My Thesis Will Become Part of the Permanent Collection of Oregon State University Libraries
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Formaldehyde Induces Bone Marrow Toxicity in Mice by Inhibiting Peroxiredoxin 2 Expression
MOLECULAR MEDICINE REPORTS 10: 1915-1920, 2014 Formaldehyde induces bone marrow toxicity in mice by inhibiting peroxiredoxin 2 expression GUANGYAN YU1, QIANG CHEN1, XIAOMEI LIU1, CAIXIA GUO2, HAIYING DU1 and ZHIWEI SUN1,2 1Department of Preventative Medicine, School of Public Health, Jilin University, Changchun, Jilin 130021; 2 Department of Hygenic Toxicology, School of Public Health, Capital Medical University, Beijing 100069, P.R. China Received November 4, 2013; Accepted June 5, 2014 DOI: 10.3892/mmr.2014.2473 Abstract. Peroxiredoxin 2 (Prx2), a member of the perox- Introduction iredoxin family, regulates numerous cellular processes through intracellular oxidative signal transduction pathways. Formaldehyde (FA) is an environmental agent commonly Formaldehyde (FA)-induced toxic damage involves reactive found in numerous products, including paint, cloth and oxygen species (ROS) that trigger subsequent toxic effects and exhaust gas, as well as other medicinal and industrial products. inflammatory responses. The present study aimed to inves- FA exposure has raised significant concerns due to mounting tigate the role of Prx2 in the development of bone marrow evidence suggesting its carcinogenic potential and severe toxicity caused by FA and the mechanism underlying FA effects on human health (1). Epidemiological and experi- toxicity. According to the results of the preliminary inves- mental data have demonstrated that FA may cause leukemia, tigations, the mice were divided into four groups (n=6 per particularly myeloid leukemia; however, the mechanism group). One group was exposed to ambient air and the other underlying this effect remains unclear (2-4). In the process three groups were exposed to different concentrations of FA of tumor formation, DNA damage may be the initiating (20, 40, 80 mg/m3) for 15 days in the respective inhalation factor (5), while myeloperoxidase (MPO) activity is associ- chambers, for 2 h a day. -
Peroxidase and NADPH-Cytochrome C Reductase Activity During Thyroid Hyperplasia and Involution
Peroxidase and NADPH-Cytochrome C Reductase Activity During Thyroid Hyperplasia and Involution KUNIHIRO YAMAMOTO AND LESLIE J. DEGROOT Thyroid Study Unit, Department of Medicine, University of Chicago, Chicago, Illinois 60637 ABSTRACT. The regulation of iodination was in- TSH injection, whether expressed per mg gland vestigated in male rats during physiological altera- weight, per mg protein, or per fxg DNA, suggesting tions in thyroid function. Thyroid hyperplasia was enzyme induction and cellular hypertrophy. Involu- Downloaded from https://academic.oup.com/endo/article/95/2/606/2618917 by guest on 30 September 2021 produced by giving 0.01% PTU in drinking water or tion by T4 administration caused a decrease in injection of TSH (2 USP U/day); involution was thyroid weight, DNA content, and enzyme activity per induced after PTU treatment by giving 3 fig L-T4/ml gland. The main reason for the decrease in enzyme in drinking water. Increase in activity of thyroid activity per gland was a diminution of cell numbers. peroxidase and NADPH-cytochrome c reductase per During thyroid hyperplasia and involution, perox- gland exceeded gains in thyroid weight and DNA idase and NADPH-cytochrome c reductase activity content early in hyperplasia, but increased essen- is regulated by TSH. During the onset of TSH tially in parallel manner during chronic PTU treat- action, peroxidase and NADPH-cytochrome c re- ment. Enzyme activity per /xg DNA increased to ductase increase to a greater extent than thyroid 155% of control after 4 days of PTU treatment, weight and DNA content, suggesting preferential decreased to 138% on the seventh day, and was at enzyme synthesis in addition to cell hypertrophy. -
Thyroid Peroxidase Antibody Is Associated with Plasma Homocysteine Levels in Patients with Graves’ Disease
Published online: 2018-07-02 Article Thieme Li Fang et al. Thyroid Peroxidase Antibody is … Exp Clin Endocrinol Diabetes 2018; 00: 00–00 Thyroid Peroxidase Antibody is Associated with Plasma Homocysteine Levels in Patients with Graves’ Disease Authors Fang Li1 * , Gulibositan Aji1 * , Yun Wang2, Zhiqiang Lu1, Yan Ling1 Affiliations ABSTRACT 1 Department of Endocrinology and Metabolism, Zhong- Purpose Homocysteine is associated with cardiovascular, shan Hospital, Fudan University, Shanghai, China inflammation and autoimmune diseases. Previous studies have 2 Department of Endocrinology and Metabolism, the shown that thyroid peroxidase antibody is associated with ho- Second Hospital of Shijiazhuang City, Shijiazhuang, mocysteine levels in hypothyroidism. The relationship between Hebei Province, China thyroid antibodies and homocysteine in hyperthyroidism re- mains unclear. In this study, we aimed to investigate the asso- Key words ciation of thyroid antibodies with homocysteine in patients human, cardiovascular risk, hyperthyroidism with Graves’ disease. Methods This was a cross-sectional study including 478 received 07.04.2018 Graves’ disease patients who were consecutively admitted and revised 10.05.2018 underwent radioiodine therapy. Homocysteine, thyroid hor- accepted 14.06.2018 mones, thyroid antibodies, glucose and lipids were measured. Results Patients with homocysteine levels above the median Bibliography were older and had unfavorable metabolic parameters com- DOI https://doi.org/10.1055/a-0643-4692 pared to patients with homocysteine levels below the median. Published online: 2.7.2018 Thyroglobulin antibody or thyroid peroxidase antibody was Exp Clin Endocrinol Diabetes 2020; 128: 8–14 associated with homocysteine levels (β = 0.56, 95 %CI 0.03- © J. A. Barth Verlag in Georg Thieme Verlag KG Stuttgart · 1.08, p = 0.04; β = 0.75, 95 %CI 0.23-1.27, p = 0.005). -
Thyroid Surgery for Patients with Hashimoto's Disease
® Clinical Thyroidology for the Public VOLUME 12 | ISSUE 7 | JULY 2019 HYPOTHYROIDISM Thyroid surgery for patients with Hashimoto’s disease BACKGROUND SUMMARY OF THE STUDY Hypothyroidism, or an underactive thyroid, is a common This study enrolled patients with hypothyroidism due to problem. In the United States, the most common cause Hashimoto’s thyroiditis who received treatment with thy- of hypothyroidism is Hashimoto’s thyroiditis. This is an roidectomy and thyroid hormone replacement or thyroid autoimmune disorder where antibodies attack the thyroid, hormone replacement alone. The outcome of the study causing inflammation and destruction of the gland. Char- was a patient-reported health score on the generic Short acteristic of Hashimoto’s thyroiditis are high antibodies Form-36 Health Survey (SF-36) after 18 months. to thyroid peroxidase (TPO Ab) on blood tests. Hypo- thyroidism is treated by thyroid hormone and returning Patients were in the age group of 18 to 79 years. They all thyroid hormone levels to the normal range usually had a TPOAb titer >1000 IU/L and reported persistent resolves symptoms in most patients. symptoms despite having normal thyroid hormone levels based on blood tests. Typical symptoms included fatigue, However, in some patients, symptoms may persist despite increased need for sleep associated with reduced sleep what appears to be adequate treatment based on blood quality, joint and muscle tenderness, dry mouth, and dry tests of thyroid function. This raises the possibility that eyes. Follow up visits were done every 3 months for 18 some symptoms may be related to the autoimmune months and the thyroid hormone therapy was adjusted as condition itself. -
Effect of Aluminium on Oxidative Stress Related Enzymes Activities in Barley Roots
BIOLOGIA PLANTARUM 48 (2): 261-266, 2004 Effect of aluminium on oxidative stress related enzymes activities in barley roots M. ŠIMONOVIČOVÁ*, L. TAMÁS, J. HUTTOVÁ and I. MISTRÍK Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, SK-845 23 Bratislava, Slovak Republic Abstract The impact of aluminium stress on activities of enzymes of the oxidative metabolism: superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), NADH peroxidase (NADH-POD) and oxalate oxidase (OXO) was studied in barley (Hordeum vulgare L. cv. Alfor) root tips. SOD appeared to be involved in detoxification mechanisms at highly toxic Al doses and after long Al exposure. POD and APX, H2O2 consuming enzymes, were activated following similar patterns of expression and exhibiting significant correlation between their elevated activities and root growth inhibition. The signalling role of NADH-POD in oxidative stress seems to be more probable than that of OXO, which might be involved in Al toxicity mechanism. Additional key words: ascorbate peroxidase, Hordeum vulgare, NADH peroxidase, oxalate oxidase, peroxidase, superoxide dismutase. Introduction Aluminium toxicity became a factor limiting crop oxide dismutase), it has been suggested that there is a productivity on acid soils. Al is supposed to alter the strong connection between Al stress and oxidative stress plasma membrane properties by enhancing the in plants (Cakmak and Horst 1991, Richards et al. 1998). peroxidation of phospholipids and proteins (Cakmak and Ezaki et al. (2000) confirmed this hypothesis when they Horst 1991), alter the cation-exchange capacity of the cell showed that overexpression of some Al-induced genes in wall (Horst 1995), interfere with signal transduction transgenic Arabidopsis plants conferred oxidative stress (Jones and Kochian 1995), binds directly to DNA or resistance. -
How Useful Are Autoantibodies in Diagnosing Thyroid Disorders?
Evidence Based Answers CLINIcAL INQUiRiES from the Family Physicians Inquiries Network Heather Downs, DO, How useful are autoantibodies and Albert A. Meyer, MD New Hanover Regional Medical in diagnosing thyroid disorders? Center, Wilmington, NC Donna Flake, MSLS, MSAS Coastal Area Health Education Evidence-based answer Center, Wilmington, NC They’re useful in diagnosing Graves’ increases or decreases the probability disease and, to a lesser extent, of autoimmune thyroid disease by only autoimmune thyroid disease; they can also a small to moderate degree (SOR: B, 3 help predict hypothyroidism. Thyrotropin cross-sectional studies). receptor antibodies (TRAb) may be mildly Thyroid-stimulating hormone (TSH) elevated in a variety of thyroid disorders, levels >2 mU/L, although still in the normal but a TRAb level >10 U/L increases range, can be followed up with TPOAb ® the probability of Graves’ disease by Dowdentesting to determine Health whether Mediathe patient a moderate to large degree (strength has an increased probability of developing of recommendation [SORCopyright]: B, cross- hypothyroidism (SOR: B, cohort study sectional study). A positive or negativeFor personalwith a vague hypothyroidism use only reference thyroid peroxidase antibody (TPOAb) test standard). Clinical commentary FAST TRACK In equivocal situations and pregnancy, infiltrative disorders, Reidel’s thyroiditis, antibodies may help or subacute granulomatous thyroiditis are Thyroid Under most circumstances, hypo- and suspected. TPOAb may help predict the autoantibodies hyperthyroid disorders can be diagnosed development of clinical hypothyroidism in can help diagnose by testing TSH and free T , without thyroid patients with TSH in the range of 5-10 mU/L. 4 Graves’ disease antibody testing. Radionuclide uptake and Pregnancy-related hyperthyroidism scan provide diagnostic information for requires antibody testing because and autoimmune hyperthyroid states. -
Genome-Wide Analysis of ROS Antioxidant Genes in Resurrection Species Suggest an Involvement of Distinct ROS Detoxification Syst
International Journal of Molecular Sciences Article Genome-Wide Analysis of ROS Antioxidant Genes in Resurrection Species Suggest an Involvement of Distinct ROS Detoxification Systems during Desiccation Saurabh Gupta 1,* , Yanni Dong 2, Paul P. Dijkwel 2, Bernd Mueller-Roeber 1,3,4 and Tsanko S. Gechev 4,5,* 1 Department Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, 14476 Potsdam, Germany; [email protected] or [email protected] 2 Institute of Fundamental Sciences, Massey University, Tennent Drive, Palmerston North 4474, New Zealand; [email protected] (Y.D.); [email protected] (P.P.D.) 3 Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam, Germany 4 Center of Plant Systems Biology and Biotechnology (CPSBB), Ruski Blvd. 139, Plovdiv 4000, Bulgaria 5 Department of Plant Physiology and Molecular Biology, University of Plovdiv, 24 Tsar Assen str., Plovdiv 4000, Bulgaria * Correspondence: [email protected] (S.G.); [email protected] or [email protected] (T.S.G.) Received: 31 May 2019; Accepted: 24 June 2019; Published: 25 June 2019 Abstract: Abiotic stress is one of the major threats to plant crop yield and productivity. When plants are exposed to stress, production of reactive oxygen species (ROS) increases, which could lead to extensive cellular damage and hence crop loss. During evolution, plants have acquired antioxidant defense systems which can not only detoxify ROS but also adjust ROS levels required for proper cell signaling. Ascorbate peroxidase (APX), glutathione peroxidase (GPX), catalase (CAT) and superoxide dismutase (SOD) are crucial enzymes involved in ROS detoxification. -
K746-200 Myeloperoxidase (MPO) Inhibitor Screening
FOR RESEARCH USE ONLY! Myeloperoxidase (MPO) Inhibitor Screening Kit (Fluorometric) rev. 08/15 (Catalog # K746-200; 200 assays; Store at -20°C) I. Introduction: Myeloperoxidase (MPO: EC 1.11.2.2) is a peroxidase abundantly expressed in neutrophil granulocytes. It catalyzes the hydrogen peroxide dependent oxidation of halide ions to generate hypochlorite (HClO), the reaction by which MPO exhibits cytotoxic activity against tumor cells and microorganisms. MPO also oxidizes various substances such as phenol and anilines. MPO undergoes chlorination or peroxidation reaction depending upon the relative concentrations of chloride and the reducing substrates. Recent studies suggest that increased levels of MPO are associated with an increased risk for cardiovascular disease and myocardial infarction, thus development of novel and specific inhibitors of MPO is critical for therapeutic purposes. BioVision’s MPO Inhibitor Screening Kit provides screening assays for both MPO chlorination and peroxidation activities. In the chlorination assay (specific for MPO), MPO converts hydrogen peroxide and sodium chloride to sodium hypochlorite, which reacts with Chlorination substrate to give an intensely fluorescent product (Ex/Em = 480/520 nm). In the Peroxidation Assay, MPO oxidizes peroxidation substrate to generate fluorescence (Ex/Em = 535/587 nm). The fluorescence generated is directly proportional to any peroxidase activity present. In the presence of MPO inhibitor, reactions are impeded, thus decreasing the rate and/or extent of generation of MPO-dependent fluorescence. This kit provides a sensitive, quick, and easy method for screening potential inhibitors of MPO, and identifying whether one or both activities are inhibited. MPO Inhibitor Control is included to compare the efficacy of test inhibitors. -
Prokaryotic Origins of the Non-Animal Peroxidase Superfamily and Organelle-Mediated Transmission to Eukaryotes
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Genomics 89 (2007) 567–579 www.elsevier.com/locate/ygeno Prokaryotic origins of the non-animal peroxidase superfamily and organelle-mediated transmission to eukaryotes Filippo Passardi a, Nenad Bakalovic a, Felipe Karam Teixeira b, Marcia Margis-Pinheiro b,c, ⁎ Claude Penel a, Christophe Dunand a, a Laboratory of Plant Physiology, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland b Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil c Department of Genetics, Federal University of Rio Grande do Sul, Rio Grande do Sul, Brazil Received 16 June 2006; accepted 18 January 2007 Available online 13 March 2007 Abstract Members of the superfamily of plant, fungal, and bacterial peroxidases are known to be present in a wide variety of living organisms. Extensive searching within sequencing projects identified organisms containing sequences of this superfamily. Class I peroxidases, cytochrome c peroxidase (CcP), ascorbate peroxidase (APx), and catalase peroxidase (CP), are known to be present in bacteria, fungi, and plants, but have now been found in various protists. CcP sequences were detected in most mitochondria-possessing organisms except for green plants, which possess only ascorbate peroxidases. APx sequences had previously been observed only in green plants but were also found in chloroplastic protists, which acquired chloroplasts by secondary endosymbiosis. CP sequences that are known to be present in prokaryotes and in Ascomycetes were also detected in some Basidiomycetes and occasionally in some protists. -
Spectrophotometric Determination of Phenolic Antioxidants in the Presence of Thiols and Proteins
International Journal of Molecular Sciences Article Spectrophotometric Determination of Phenolic Antioxidants in the Presence of Thiols and Proteins Aslı Neslihan Avan 1, Sema Demirci Çekiç 1, Seda Uzunboy 1 and Re¸satApak 1,2,* 1 Department of Chemistry, Faculty of Engineering, Istanbul University, 34320 Istanbul, Turkey; [email protected] (A.N.A.); [email protected] (S.D.Ç.); [email protected] (S.U.) 2 Turkish Academy of Sciences (TUBA) Piyade St. No. 27, 06690 Çankaya Ankara, Turkey * Correspondence: [email protected]; Tel.: +90-212-473-7028 Academic Editor: Maurizio Battino Received: 29 June 2016; Accepted: 5 August 2016; Published: 12 August 2016 Abstract: Development of easy, practical, and low-cost spectrophotometric methods is required for the selective determination of phenolic antioxidants in the presence of other similar substances. As electron transfer (ET)-based total antioxidant capacity (TAC) assays generally measure the reducing ability of antioxidant compounds, thiols and phenols cannot be differentiated since they are both responsive to the probe reagent. In this study, three of the most common TAC determination methods, namely cupric ion reducing antioxidant capacity (CUPRAC), 2,20-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt/trolox equivalent antioxidant capacity (ABTS/TEAC), and ferric reducing antioxidant power (FRAP), were tested for the assay of phenolics in the presence of selected thiol and protein compounds. Although the FRAP method is almost non-responsive to thiol compounds individually, surprising overoxidations with large positive deviations from additivity were observed when using this method for (phenols + thiols) mixtures. Among the tested TAC methods, CUPRAC gave the most additive results for all studied (phenol + thiol) and (phenol + protein) mixtures with minimal relative error. -
ABTS/PP Decolorization Assay of Antioxidant Capacity Reaction Pathways
International Journal of Molecular Sciences Review ABTS/PP Decolorization Assay of Antioxidant Capacity Reaction Pathways Igor R. Ilyasov *, Vladimir L. Beloborodov, Irina A. Selivanova and Roman P. Terekhov Department of Chemistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8/2, 119991 Moscow, Russia; [email protected] (V.L.B.); [email protected] (I.A.S.); [email protected] (R.P.T.) * Correspondence: [email protected]; Tel.: +7-985-764-0744 Received: 30 November 2019; Accepted: 5 February 2020; Published: 8 February 2020 + Abstract: The 2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS• ) radical cation-based assays are among the most abundant antioxidant capacity assays, together with the 2,2-diphenyl-1- picrylhydrazyl (DPPH) radical-based assays according to the Scopus citation rates. The main objective of this review was to elucidate the reaction pathways that underlie the ABTS/potassium persulfate decolorization assay of antioxidant capacity. Comparative analysis of the literature data showed that there are two principal reaction pathways. Some antioxidants, at least of phenolic nature, + can form coupling adducts with ABTS• , whereas others can undergo oxidation without coupling, thus the coupling is a specific reaction for certain antioxidants. These coupling adducts can undergo further oxidative degradation, leading to hydrazindyilidene-like and/or imine-like adducts with 3-ethyl-2-oxo-1,3-benzothiazoline-6-sulfonate and 3-ethyl-2-imino-1,3-benzothiazoline-6-sulfonate as marker compounds, respectively. The extent to which the coupling reaction contributes to the total antioxidant capacity, as well as the specificity and relevance of oxidation products, requires further in-depth elucidation. -
The Alteration of Superoxide Dismutase, Catalase, Glutathione
The alteration of superoxide dismutase, catalase, glutathione peroxidase, and NAD(P)H cytochrome c reductase in guinea pig polymorphonuclear leukocytes and alveolar macrophages during hyperoxia. M Rister, R L Baehner J Clin Invest. 1976;58(5):1174-1184. https://doi.org/10.1172/JCI108570. Research Article Superoxide dismutase, catalase, glutathione peroxidase and NAD(P)H cytochrome c reductase were quantitated in polymorphonuclear leukocytes (PMN) and alveolar macrophages (AM) obtained from guinea pigs exposed up to 90 h to 85% oxygen. PMN and AM were sonicated and separated into a 16,000-g pellet, a 100,000-g pellet, and a 100,00-g supernate. Superoxide dismutase activity increased in both cells within 18 h, persisted for 66 h and decreased by 90 h. The highest rate of increase was in the 100,000-g pellet containing 3.4% of total enzyme activity in PMN but 28% in AM. The enzyme induction in PMN and AM was partially inhibited by daily intracardiac injections of 50 mg/kg actinomycin D. During oxygen exposure, catalase activity in PMN and AM decreased to 60% of its original activity, and gluthathione peroxidase was reduced in PMN to 60% and in AM to 20% of control values. Although NAD(P)H cytochrome c reductase decreased to 50% in PMN, no change was noted in AM. Upon exposure to superoxide anion, purified catalase, the glutathione peroxidase of the 100,000-g supernate, NADH, and NADPH cytochrome c reductases of the 16,000-g pellet decreased to 66+/-5%, 72+/-4%, 52+/-8%, and 40+/-9%, respectively, of their original activity.