Used Oil Management and Beneficial Reuse Options to Address Section 1

Total Page:16

File Type:pdf, Size:1020Kb

Used Oil Management and Beneficial Reuse Options to Address Section 1 Used Oil Management and Beneficial Reuse Options to Address Section 1: Energy Savings from Lubricating Oil Public Law 115-345 Report to Congress December 2020 United States Department of Energy Washington, DC 20585 Department of Energy | December 2020 Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor any of their contractors or subcontractors, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, or its contractors or subcontractors. Used Oil Management and Beneficial Reuse Options | Page ii Message from the Secretary This Congressional Report, pursuant to Public Law 115-345, updates the Used Oil Re-refining Update of the 2006 Used Oil Re-refining Study to Address Energy Policy Act of 2005, Section 1838, and addresses efforts underway at the U.S. Department of Energy, in cooperation with the U.S. Environmental Protection Agency and the Director of the Office of Management and Budget. This report also provides a coordinated Federal strategy to increase the beneficial reuse of used lubricating oil. Pursuant to statutory requirements, this report is being provided to the following Members of Congress: • The Honorable Michael R. Pence President of the Senate • The Honorable Nancy Pelosi Speaker of the House of Representatives • The Honorable Lisa Murkowski Chairman, Senate Committee on Energy and Natural Resources • The Honorable Joe Manchin Ranking Member, Senate Committee on Energy and Natural Resources • The Honorable Eddie Bernice Johnson Chairwoman, House Committee on Science, Space and Technology • The Honorable Frank Lucas Ranking Member, House Committee on Science, Space and Technology • The Honorable Frank Pallone Chairman, House Committee on Energy and Commerce • The Honorable Greg Walden Ranking Member, House Committee on Energy and Commerce • The Honorable Richard Shelby Chairman, Senate Committee on Appropriations • The Honorable Patrick Leahy Vice Chairman, Senate Committee on Appropriations • The Honorable Lamar Alexander Chairman, Subcommittee on Energy and Water Development Senate Committee on Appropriations • The Honorable Dianne Feinstein Ranking Member, Subcommittee on Energy and Water Development Senate Committee on Appropriations • The Honorable Nita M. Lowey Chairwoman, House Committee on Appropriations • The Honorable Kay Granger Ranking Member, House Committee on Appropriations • The Honorable Marcy Kaptur Chairwoman, Subcommittee on Energy and Water Development, and Related Agencies House Committee on Appropriations • The Honorable Mike Simpson Ranking Member, Subcommittee on Energy and Water Development, and Related Agencies House Committee on Appropriations If you have any questions or need additional information, please contact Mr. Shawn Affolter, Deputy Assistant Secretary for Senate Affairs or Mr. Christopher J. Morris, Deputy Assistant Secretary for House Affairs, Office of Congressional and Intergovernmental Affairs, at (202) 586-5450, or Ms. Katie Donley, Deputy Director of External Coordination, Office of the Chief Financial Officer, at (202) 586-0176. Sincerely, Dan Brouillette Department of Energy | December 2020 List of Acronyms ACC American Chemistry Council AEO2019 Annual Energy Outlook 2019 AOCA Automotive Oil Change Association API American Petroleum Institute ASTM American Society for Testing and Materials ATIEL Association Technique de l'Industrie Européenne des Lubrifiants Bbl Barrel BOD Biological Oxygen Demand Btu British Thermal Unit CAA Clean Air Act CAFE Corporate Average Fuel Economy CERCLA Comprehensive Environmental Response, Compensation, and Liability Act CFR Code of Federal Regulations CISWI Commercial and Industrial Solid Waste Incineration CO Carbon Monoxide CONOU Consorzio Nazionale per la Gestione CPG Comprehensive Procurement Guideline CWT Centralized Waste Treatment DIFM Do-It-For-Me DIY Do-It-Yourself DOE U.S. Department of Energy DOT U.S. Department of Transportation EHC Environmental Handling Charge EIA U.S. Energy Information Administration EISA Energy Independence and Security Act EO Executive Order EPA U.S. Environmental Protection Agency EPR Extended Producer Responsibility EU European Union EV Electric Vehicle GEIR Groupement Européen de l’Industrie de la Régénération GWP Global Warming Potential HAP Hazardous Air Pollutants H.R. House Resolution HSFO High Sulfur Fuel Oil IC Internal Combustion IFEU Institut für Energie- und Umweltforschung GmbH IMO International Marine Organization ISO International Organization for Standardization LCA Life Cycle Analysis Used Oil Management and Beneficial Reuse Options | Page v MARPOL International Convention for the Prevention of Pollution from Ships, 1973, 73/78 as modified by the Protocol of 1978 (MARPOL: Marine Pollution) MBPD Thousand Barrels Per Day MDO Marine Diesel Oil MJ Megajoule MM Million MMBtu Million British Thermal Unit MMG Million Gallons MMGPY Million Gallons Per Year MPG Miles Per Gallon NESHAP National Emission Standards for Hazardous Air Pollutants NGO Non-Governmental Organization NHx Reduced Inorganic Nitrogen NHTSA National Highway Traffic and Safety Administration NOLN National Oil Lube News NORA National Oil Recyclers Association NOx Nitrous Oxides NREL National Renewable Energy Laboratory NUOMAAC National Used Oil Material and Antifreeze Advisory Council OEM Original Equipment Manufacturer OPEC Organization of the Petroleum Exporting Countries OSWRO Off-site Waste Recovery Operations P.L. Public Law PCB Polychlorinated Biphenyl PFO Processed Fuel Oil PM Particulate Matter PPM Parts Per Million RCRA Resource Conservation and Recovery Act RES Rock Energy Systems RFO Recycled Fuel Oil RMAN Recovered Materials Advisory Notice RRBO Re-refined Base Oil RRF Resource Recovery Facility SAE Society of Automotive Engineers SECA Sulfur Emission Control Area SO2 Sulfur Dioxide SPCC Spill Prevention Control and Countermeasures SSDE Service Station Dealer Exemption SUV Sport Utility Vehicle Tcf Trillion Cubic Feet TSCA Toxic Substances Control Act UAE United Arab Emirates UEIL Union of the European Lubricants Industry UK United Kingdom UL Underwriters Laboratories UMO Used Motor Oil U.S. United States UOMS Used Oil Management Standards UORC Used Oil Refining Coalition VGO Vacuum Gas Oil VMT Vehicle Miles Traveled WFD Waste Framework Directive wt. Weight WTI West Texas Intermediate Department of Energy | December 2020 Executive Summary On December 21, 2018, Congress approved Public Law (P.L.) 115-345 directing the Secretary of Energy, in cooperation with the Administrator of the U.S. Environmental Protection Agency (EPA) and the Director of the Office of Management and Budget (OMB), to review and update a report on the energy and environmental benefits of the re-refining of used lubricating oil that had been prepared pursuant to Section 1838 of the Energy Policy Act of 2005. That report,1 titled “Used Oil Re-refining Study to Address Energy Policy Act of 2005, Section 1838,” dated July 2006, was “a study of the energy and environmental benefits of the re-refining of used lubricating oil… including recommendations of specific steps that can be taken to improve collections of used lubricating oil and increase re-refining and other beneficial re-use of such oil.” P.L. 115-345 directed the U.S. Department of Energy (DOE) to consult with relevant Federal, State and local agencies and affected industry and stakeholder groups, to update data that was used in preparing the 2006 report, and prepare and submit to Congress a coordinated Federal strategy to increase the beneficial reuse of used lubricating oil that is consistent with national policy as established pursuant to Section 2 of the Used Oil Recycling Act of 1980 (P.L. 96-463). Further, P.L. 115-345 stipulates that the strategy was to address measures needed to (a) increase the responsible collection of used oil, (b) disseminate public information concerning sustainable reuse options for used oil, and (c) promote sustainable reuse of used oil by Federal agencies, recipients of Federal grant funds, entities contracting with the Federal Government and the general public. This document is the updated report prepared by DOE in response to P.L. 115-345. To gather the information needed to prepare this document, DOE met on multiple occasions with representatives of key stakeholder groups within the used oil sector to gather input on the status of the industry. In addition, DOE held a public meeting on October 16, 2019, at DOE offices in Washington, DC, to engage a wider variety of stakeholders and gather additional input (see Appendix H for a list of attendees). The meeting included 73 individuals from more than 50 organizations and companies in attendance either in-person or via WebEx. The information gathered, together
Recommended publications
  • Reduce Reuse Recycle Remanufacture
    STEEL - THE PERMANENT MATERIAL IN THE CIRCULAR ECONOMY AR ECONOMY BEN CUL EFI CIR TS E R R C E a U U w n D S m io E E a t t c R e u r i d a e l r s s c n o o n i s s s e i r v m a e t i 2 o O n C E n o E R i f t f U a ic R v o ie T n E n c C In y C Y FA C U LE N MA RE ts Jo duc bs pro Durable 1 CONTENTS Steel in the circular economy 3 Steel is essential to our modern world 5 Reduce 7 Decreasing the amount of material, energy and other resources used to create steel and reducing the weight of steel used in products. Use and reuse 11 Reuse is using an object or material again, either for its original purpose or for a similar purpose, without significantly altering the physical form of the object or material. Remanufacture 15 The process of restoring durable used steel products to as-new condition. Recycle 19 Melting steel products at the end of their useful life to create new steels. Recycling alters the physical form of the steel object so that a new application can be created from the recycled material. End notes 22 2 STEEL IN THE CIRCULAR ECONOMY A sustainable circular economy is one in which steel is fundamental to the circular economy. society reduces the burden on nature by ensuring The industry is continuing to expand its offer resources remain in use for as long as possible.
    [Show full text]
  • Higher-Quality Electric-Arc Furnace Steel
    ACADEMIC PULSE Higher-Quality Electric-Arc Furnace Steel teelmakers have traditionally viewed Research Continues to Improve the electric arc furnaces (EAFs) as unsuitable Quality of Steel for producing steel with the highest- Even with continued improvements to the Squality surface finish because the process design of steelmaking processes, the steelmaking uses recycled steel instead of fresh iron. With over research community has focused their attention 100 years of processing improvements, however, on the fundamental materials used in steelmaking EAFs have become an efficient and reliable in order to improve the quality of steel. In my lab steelmaking alternative to integrated steelmaking. In at Carnegie Mellon University, we have several fact, steel produced in a modern-day EAF is often research projects that deal with controlling the DR. P. BILLCHRIS MAYER PISTORIUS indistinguishable from what is produced with the impurity concentration and chemical quality of POSCOManaging Professor Editorof Materials integrated blast-furnace/oxygen-steelmaking route. steel produced in EAFs. Science412-306-4350 and Engineering [email protected] Mellon University Improvements in design, coupled with research For example, we recently used mathematical developments in metallurgy, mean high-quality steel modeling to explore ways to control produced quickly and energy-efficiently. phosphorus. Careful regulation of temperature, slag and stirring are needed to produce low- Not Your (Great-) Grandparent’s EAF phosphorus steel. We analyzed data from Especially since the mid-1990s, there have been operating furnaces and found that, in many significant improvements in the design of EAFs, cases, the phosphorus removal reaction could which allow for better-functioning burners and a proceed further.
    [Show full text]
  • STEEL in the CIRCULAR ECONOMY a Life Cycle Perspective CONTENTS
    STEEL IN THE CIRCULAR ECONOMY A life cycle perspective CONTENTS Foreword 3 The circular economy 4 Life cycle thinking 6 The life cycle assessment (LCA) approach 8 worldsteel’s LCA methodology and life cycle inventory (LCI) database 10 Sustainability and life cycle assessment 12 LCA in the steel industry 14 LCA by life cycle phase 15 Raw materials and steel production 15 Markets for by-products 16 Manufacturing and use 16 Reuse and remanufacturing 18 Recycling 19 LCA initiatives 20 Regional and global initiatives 21 Market sector initiatives 22 Construction 22 Automotive 24 Packaging 25 End notes 28 Glossary 29 Cover image: Steel staircase, office building, Prague, Czech Republic Design: double-id.com FOREWORD We live in a rapidly changing world with finite resources. Too many legislative bodies around the world At the same time, improvements in standards of living still enact regulations which only affect the “use and eradication of poverty, combined with global phase” of a product’s life, for example water and population growth, exert pressure on our ecosystems. energy consumption for washing machines, energy consumption for a fridge or CO2 emissions whilst As steel is everywhere in our lives and is at the heart driving a vehicle. This focus on the “use phase” can of our sustainable future, our industry is an integral part lead to more expensive alternative lower density of the global circular economy. The circular economy materials being employed but which typically have a promotes zero waste, reduces the amount of materials higher environmental burden when the whole life cycle used, and encourages the reuse and recycling of is considered.
    [Show full text]
  • The Stainless Steel Family
    The Stainless Steel Family A short description of the various grades of stainless steel and how they fit into distinct metallurgical families. It has been written primarily from a European perspective and may not fully reflect the practice in other regions. Stainless steel is the term used to describe an extremely versatile family of engineering materials, which are selected primarily for their corrosion and heat resistant properties. All stainless steels contain principally iron and a minimum of 10.5% chromium. At this level, chromium reacts with oxygen and moisture in the environment to form a protective, adherent and coherent, oxide film that envelops the entire surface of the material. This oxide film (known as the passive or boundary layer) is very thin (2-3 namometres). [1nanometre = 10-9 m]. The passive layer on stainless steels exhibits a truly remarkable property: when damaged (e.g. abraded), it self-repairs as chromium in the steel reacts rapidly with oxygen and moisture in the environment to reform the oxide layer. Increasing the chromium content beyond the minimum of 10.5% confers still greater corrosion resistance. Corrosion resistance may be further improved, and a wide range of properties provided, by the addition of 8% or more nickel. The addition of molybdenum further increases corrosion resistance (in particular, resistance to pitting corrosion), while nitrogen increases mechanical strength and enhances resistance to pitting. Categories of Stainless Steels The stainless steel family tree has several branches, which may be differentiated in a variety of ways e.g. in terms of their areas of application, by the alloying elements used in their production, or, perhaps the most accurate way, by the metallurgical phases present in their microscopic structures: .
    [Show full text]
  • Used Motor Oil and Filter Recycling Guide
    USED MOTOR OIL & FILTER RECYCLING LEARN MORE Used Motor Oil and Oil Filter Recycling Guide Used Motor Oil is a Hazardous Waste Used motor oil is a hazardous waste that should never be put in the garbage or dumped in the storm drains or on the ground. Just one quart of motor oil can contaminate 250,000 gallons of water, creating health risks and environmental impacts across our community. Recycling is Free and Easy Used motor oil can be refined and Recycling right is more than an individual choice - it is part of how we are all reconditioned to become usable again. Paper, making a difference for a cleaner Oakland and more livable neighborhoods. steel, and plastic from used oil filters can also With your participation, Oakland’s Zero Waste program strives to divert all be recycled. recyclable and compostable material away from our landfills. There are three options for recycling used Your used motor oil recycling team is a partnership between the City of motor oil and filters: Oakland, California Waste Solutions, and CalRecycle. Our commitment to you is to provide the services and information you need to recycle right. 1. Curbside residential recycling pickup 2. Certified Collection Center drop-off locations When you pledge to recycle right, we’re here to help. 3. Household Hazardous Waste (HHW) collection facility Oaklanders Recycle No matter where you live in the City, there is a free and easy recycling option Contacts and Important Phone Numbers close to you. Visit recycleusedoil.org to find a location near you. California Waste Solutions ...............................................................(510) 625–5263 Used Motor Oil & Filters Improper Disposal is Illegal Disposal [email protected] www.calwaste.com 我們講中文 Hablamos español When you dispose hazardous materials properly, it benefits Household Hazardous Waste Drop Off ......................................
    [Show full text]
  • Steelmaking by Electric Arc Furnaces Cleaner, More Efficient
    EVRAZ Canadian Steel: Low Carbon Footprint November 2016 Electric Arc Furnaces (EAFs) with metal scrap: cleaner, more efficient • EVRAZ Regina utilizes two Electricity Steelmaking EAFs to make up to 1.1 Generation million tons of steel per Energy used CO2 emissions CO2 emissions year kg / ton of steel kWh / ton of steel grams / kWh -79% • Over 91% of steelmaking -64% -81% 2,081 in China is from Blast 4,624 764 Oxygen Furnaces (BOFs), which use iron ore, coking coal, and other inputs • For every one ton of steel scrap made into new steel, over 1,400kg of iron ore, 1,647 740kg of coal, and 120kg 441 147 of limestone are saved Overseas input shipping to China Blast EAF Blast EAF China Canada Furance Furnace Sources: BOF percentage: Worldsteel. Shipping emissions: National Technical University of Athens. Steelmaking: Midrex – Blast Furnace assuming 11% Scrap, EAF Use of 100% scrap. Scrap statistics: Worldsteel. Electricity Generation: IEA 2011 2 EVRAZ cleaner EAFs, Canada’s power generation outpace others Emissions from Steelmaking emissions and energy use energy generation Energy used CO2 emissions CO2 emissions kg / ton of steel kWh / ton of steel grams / kWh -79% -64% 2,081 4,624 -81% 764 1,526 3,419 2,327 476 470 929 1,647 441 147 China Germany Turkey EVRAZ Blast GermanyTurkey EAF China Turkey Germany Canada - BOF Canada Furnace - EAF - China Overseas shipping of inputs Sources: BOF percentage: Worldsteel. Shipping emissions: National Technical University of Athens, from China to BC, Europe to Houston. Steelmaking: Midrex – Blast Furnace assuming 11% Scrap, EAF Use of 100% scrap.
    [Show full text]
  • AISI | Electric Arc Furnace Steelmaking
    http://www.steel.org/AM/Template.cfm?Section=Articles3&TEMPLATE=/CM/HTMLDisplay.cfm&CONTENTID=12308 Home Steelworks Home Electric Arc Furnace Steelmaking By Jeremy A. T. Jones, Nupro Corporation SIGN UP to receive AISI's FREE e-news! Read the latest. Email: Name: Join Courtesy of Mannesmann Demag Corp. FURNACE OPERATIONS The electric arc furnace operates as a batch melting process producing batches of molten steel known "heats". The electric arc furnace operating cycle is called the tap-to-tap cycle and is made up of the following operations: Furnace charging Melting Refining De-slagging Tapping Furnace turn-around Modern operations aim for a tap-to-tap time of less than 60 minutes. Some twin shell furnace operations are achieving tap-to-tap times of 35 to 40 minutes. 10/3/2008 9:36 AM http://www.steel.org/AM/Template.cfm?Section=Articles3&TEMPLATE=/CM/HTMLDisplay.cfm&CONTENTID=12308 Furnace Charging The first step in the production of any heat is to select the grade of steel to be made. Usually a schedule is developed prior to each production shift. Thus the melter will know in advance the schedule for his shift. The scrap yard operator will prepare buckets of scrap according to the needs of the melter. Preparation of the charge bucket is an important operation, not only to ensure proper melt-in chemistry but also to ensure good melting conditions. The scrap must be layered in the bucket according to size and density to promote the rapid formation of a liquid pool of steel in the hearth while providing protection for the sidewalls and roof from electric arc radiation.
    [Show full text]
  • The Energy Benefit of Stainless Steel Recycling
    ARTICLE IN PRESS Energy Policy ] (]]]]) ]]]–]]] www.elsevier.com/locate/enpol The energy benefit of stainless steel recycling Jeremiah Johnsona,b,Ã, B.K. Reckb, T. Wangb, T.E. Graedelb aProgram in Environmental Engineering, Yale University, New Haven, CT, USA bCenter for Industrial Ecology, School of Forestry and Environmental Studies, Yale University, 205 Prospect Street, New Haven, CT 02140, USA Received 5 December 2006; accepted 21 August 2007 Abstract The energy used to produce austenitic stainless steel was quantified throughout its entire life cycle for three scenarios: (1) current global operations, (2) 100% recycling, and (3) use of only virgin materials. Data are representative of global average operations in the early 2000s. The primary energy requirements to produce 1 metric ton of austenitic stainless steel (with assumed metals concentrations of 18% Cr, 8% Ni, and 74% Fe) is (1) 53 GJ, (2) 26 GJ, and (3) 79 GJ for each scenario, with CO2 releases totaling (1) 3.6 metric tons CO2, (2) 1.6 metric tons CO2, and (3) 5.3 metric tons CO2. Thus, the production of 17 million metric tons of austenitic stainless steel in 2004 used 17 approximately 9.0 Â 10 J of primary energy and released 61 million metric tons of CO2. Current recycling operations reduce energy use 17 by 33% (4.4 Â 10 J) and CO2 emissions by 32% (29 million tons). If austenitic stainless steel were to be produced solely from scrap, which is currently not possible on a global level due to limited availability, energy use would be 67% less than virgin-based production and CO2 emissions would be cut by 70%.
    [Show full text]
  • Euric Metal Recycling Factsheet
    Metal Recycling Factsheet EuRIC AISBL – Recycling: Bridging Circular Economy & Climate Policy 2 EuRIC Metal Recycling Factsheet METAL RECYCLING INDUSTRY Metals are broadly present in a variety of goods with both short and long term use (i.e., steel bars in our houses, bridges, and turbines, copper cables for communication, railway tracks, kitchen equipment, cars, etc.). EU economic growth is deeply linked to the use of metals with metal supply widely depending on metal scrap. Scrap metals from recycling compete globally on commodity markets, hence the need to ensure both a well- functioning internal market for metal recyclers and unhampered access to international markets. Createdfrom the by Noun Bagundas Project CO2 EuRIC AISBL – Recycling: Bridging Circular Economy & Climate Policy 3 EuRIC Metal Recycling Factsheet Metals & Circular Economy Results of the growing metal demand on a linear economy are: • Declining ore grades. • Resource scarcity and price hikes. DISTRIB UTI • Environmental impacts (air and water pollution, land degradation, N ON IO biodiversity loss). CT U D O R P Despite historical metal reuse, there is an increasing need to move C O N towards a more efficient circular economy model. S U M P Thanks to their unique properties, metals can be indefinitely T CIRCULAR ECONOMY I O recycled. At their end-of-life (EoL) stage, products made of metals N can be re-processed via mechanical treatment and re-introduced to R O T the production process to make new metals. As a result, value chains C E S R are already largely circular, despite room for improvement. E G - U N I S L E C / R Y E C P E A R Metal recycling closes the loop within the production process, I R / R E C Y C E L therefore reducing the amount of waste that goes into landfill and the amount of primary raw materials required.
    [Show full text]
  • Gardenworks Guide to Compost and Mulching
    The Green Institute, 2801 21 st Ave S, Suite 110, Minneapolis, MN 55407 612-278-7123 [email protected] www.gardenworksMN.org ~ Promoting and Preserving Community Gardening acro ss the Twin Cities ~ Composting and Mulching Created by Corrie Zoll, GreenSpace Partners, The Green Institute, for a Compost Workshop, February 2003. Updated by GardenWorks, April 2007. Making Compost Why should I make compost? Whether or not you’re a gardener, composting is a common sense way to handle a significant amount of the waste you produce. Think of it like recycling cans. You buy a can of Spam, use the Spam, and you’re left with the can. The can is made of steel. That steel can be used again. That steel is much easier to reuse if you recycle it than if you put it in a landfill. Your coffee grounds, vegetable peels, moldy bread, grass clippings, and fall leaves are also made from reusable materials. Like steel, these materials are much easier to reuse if you recycle them than if you put them in a landfill. But unlike recycling steel, you can recycle coffee grounds at home, and you can use the final product at home, too. I think composting today is where steel recycling was 25 years ago. People know about it, people know it’s a good thing to do, but there isn’t much incentive to do it. As the amount of waste we produce increases, so does the cost per volume of disposing of that waste material. Cities can’t avoid looking for new ways to keep waste out of landfills.
    [Show full text]
  • Framework for Designing Sustainable Structures Through Steel Beam Reuse
    sustainability Article Framework for Designing Sustainable Structures through Steel Beam Reuse Seongjun Kim 1 and Sung-Ah Kim 2,* 1 Department of Convergence Engineering for Future City, Sungkyunkwan University, Suwon 16419, Korea; [email protected] 2 Department of Architecture, Sungkyunkwan University, Suwon 16419, Korea * Correspondence: [email protected] Received: 9 October 2020; Accepted: 12 November 2020; Published: 15 November 2020 Abstract: The architecture, engineering, and construction sector requires carbon-intensive materials, such as steel, in the construction process and generates a large amount of waste in the life cycle. This causes global warming and waste problems. The demand for the reuse of construction materials is increasing, although it is not the convention, to reduce the environmental impact. Although the sustainable effect of the reuse of materials has been proven in several studies, materials are not always reused in practice, owing to the lack of an information system for reusable materials and the economic uncertainty. In this study, we propose a framework for designing structures using reusable steel beams. The design framework consists of a material bank and a design support tool. The material bank provides information on reusable materials based on the building information modeling. The design support tool generates efficient material procurement plans and provides information about the environmental and economic impact of the project. In a case study used to verify the framework, CO2 emissions were reduced by up to 77% through material reuse, which was consistent with the results of previous studies. However, owing to the cost of processing reusable materials, the overall cost was found to increase by up to about 40%.
    [Show full text]
  • Used Oil Oil Filters
    Where can I recycle my used Oil or Oil Filters? Tips from Kaya Locations across the state accept used motor oil and oil filters for recycling. Automotive Used oil is recycled by being re-refined related businesses statewide may serve as to remove contaminants and water. a drop off locations for your used oil or oil Oil displaying the API “Donut” or filters or take them to your local Regional ILSAC “Starburst” meets the same Change Our Ways. Collection Center (RCC). certification as virgin motor oil and can be used in engines or as lubricating oil. For the location of your nearest RCC, visit Change Our World. www.SafeSmartSolutions.org. For the location of some businesses that accept used oil or oil filters visit the Automotive Products Disposal Directory at www.iowadnr.gov/FABA For more information contact your local Solid Waste Agency USED OIL or your Regional Collection Center. API “Donut” ILSAC “Starburst” www.SafeSmartSolutions.org AND OIL FILTERS What happens to used motor oil I bring in to recycle? Used oil can be reprocessed into fuel that can be used in furnaces for heat, or in power plants to generate electricity for homes, schools and businesses. It can also be used in industrial and utility boilers or blended for marine fuels. Used motor oil can also be re-refined into lubricating oils that meet the same API specifications as virgin motor oil. Used Oil Used Oil Filters Oil doesn’t wear out, it just gets dirty. As it Even after a filter has been drained for lubricates your engine it picks up a variety several hours according to federal guidelines, of contaminants, causing the need for an oil several ounces of oil may remain trapped change.
    [Show full text]