pone.0107688 Paper III Meyer-Wachsmuth I, Jondelius U: A multigene molecular assessment reveals deep divergence in the phylogeny of Nemertodermatida. (Manuscript) Paper IV Raikova OI, Meyer-Wachsmuth I, Jondelius U: Nervous system and morphology of three species of Nemertodermatida (Acoelomorpha) as revealed by immunostainings, phalloidin staining, and confocal and differential interference contrast microscopy. (Manuscript) 2 Abstract Nemertodermatida is a group of microscopic marine worm-like animals that live as part of the marine meiofauna in sandy or muddy sediments; one species lives commensally in a holothurian. These benthic worms were thought to disperse passively with ocean currents, resulting in little speciation and thus wide or even cosmopolitan distributions.
    [Show full text]
  • A Taxonomic Catalogue of Japanese Nemerteans (Phylum Nemertea)
    Title A Taxonomic Catalogue of Japanese Nemerteans (Phylum Nemertea) Author(s) Kajihara, Hiroshi Zoological Science, 24(4), 287-326 Citation https://doi.org/10.2108/zsj.24.287 Issue Date 2007-04 Doc URL http://hdl.handle.net/2115/39621 Rights (c) Zoological Society of Japan / 本文献の公開は著者の意思に基づくものである Type article Note REVIEW File Information zsj24p287.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP ZOOLOGICAL SCIENCE 24: 287–326 (2007) © 2007 Zoological Society of Japan [REVIEW] A Taxonomic Catalogue of Japanese Nemerteans (Phylum Nemertea) Hiroshi Kajihara* Department of Natural History Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan A literature-based taxonomic catalogue of the nemertean species (Phylum Nemertea) reported from Japanese waters is provided, listing 19 families, 45 genera, and 120 species as valid. Applications of the following species names to forms previously recorded from Japanese waters are regarded as uncertain: Amphiporus cervicalis, Amphiporus depressus, Amphiporus lactifloreus, Cephalothrix filiformis, Cephalothrix linearis, Cerebratulus fuscus, Lineus vegetus, Lineus bilineatus, Lineus gesserensis, Lineus grubei, Lineus longifissus, Lineus mcintoshii, Nipponnemertes pulchra, Oerstedia venusta, Prostoma graecense, and Prostoma grande. The identities of the taxa referred to by the fol- lowing four nominal species require clarification through future investigations: Cosmocephala japonica, Dicelis rubra, Dichilus obscurus, and Nareda serpentina. The nominal species established from Japanese waters are tabulated. In addition, a brief history of taxonomic research on Japanese nemerteans is reviewed. Key words: checklist, Pacific, classification, ribbon worm, Nemertinea 2001). The only recent listing of previously described Japa- INTRODUCTION nese species is the checklist of Crandall et al. (2002), but The phylum Nemertea comprises about 1,200 species the relevant literature is scattered.
    [Show full text]