Peppermint & Peppermint Oil Profile Integrated Pest Management Cornell Cooperative Extension Program
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mint and Mint Oil Profile New York State Integrated Pest Management Cornell Cooperative Extension Program
http://hdl.handle.net/1813/56133 Mint and Mint Oil Profile New York State Integrated Pest Management Cornell Cooperative Extension Program Mint and Mint Oil Profile Active Ingredient Eligible for Minimum Risk Pesticide Use Brian P. Baker and Jennifer A. Grant New York State Integrated Pest Management, Cornell University, Geneva NY Label Display Names: Cornmint, Cornmint oil, U.S. EPA PC Code: 128800 (Peppermint is also Spearmint, Spearmint oil cross referenced under the listing for mint and mint oil) Active Components: Carvone, Menthol, pulegone, limonene, linarin, pinene, piperitone, linalool, and CA DPR Chem Code: Not Found various other terpenoids, alcohols, esters, and hydrocarbons Other Names: Cornmint oil, spearmint oil, men- thol oil, spearmint terpenes CAS Registry #s: 8008-79-5 (Spearmint oil) Other Codes: 68917-18-0 (Cornmint oil) Cornmint oil—FEMA: 4219; EINECS: 290-058-5; HT: None (Cornmint and Spearmint) 3301.25 Spearmint oil—FEMA: 3032; EINECS: 283-656- HT: 3301.25; RTECS: WG7360000 Summary: Mint and mint oils are a class of active ingredients derived from selected members of the plant genus Mentha. Primary sources include cornmint, peppermint, and spearmint. Active substances contained in the plants and essential oils in this class include menthol, carvone, and various other ter- penoids. Peppermint and spearmint are commonly used food ingredients; cornmint is used as a food ingredient in some Asian cuisines and is a major source of food-grade menthol used as a flavoring agent. As a pesticide, mint and mint oils work primarily through non-toxic modes of action as repellents, but also have anti-microbial properties. Peppermint is covered in a separate profile. -
Evaluation of Aphicidal Effect of Essential Oils and Their Synergistic Effect Against Myzus Persicae (Sulzer) (Hemiptera: Aphididae)
molecules Article Evaluation of Aphicidal Effect of Essential Oils and Their Synergistic Effect against Myzus persicae (Sulzer) (Hemiptera: Aphididae) Qasim Ahmed 1,† , Manjree Agarwal 2,† , Ruaa Al-Obaidi 3, Penghao Wang 2,* and Yonglin Ren 2,* 1 Agricultural Engineering Sciences, University of Baghdad, Al-Jadriya Campus, Baghdad 10071, Iraq; [email protected] 2 College of Science, Health, Engineering and Education, Murdoch University, South Street, Murdoch, WA 6150, Australia; [email protected] 3 Pharmacy College, Mustansiriyah University, Al-Qadisyia, Baghdad 10052, Iraq; [email protected] * Correspondence: [email protected] (P.W.); [email protected] (Y.R.) † These authors contributed equally to this paper. Abstract: The insecticidal activities of essential oils obtained from black pepper, eucalyptus, rose- mary, and tea tree and their binary combinations were investigated against the green peach aphid, Myzus persicae (Aphididae: Hemiptera), under laboratory and glasshouse conditions. All the tested essential oils significantly reduced and controlled the green peach aphid population and caused higher mortality. In this study, black pepper and tea tree pure essential oils were found to be an effective insecticide, with 80% mortality when used through contact application. However, for combinations of essential oils from black pepper + tea tree (BT) and rosemary + tea tree (RT) tested Citation: Ahmed, Q.; Agarwal, M.; as contact treatment, the mortality was 98.33%. The essential oil combinations exhibited synergistic Al-Obaidi, R.; Wang, P.; Ren, Y. and additive interactions for insecticidal activities. The combination of black pepper + tea tree, Evaluation of Aphicidal Effect of eucalyptus + tea tree (ET), and tea tree + rosemary showed enhanced activity, with synergy rates Essential Oils and Their Synergistic of 3.24, 2.65, and 2.74, respectively. -
Working with Hazardous Chemicals
A Publication of Reliable Methods for the Preparation of Organic Compounds Working with Hazardous Chemicals The procedures in Organic Syntheses are intended for use only by persons with proper training in experimental organic chemistry. All hazardous materials should be handled using the standard procedures for work with chemicals described in references such as "Prudent Practices in the Laboratory" (The National Academies Press, Washington, D.C., 2011; the full text can be accessed free of charge at http://www.nap.edu/catalog.php?record_id=12654). All chemical waste should be disposed of in accordance with local regulations. For general guidelines for the management of chemical waste, see Chapter 8 of Prudent Practices. In some articles in Organic Syntheses, chemical-specific hazards are highlighted in red “Caution Notes” within a procedure. It is important to recognize that the absence of a caution note does not imply that no significant hazards are associated with the chemicals involved in that procedure. Prior to performing a reaction, a thorough risk assessment should be carried out that includes a review of the potential hazards associated with each chemical and experimental operation on the scale that is planned for the procedure. Guidelines for carrying out a risk assessment and for analyzing the hazards associated with chemicals can be found in Chapter 4 of Prudent Practices. The procedures described in Organic Syntheses are provided as published and are conducted at one's own risk. Organic Syntheses, Inc., its Editors, and its Board of Directors do not warrant or guarantee the safety of individuals using these procedures and hereby disclaim any liability for any injuries or damages claimed to have resulted from or related in any way to the procedures herein. -
Coleoptera: Dermestidae) from the Republic of Namibia
Studies and Reports Taxonomical Series 15 (2): 329-332, 2019 A new dermestid species (Coleoptera: Dermestidae) from the Republic of Namibia Andreas HERRMANN1 & Jiří HÁVA2,3 1Bremervörder Strasse 123, D - 21682 Stade, Germany e-mail: [email protected] 2Daugavpils University, Institute of Life Sciences and Technology, Department of Biosystematics, Vienības Str. 13, Daugavpils, LV - 5401, Latvia 3Private Entomological Laboratory and Collection, Rýznerova 37, CZ - 252 62 Únětice u Prahy, Praha-západ, Czech Republic e-mail: [email protected] Taxonomy, description, new species, Coleoptera, Dermestidae, Attagenus, Namibia Abstract. A new species Attagenus (s. str.) namibicus sp. nov. from Namibia is described, illustrated and compared with similar looking species. A list of all species from Namibia which belong to the genus Attagenus is furthermore provided. INTRODUCTION The genus Attagenus Latreille, 1802 is one of about 60 genera established within the beetle family Dermestidae. This genus includes of about 250 different species respectively subspecies worldwide (Háva 2015), 11 of them have still been recorded from the Republic of Namibia (Háva 2005, Herrmann & Háva 2007, Háva & Kadej 2008, Herrmann & Háva 2014, Háva, Herrmann & Kadej 2015, Herrmann & Háva 2016). In the present paper we describe a new species of this genus which was detected during an examination of some unidentified dermestids deposited in the collection of the Royal Belgian Institute of Natural Sciences (ISNB). MATERIAL AND METHODS The dried specimens were weakened for 5 days in a solution of 1% pepsin in diluted hydrochloric acid to free them roughly from protein tissues and to make the extremities of the body moveable, again. The abdomen was disconnected from the body and glued upside- down onto the same cardboard plate, just behind the beetle. -
Helpline Hot Topic June 2019
Helpline Hot Topic for June 2019 Mosquito Repellent Plants By Cynthia Zimmerman “It’s not so much how busy you are, but why you’re busy. The bee is praised; the mosquito is swatted.” - Marie O’Connor While I’ve been busy working in my vegetable garden recently, I unfortunately have found that mosquitoes are already busy dining on me. I happen to be one of those people that if there is a mosquito anywhere near-by, it will make its presence known by leaving me with multiple bites. One of the things I’ve noticed the past few years is that when I pick produce in my garden, particularly tomatoes, I always come away with mosquito bites. I was told some years ago that mosquitoes like to retire to the interior of plants to rehydrate during the day, so every time I stick my arm in the tomato plant to pick a tomato, I offer up prime feasting. I hate having to drench myself in insect repellent in order to sit on my patio or spend time in my garden plus I discovered some years ago when I lived in North Carolina at the southern end of the Dismal Swamp that even military grade repellents don’t work very well for me. This has led me to explore the possibility of using plants as repellents. As I’ve searched I find that little has been done in the way of scientific research or studies as to the efficacy of plants to repel insects. Still there are many plants that are purported to be useful in controlling certain insect populations. -
Mosquitoes Are Still Lurking – Protect Yourself This Fall (From August 2018 Newsletter)
Mosquitoes are still lurking – protect yourself this fall (From August 2018 newsletter) Even though summer is waning, the risk of mosquito bites is still high. We have had a particularly hot and humid summer, which creates an excellent breeding environment for mosquitoes. Besides being uncomfortable, mosquito bites can lead to diseases such as Zika and West Nile disease. Read on to learn how to best protect yourself. What works – bug repellent: Wearing bug repellent is one of the best ways to avoid mosquito bites. There are a myriad of insect repellent products on the market. Some ingredients work better than others. The following are approved by the Centers for Disease Control (CDC) and the Environmental Protection Agency (EPA) for mosquito (and also in some cases, tick) protection: • DEET: DEET is one of the most common and effective insect repellents. It is safe for adults and children older than two months. • Picardin: This compound is designed to be used on clothing. Do not use directly on your skin. • Permethrin: This repellent, derived from the pepper plant is an excellent DEET alternative. • IR3525 • 2undecanone • Lemon eucalyptus oil: Note: Do not use this on children under three years old. Always use EPA registered repellents. Look for the EPA registration number on the back label. Wear it right: For the most part insect repellent is very safe. But it is important to not overexpose yourself. Follow these tips: • The correct way to use repellent is to apply it after sunscreen. Sunscreen works on the deeper layers of skin, while bug repellent works on the top layer. -
Juniperus Communis L.) Essential Oil
Antioxidants 2014, 3, 81-98; doi:10.3390/antiox3010081 OPEN ACCESS antioxidants ISSN 2076-3921 www.mdpi.com/journal/antioxidants Article Chemical Composition and Antioxidant Properties of Juniper Berry (Juniperus communis L.) Essential Oil. Action of the Essential Oil on the Antioxidant Protection of Saccharomyces cerevisiae Model Organism Martina Höferl 1,*, Ivanka Stoilova 2, Erich Schmidt 1, Jürgen Wanner 3, Leopold Jirovetz 1, Dora Trifonova 2, Lutsian Krastev 4 and Albert Krastanov 2 1 Department of Pharmaceutical Chemistry, Division of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna 1090, Austria; E-Mails: [email protected] (E.S.); [email protected] (L.J.) 2 Department Biotechnology, University of Food Technologies, Plovdiv 4002, Bulgaria; E-Mails: [email protected] (I.S.); [email protected] (D.T.); [email protected] (A.K.) 3 Kurt Kitzing Co., Wallerstein 86757, Germany; E-Mail: [email protected] 4 University Laboratory for Food Analyses, University of Food Technologies, Plovdiv 4002, Bulgaria; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +43-1-4277-55555; Fax: +43-1-4277-855555. Received: 11 December 2013; in revised form: 26 January 2014 / Accepted: 28 January 2014 / Published: 24 February 2014 Abstract: The essential oil of juniper berries (Juniperus communis L., Cupressaceae) is traditionally used for medicinal and flavoring purposes. As elucidated by gas chromatography/flame ionization detector (GC/FID) and gas chromatography/mass spectrometry (GC/MS methods), the juniper berry oil from Bulgaria is largely comprised of monoterpene hydrocarbons such as α-pinene (51.4%), myrcene (8.3%), sabinene (5.8%), limonene (5.1%) and β-pinene (5.0%). -
Influence of Tea Tree Essential Oil and Poly(Ethylene Glycol)
materials Article Influence of Tea Tree Essential Oil and Poly(ethylene glycol) on Antibacterial and Physicochemical Properties of Polylactide-Based Films Iwona Tarach 1, Ewa Olewnik-Kruszkowska 1,* , Agnieszka Richert 2 , Magdalena Gierszewska 1 and Anna Rudawska 3 1 Chair of Physical Chemistry and Physicochemistry of Polymers, Faculty of Chemistry, Nicolaus Copernicus University in Toru´n,Gagarina 7 Street, 87-100 Toru´n,Poland; [email protected] (I.T.); [email protected] (M.G.) 2 Chair of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toru´n, Lwowska 1 Street, 87-100 Toru´n,Poland; [email protected] 3 Department of Production Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-56-611-2210 Received: 5 October 2020; Accepted: 1 November 2020; Published: 4 November 2020 Abstract: The aim of the study was to establish the influence of poly(ethylene glycol) (PEG) on the properties of potential biodegradable packaging materials with antibacterial properties, based on polylactide (PLA) and tea tree essential oil (TTO). The obtained polymeric films consisted of PLA, a natural biocide, and tea tree essential oil (5–20 wt. %) was prepared with or without an addition of 5 wt. % PEG. The PLA-based materials have been tested, taking into account their morphology, and their thermal, mechanical and antibacterial properties against Staphylococcus aureus and Escherichia coli. It was established that the introduction of a plasticizer into the PLA–TTO systems leads to an increase in tensile strength, resistance to deformation, as well an increased thermal stability, in comparison to films modified using only TTO. -
Melissa Officinalis L., a Valuable Medicine Plant: a Review
Journal of Medicinal Plants Research Vol. 4(25), pp. 2753-2759, 29 December Special Review, 2010 Available online at http://www.academicjournals.org/JMPR ISSN 1996-0875 ©2010 Academic Journals Review Melissa officinalis L., a valuable medicine plant: A review Moradkhani H.1, Sargsyan E.1, Bibak H.2, Naseri B.3, Sadat-Hosseini M.2, Fayazi-Barjin A.4 and Meftahizade H.5* 1Institute of Hydroponic Problems, National Academic of Sciences, Yerevan, Republic of Armenia. 2Department of plant production, faculty of Agriculture, university of Jiroft, Kerman, Iran. 3Faculty of Islamic Azad University, Ilam, Iran. 4Department of Plant Protection, University of Tehran, Iran. 5Researcher of ACECR Medicinal Plants Center, Ilam, Iran. Accepted 6 December, 2010 Melissa officinalis L., a valuable medicinal plant in herbal medicine is native to the eastern Mediterranean Region and western Asia. The constituent of the essential oil of the plant in various climates is different, but citral (geranial and neral), citronellal, geraniol are main components. Many parameters influencing essential oil composition and yield, such as light intensity, nutrient, temperature, cultural practice genotype, plant part age, harvesting time. Lemon balm has been traditionally used for different medical purposes as tonic, antispasmodic, carminative, diaphoretic, surgical dressing for wounds, sedative-hypnotic strengthening the memory, and relief of stress induced headache, but in modern pharmacology is value in the management of mild to moderate Alzheimer’s, against migraine and rheumatism, antitumel and antioxidant activities. Key words: Melissa officinalis, essential oil, pharmacology and antioxidant. INTRODUCTION Lemon balm, member of the family Lamiaceae (formerly years may no longer germinate (Zargari, 1991). Labiatae) is a perennial bushy plant and is upright, Lemon balm has a hairy root system with many lateral reaching a height of about 1 m. -
Essential Oils for Beginners Essential Oils for Beginners
Essential Oils for Beginners Essential Oils for Beginners Introduction The Power of the Entire Earth in One Bottle Our planet is a complicated system, made up of intricate ecosystems, endless molecules, and powerful elements. Over the span of 4.5 billion years, the Earth has formed colossal mountains, green valleys, leafy jungles, and vast forests, providing a home for countless plants and animals. On the 196,900,000 square miles of the planet’s surface, scientists estimate that there are 390,000 plants—with new species being discovered all the time. The hundreds of thousands of plants actually perform a number of important functions for the planet. Plants help control the climate, process carbon dioxide and release oxygen into the air to help us breathe, keep living organisms alive, and can be used for food and health solutions, among many other practical uses. With so many benefits, it is no surprise that plants have been used since the beginning of time to help humans perform everyday tasks. 2 Essential Oils for Beginners Ancient times People of ancient civilizations used entire plants, extracts, and various plant parts to make life easier, transforming the gifts of the earth into everything from textiles to remedies. Ancient people believed that the earth gave them everything they needed to solve all of their problems. Present day Fast-forward to modern day. Plants are still everywhere around us, yet with new inventions and technology, we’ve grown accustomed to using synthetic products rather than the gifts of nature to solve everyday challenges. Technology has made life easier, but along with technological advancements, we’ve seen a decline in many areas of quality of life. -
From Guatemala
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 2019 A contribution to the knowledge of Dermestidae (Coleoptera) from Guatemala José Francisco García Ochaeta Jiří Háva Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. December 23 2019 INSECTA 5 ######## A Journal of World Insect Systematics MUNDI 0743 A contribution to the knowledge of Dermestidae (Coleoptera) from Guatemala José Francisco García-Ochaeta Laboratorio de Diagnóstico Fitosanitario Ministerio de Agricultura Ganadería y Alimentación Petén, Guatemala Jiří Háva Daugavpils University, Institute of Life Sciences and Technology, Department of Biosystematics, Vienības Str. 13 Daugavpils, LV - 5401, Latvia Date of issue: December 23, 2019 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL José Francisco García-Ochaeta and Jiří Háva A contribution to the knowledge of Dermestidae (Coleoptera) from Guatemala Insecta Mundi 0743: 1–5 ZooBank Registered: urn:lsid:zoobank.org:pub:10DBA1DD-B82C-4001-80CD-B16AAF9C98CA Published in 2019 by Center for Systematic Entomology, Inc. P.O. Box 141874 Gainesville, FL 32614-1874 USA http://centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non- marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history. -
Menthol 1 Menthol
Menthol 1 Menthol Menthol Identifiers [1] CAS number 89-78-1 [2] ChemSpider 15803 [3] UNII YS08XHA860 RTECS number OT0350000, racemic SMILES InChI InChI key Properties Molecular formula C H O 10 20 Molar mass 156.27 g mol−1 Appearance White or colorless crystalline solid Density 0.890 g·cm−3, solid (racemic or (−)-isomer) Melting point 36–38 °C (311 K), racemic 42–45 °C (318 K), (−)-form (α) 35-33-31 °C, (−)-isomer Boiling point 212 °C (485 K) Solubility in water Slightly soluble, (−)-isomer Hazards R-phrases R37/38, R41 S-phrases S26, S36 Flash point 93 °C Menthol 2 Related compounds Related alcohols Cyclohexanol, Pulegol, Dihydrocarveol, Piperitol Related compounds Menthone, Menthene, Thymol, p-Cymene, Citronellal [4] (what is this?) (verify) Except where noted otherwise, data are given for materials in their standard state (at 25 °C, 100 kPa) Infobox references Menthol is an organic compound made synthetically or obtained from peppermint or other mint oils. It is a waxy, crystalline substance, clear or white in color, which is solid at room temperature and melts slightly above. The main form of menthol occurring in nature is (−)-menthol, which is assigned the (1R,2S,5R) configuration. Menthol has local anesthetic and counterirritant qualities, and it is widely used to relieve minor throat irritation. Menthol also acts as a weak kappa Opioid receptor agonist. Structure Natural menthol exists as one pure stereoisomer, nearly always the (1R,2S,5R) form (bottom left corner of the diagram below). The other seven stereoisomers are: In the natural compound, the isopropyl group is in the trans orientation to both the methyl and hydroxyl groups.