Zirconium Dioxide (Zro2) Oxygen Sensor Operating Principle Guide

Total Page:16

File Type:pdf, Size:1020Kb

Zirconium Dioxide (Zro2) Oxygen Sensor Operating Principle Guide O2 SENSORS – Zirconium Dioxide (ZrO2) Oxygen Sensor Operating Principle Guide This document describes the physics and concepts behind SST Sensing’s range of dynamic and highly accurate oxygen sensors. When reading this document, keep in mind the following key differentiators between SST’s range of sensors and other zirconium dioxide oxygen sensors: SST’s sensors measure partial pressure of oxygen in a gas or mixture of gases, NOT oxygen concentration %. SST’s sensors do NOT require a reference gas. Contents 1 INTRODUCTION ...................................................................................................................... 1-1 2 BACKGROUND PHYSICS ........................................................................................................... 2-1 2.1 Partial pressure ............................................................................................................... 2-1 2.2 Zirconium Dioxide (ZrO2) ................................................................................................. 2-4 2.3 Nernst Voltage ................................................................................................................ 2-4 3 SENSOR FUNCTION ................................................................................................................. 3-1 3.1 Sensor Cell Construction ................................................................................................. 3-1 3.2 Pumping Plate ................................................................................................................. 3-2 3.3 Sensing Plate ................................................................................................................... 3-2 4 MEASUREMENT ...................................................................................................................... 4-1 4.1 Recommended Values for Use in Normal Atmospheric Pressures .................................... 4-3 4.2 Initial Sensor Drift and Active Burn-In .............................................................................. 4-4 4.3 Calibration Processes – Converting td to ppO2 and O2% ................................................... 4-5 APPENDIX A – WATER VAPOUR PRESSURE LOOKUP TABLE ............................................................. A-1 APPENDIX B – SPECIAL NOTES AND APPLICATION HINTS ................................................................. B-1 APPENDIX C – DESIGNING INTERFACE ELECTRONICS ....................................................................... C-1 1 INTRODUCTION The zirconium dioxide oxygen sensor does NOT measure oxygen concentration %, but rather it measures partial pressure of oxygen in a gas or mixture of gases. The sensor employs a well proven, small zirconium dioxide based element at its heart and due to its innovative design does NOT require a reference gas. This removes limitations in the environments in which the sensor can be operated with high temperatures, humidity and oxygen pressures all possible. SST Sensing’s range of oxygen sensors are therefore ideal for use in the following applications: Laboratory measurements Combustion control of systems using natural gas, oil, biomass, etc. Automotive emissions testing Oxygen generation in medical and aerospace markets Aerospace fuel tank inerting applications Agricultural applications including composting and cultivation Bakery ovens and heat treatment furnaces Key to understanding the fundamentals of the sensor operation is the physics that govern it. For information on the correct use and implementation which is key to getting the most from the sensor in a wide range of applications, refer to AN-0050, Zirconia O2 Sensor Operation and Compatibility Guide. Page | 1-1 2 BACKGROUND PHYSICS 2.1 Partial pressure 2.1.1 Definition The partial pressure is defined as the pressure of a single gas component in a mixture of gases. It corresponds to the total pressure which the single gas component would exert if it alone occupied the whole volume. 2.1.2 Dalton’s law The total pressure (Ptotal) of a mixture of ideal gases is equal to the sum of the partial pressures (Pi) of the individual gases in that mixture. 푘 푃푡표푡푎푙 = ∑푖=1 푃푖 (1) From Equation 1 it can be derived that the ratio of the number of particles (ni) of an individual gas component to the total number of particles (ntotal) of the gas mixture equals the ratio of the partial pressure (Pi) of the individual gas component to the total pressure (Ptotal) of the gas mixture. 푛푖 푃푖 = (2) 푛푡표푡푎푙 푃푡표푡푎푙 ni Number of particles in gas i ntotal Total number of particles pi Partial pressure of gas i Ptotal Total pressure Figure 2-1 Ptotal = P1 + P2 + P3 (Constant Volume & Temperature) P a g e | 2-1 Example 1: The atmospheric pressure at sea level (under standard atmospheric conditions) is 1013.25mbar. Here, the main components of dry air are nitrogen (78.08% Vol.), oxygen (20.95% Vol.), argon (0.93% Vol.) and carbon dioxide (0.040% Vol.). The volumetric content (%) can be equated to the number of particles (n) since the above gases can be approximated as ideal gases. Equation 2 can be solved for the partial pressure of an individual gas (i) to get: 푛푖 푃푖 = ×푃푡표푡푎푙 (3) 푛푡표푡푎푙 The oxygen partial pressure then equates to: 20.95% 푃 = ×1013.25푚푏푎푟 = 212.28푚푏푎푟 푖 100% Figure 2-2 Partial Pressure at 0% Humidity Of course, this value is only relevant when the atmosphere is dry (0% humidity). If moisture is present a proportion of the total pressure is taken up by water vapour pressure. Therefore, the partial oxygen pressure (ppO2) can be calculated more accurately when relative humidity and ambient temperature are measured along with the total barometric pressure. Figure 2-3 Liquid Vapour Pressure Firstly, water vapour pressure is calculated: 퐻푅푒푙 푊푉푃 = ( ) ×푊푉푃 (4) 100 푚푎푥 WVP Water Vapour Pressure (mbar) HRel Relative Humidity (%) WVPmax Maximum Water Vapour Pressure (mbar) Page | 2-2 For a known ambient temperature, maximum water vapour pressure (WVPmax) can be determined from the lookup table in APPENDIX A. The maximum water vapour pressure is also referred to as the dew point. Warmer air can hold more water vapour and so has a higher WVPmax. Partial oxygen pressure then equates to: 20.95 푝푝푂 = (퐵푃 − 푊푉푃)×( ) (5) 2 100 ppO2 Partial Pressure O2 (mbar) BP Barometric Pressure (mbar) WVP Water Vapour Pressure (mbar) Example 2 below describes the effect of humidity reducing the partial oxygen pressure and therefore the volumetric content of oxygen. Example 2: On a typical day, the following information is recorded from a calibrated weather station: Temperature: 22°C Humidity: 32% Barometric Pressure: 986mbar Using the lookup table in APPENDIX A, WVPMAX = 26.43mbar. 32 푊푉푃 = ( ) ×26.43 = 8.458푚푏푎푟 100 Partial oxygen pressure then equates to: 20.95 푝푝푂 = (986 − 8.458)× ( ) = 204.795푚푏푎푟 2 100 As we now know the oxygen partial pressure and the total barometric pressure we can work out the volumetric content of oxygen. 204.8 푂 % = ( ) ×100 = 20.77% 2 986 Page | 2-3 2.2 Zirconium Dioxide (ZrO2) At high temperatures (> 650°C), stabilised zirconium dioxide (ZrO2) exhibits two mechanisms: 1. ZrO2 partly dissociates producing mobile oxygen ions and therefore becomes a solid electrolyte for oxygen. A ZrO2 disc coated with porous electrodes connected to a constant DC current source allows ambient oxygen ions to be transported through the material. This liberates an amount of oxygen at the anode proportional to the charge transported (electrochemical pumping) which according to Faraday’s First Law of Electrolysis is: 푖푡 푁 = (6) 푧퐹 N Number of Moles of Oxygen Transported i Constant Current t Time (seconds) z Ionic Valence of Oxygen a F Faraday Constant = 96487 C/mol 2. ZrO2 behaves like an electrolyte. If two different oxygen pressures exist on either side of a piece of ZrO2, a voltage (Nernst voltage) is generated across it. 2.3 Nernst Voltage Two different ion concentrations on either side of an electrolyte generate an electrical potential known as the Nernst Voltage. This voltage is proportional to the natural logarithm of the ratio of the two different ion concentrations. Electrolysis is: 푘퐵푇 푐1 ∆푉 = × ln ( ) (7) 푒0 푐2 -23 kB Boltzmann constant (kB = 1.38x10 J/K) T Temperature in K -19 e0 Elementary charge (e0 = 1.602x10 C) ci Ion concentration in mol/kg Either of these properties are used in many variants of oxygen sensors, however SST’s oxygen sensors employ both principals simultaneously. This removes the need for a sealed reference gas making the sensor more versatile for use in a range different oxygen pressures. a Where C is units of charge in coulombs, and mol is mole, a unit of substance. Page | 2-4 3 SENSOR FUNCTION 3.1 Sensor Cell Construction At the core of the oxygen sensor is the sensing cell (Figure 3-1). The cell consists of two zirconium dioxide (ZrO2) squares coated with a thin porous layer of platinum which serve as electrodes. The platinum electrodes provide the necessary catalytic effect for the oxygen to dissociate, allowing the oxygen ions to be transported in and out of the ZrO2. Figure 3-1 The Sensing Cell The two ZrO2 squares are separated by a platinum ring which forms a hermetically sealed sensing chamber. At the outer surfaces, there are two further platinum rings which along with centre platinum ring provide the electrical connections to the cell. Two outer alumina (Al2O3) discs filter and prevent any ambient particulate matter from entering the sensor and also remove any unburnt gases. This prevents contamination of the cell which
Recommended publications
  • Why Should You Change an Oxygen Sensor?
    Why should you change an oxygen sensor? It is critical that oxygen sensors are replaced at the How to diagnose suggested intervals provided by vehicle manufacturers before the sensor fails. Following the State of oxygen sensor: recommendations will prevent long term damage to a Greenish, grainy discoloration. Possible cause: vehicle’s engine, reduce harmful carbon dioxide (CO2) Antifreeze has escaped and entered the combustion chamber. emissions and save money when refueling your vehicle. Measure: Replace the oxygen sensor. Check the engine block, cylinder head, intake An oxygen sensor’s service life varies: oxygen sensors manifold and head gasket for wear and cracks. with 1 – 2 wires have a typical service life between 30,000 – 50,000 miles; while 3 – 5 wire sensors have a life span of up to 100,000 miles. Checking and State of oxygen sensor: Blackened, with oily contamination. replacing worn out oxygen sensors has become a Possible cause: critical part of regular vehicle maintenance. Excessive oil consumption. Measure: Check the valve guides and seals, which may be worn. Replace the A worn out oxygen sensor can cause oxygen sensor. f Engine performance issues f Lower miles per gallon fuel efficiency State of oxygen sensor: Dark brown discoloration. f Excessive harmful exhaust emissions Possible cause: Air-fuel mixture too rich. Measure: f Catalytic converter damage Check the fuel pressure. Replace the oxygen sensor. Replacing a worn oxygen sensor f Improves engine performance f Reduces harmful emissions State of oxygen sensor: Reddish or white discoloration. Possible cause: f Optimizes fuel delivery for maximum Fuel additives in the gasoline.
    [Show full text]
  • Oxyprobe-12-Mm-Manual.Pdf
    ® QUICK GUIDE • Calibration Chapter 4 • Troubleshooting Chapter 5 • Installation and Maintenance Chapter 7 P1806O 7/2003 Measurement and Control Products for Science and Industry 19 Thomas, Irvine, California 92618 USA Phone: 949.829.5555 Toll-Free: 800.288.2833 Fax: 949.829.5560 E-Mail: [email protected] Website: broadleyjames.com OxyProbe® Dissolved Oxygen Sensors ESSENTIAL INSTRUCTIONS READ THIS PAGE BEFORE PROCEEDING! This product has been designed, manufactured, and tested to meet many national and international standards. Because these sensors are sophisticated technical products, proper installation, use, and maintenance ensures they continue to operate within their normal specifications. The following instructions are provided for integra- tion into your safety program when installing, using, and maintaining these products. Failure to follow the prop- er instructions may cause any one of the following situations to occur: Loss of life; personal injury; property damage; damage to this sensor and warranty invalidation. • Read all instructions prior to installing, operating, and servicing the product. If this instruction manual is not the correct manual, telephone (949) 829-5555 and the requested manual will be provided. Save this manual for future reference. • If you do not understand any of the instructions, contact Broadley-James for clarification. • Follow all warnings, cautions, and instructions marked on and supplied with the product. • Inform and educate your personnel in the proper installation, operation, and maintenance of the product. • Install your equipment as specified in the installation instructions of the appropriate instruction manual and per applicable local and national codes. • To ensure proper performance, use qualified personnel to install, operate, update, calibrate, and maintain the product.
    [Show full text]
  • Ford Diagnostic Scan Tool Flex-Fuel Compatible Parts Oxygen Sensor
    Tools of theTrade Ford Diagnostic Scan Tool ly corrosive ethanol fuels, and are patible with antifreeze/coolant in The Ford Portable Diagnostic Soft- specifically designed to allow for in- both foreign and domestic cars and ware (PDS) Advanced Kit (Part No. creased flow capacity for those fuels. Upgrades in metals, polymers and plastics ensure durability and lasting performance in harsher alcohol fuel blends such as E85. Coverage in- cludes late-model applications from GM, Ford and Chrysler. Delphi Circle #151 Oxygen Sensor 3912) is a modular diagnostic tool kit Connector System light-duty trucks, old and new. Con- that includes a hand-held Pocket PC, The OE SmartLink oxygen sensor centrated formula Prestone Extended PDS software and a Vehicle Commu- connector system allows 14 OEM- Life Antifreeze/Coolant is designed nication Module (VCM). These com- to be compatible with antifreeze/ ponents allow the user to run Ford- coolant in any vehicle make or model specialized software in conjunction and can be used when conducting a with a Pocket PC to allow scan tool complete cooling system flush & re- functionality. This portable scan tool fill. Phosphate-, silicate- and borate- is CAN-compatible and supports di- free, this antifreeze/coolant is intend- agnostic services for most 1996 to ed to extend the life of the corrosion in- 2008 Ford, Lincoln and Mercury hibitor package so that it lasts for up to models with a 16-pin DLC connector. 5 yrs./150,000 mi. (whichever comes The tool’s flexible architecture can be first) when added to any extended-life programmed to execute a specific antifreeze/coolant.
    [Show full text]
  • Wideband O2 Sensors and Air/Fuel (A/F) Sensors
    Home, Auto Repair Library, Auto Parts, Accessories, Tools, Manuals & Books, Car BLOG, Links, Index Wideband O2 Sensors and Air/Fuel (A/F) Sensors by Larry Carley copyright 2019 AA1Car.com Wideband Oxygen sensors (which may also be called Wide Range Air Fuel (WRAF) sensors) and Air/Fuel (A/F) Sensors, are replacing conventional oxygen sensors in many late model vehicles. A wideband O2 sensor or A/F sensor is essentially a smarter oxygen sensor with some additional internal circuitry that allows it to precisely determine the exact air/fuel ratio of the engine. Like an ordinary oxygen sensor, it reacts to changing oxygen levels in the exhaust. But unlike an ordinary oxygen sensor, the output signal from a wideband O2 sensor or A/F sensor does not change abruptly when the air/fuel mixture goes rich or lean. This makes it better suited to today's low emission engines, and also for tuning performance engines. Oxygen Sensor Outputs An ordinary oxygen sensor is really more of a rich/lean indicator because its output voltage jumps up to 0.8 to 0.9 volts when the air/fuel mixture is rich, and drops to 0.3 volts or less when the air/fuel mixture is lean. By comparison, a wideband O2 sensor or A/F sensor provides a gradually changing current signal that corresponds to the exact air/fuel ratio. Another difference is that the sensor's output voltage is converted by its internal circuitry into a variable current signal that can travel in one of two directions (positive or negative).
    [Show full text]
  • Enhanced Thermal Properties of Zirconia Nanoparticles and Chitosan-Based Intumescent Flame Retardant Coatings
    applied sciences Article Enhanced Thermal Properties of Zirconia Nanoparticles and Chitosan-Based Intumescent Flame Retardant Coatings Tentu Nageswara Rao , Imad Hussain, Ji Eun Lee, Akshay Kumar and Bon Heun Koo * School of Materials Science and Engineering, Changwon National University, Changwon, Gyeongnam 51140, Korea * Correspondence: [email protected]; Fax: +82-(55)-262-6486 Received: 10 July 2019; Accepted: 19 August 2019; Published: 22 August 2019 Abstract: Zirconia (ZrO2)-based flame retardant coatings were synthesized through the process of grinding, mixing, and curing. The flame retardant coatings reinforced with zirconia nanoparticles (ZrO2 NPs) were prepared at four different formulation levels marked by F0 (without adding ZrO2 NPs), F1 (1% w/w ZrO2 NPs), F2 (2% w/w ZrO2 NPs), and F3 (3% w/w ZrO2 NPs) in combination with epoxy resin, ammonium polyphosphate, boric acid, chitosan, and melamine. The prepared formulated coatings were characterized by flammability tests, combustion tests, and thermogravimetric analysis. Finally, char residues were examined with scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). The peak heat release rate (PHRR) of the controlled sample filled with functionalized ZrO2 NPs was observed to decrease dramatically with increasing functionalized ZrO2 NPs loadings. There was an increase in the limit of oxygen index (LOI) value with the increase in the weight percentage of ZrO2 NPs. The UL-94V data clearly revealed a V-1 rating for the F0 sample; however, with the addition of ZrO2 NPs, the samples showed enhanced properties with a V-0 rating. Thermal gravimetric analysis (TGA) results revealed that addition of ZrO2 NPs Improved composite coating thermal stability at 800 ◦C by forming high residual char.
    [Show full text]
  • Zirconium Oxide Ceramics in Prosthodontics Phase
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Jasenka Æivko-BabiÊ Zirconium Oxide Ceramics in Andreja Carek Marko Jakovac Prosthodontics Department of Prosthodontics School of Dental Medicine University of Zagreb Summary Acta Stomat Croat 2005; 25-28 Dental ceramics justifies more frequent use in prosthetic restoration of damaged dental status. Inlays, crowns and three-unit bridges have been made of all-ceramic system. Zirconia dioxide is a well- known polymorph. The addition of stabilising oxides like MgO, Y2O3 to pure zirconia, makes it completely or partially stabilized zirconia which PRELIMINARY REPORT Received: March 23, 2004 enables use in prosthodontics. Tetragonal Zirconia Polycrystals (TZP) stabilized with 3mol % yttria, has excellent mechanical and esthetical properties. Fixed prosthetic appliances of this ceramic have been made Address for correspondence: using CAD/CAM techniques. It can be expected that zirconium oxide ceramics will replace metal-ceramics in restorations that require high Prof. Jasenka Æivko-BabiÊ Zavod za stomatoloπku strength. protetiku Key words: Zirconia, mechanical properties, Tetragonal Zirconia Stomatoloπki fakultet GunduliÊeva 5, 10000 Zagreb Polycrystals (TZP), partially stabilized zirconia (PSZ), In-Ceram Zir- tel: 01 4802 135 conia. fax: 01 4802 159 Introduction Zirconia is stable in oxidizing and poor reducing atmospheres. It is inert to acids and bases at room Zircon has been known as a gem since ancient temperature (RT) with the exception of HF. It reacts times. The name of metal zirconium, comes from with carbon, nitrogen and hydrogen at temperatures the Arabic Zargon, which means golden colour. Zir- above 2200°C and does not react with the refracto- conia, the metal dioxide (ZrO2) ,was identified in ry metals up to 1400°C.
    [Show full text]
  • Synthesis and Characterization of Porous Zro2-Y2O3-Tio2 Ceramics Prepared by Coprecipitation
    Eighth International Latin American Conference on Powder Technology, November 06 to 09, Costão do Santinho, Florianópolis, SC, Brazil Synthesis and characterization of porous ZrO2-Y2O3-TiO2 ceramics prepared by coprecipitation Luan M. Medeiros1,a, Fernando S. Silva1, b, Juliana Marchi2, c, Walter Kenji Yoshito1, d, Dolores R. R. Lazar1, e, Valter Ussui1, f 1-Instituto de Pesquisas Energéticas e Nucleares – IPEN – Av. Prof. Lineu Prestes, 2242, Cidade Universitária, São Paulo, SP, Brasil. 2-Universidade Federal do ABC - Centro de Ciências Naturais e Humanas Rua Santa Adelia, 166, Bangu, Santo Andre, SP 09210-170, Brasil [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] Key-words: Y-TZP, titania, ceramics, pore formers Abstract. Zirconium dioxide (zirconia) ceramics are known by its high strength and toughness and titanium dioxide (titania) ceramics has outstanding surface properties. The ceramic composite formed between the two oxides are expected to have advantages of both ceramics, especially when its surface area is increased by pores. In this work, ceramic composites of ZrO2-Y2O3-TiO2 were synthesized by coprecipitation and rice starch was added as pore former in 10, 20 and 30 wt%. Powders were cold pressed as cylindrical pellets and sintered at 1500 °C for 01 hour and ceramics were characterized by techniques as Archimedes method for density measurements, X-ray diffraction and scanning electron microscopy. Results showed that pores are inhomogeneously distributed through ceramic bodies. Introduction Zirconia based ceramic materials are known by their chemical and thermal shock resistance and, when appropriately doped with additives as yttrium, cerium or other rare earth oxides, show outstanding mechanical and/or electrical properties.
    [Show full text]
  • Mercury Med O2 Sensor Chart
    Mercury Medical® Oxygen Sensors top view bottom view CROSS REFERENCE WALL CHART© # 10-103-00 10-103-01 10-103-02 10-103-03 10-103-05 10-103-06 10-103-07 10-103-08 10-103-10 10-103-11 10-103-13 10-103-14 10-103-15 10-103-16 10-103-17 10-103-18 10-103-19 10-103-20 10-103-00 10-103-01 10-103-02 10-103-03 10-103-05 10-103-06 10-103-07 10-103-08 10-103-10 10-103-11 10-103-13 10-103-14 10-103-15 10-103-16 10-103-17 10-103-18 10-103-19 10-103-20 10-103-00 # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # # MANUFACTURER MANUF’S SENSOR # MANUFACTURER MANUF’S SENSOR # Air Shields (Drager) 6736140 Maxtec (Ceramatec) MAX-18 (R116P40) Air Shields (Drager) 6735142 Maxtec (Ceramatec) MAX-19 (R116P60) Air Shields (Drager) 8362030 (C2000 Isolette) Maxtec (Ceramatec) MAX-22CC (R116P30) Aladdin (Hamilton) Maxtec (Ceramatec) MAX-23 (R116P06) Alpha Med Maxtec (Ceramatec) MAX-25 (R100P51-002) Analytical Industries, Inc. PSR-11-33 Maxtec (Ceramatec) MAX-250 (R125P01-002) #10-103-01 Analytical Industries, Inc. PSR-11-33-1 Maxtec (Ceramatec) MAX-250E (R125P03-002) Analytical Industries, Inc. PSR-11-55 Maxtec (Ceramatec) MAX-43 (GE Giraffe) Analytical Industries, Inc. PSR-11-58 Maxtec (Ceramatec) MAXCell Analytical Industries, Inc. PSR-11-75-KE1 Medigas (Canada) Analytical Industries, Inc. PSR-11-75-KE2 Megamed (Switzerland) M1 Analytical Industries, Inc. PSR-11-77 Megamed (Switzerland) M2 Analytical Industries, Inc. PSR-11-915 (Single Cathode) Mercury (Anodyne CC) 81-800-5091 Analytical Industries, Inc.
    [Show full text]
  • Unveiling the Coexistence of Cis and Trans Isomers in the Hydrolysis of Zro2: a Coupled DFT and High-Resolution Photoelectron Sp
    Unveiling the Coexistence of Cis and Trans Isomers in the Hydrolysis of ZrO2: A Coupled DFT and High-Resolution Photoelectron Spectroscopy Study Ali Abou Taka,1, ∗ Mark C. Babin,2, ∗ Xianghai Sheng,1 Jessalyn A. DeVine,2, † Daniel M. Neumark,2, 3, ‡ and Hrant P. Hratchian1, § 1Department of Chemistry and Chemical Biology & Center for Chemical Computation and Theory, University of California, Merced, CA 95343 2Department of Chemistry, University of California, Berkeley, CA 94720 USA 3Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley (Dated: December 3, 2020) 1 Abstract – – High-resolution anion photoelectron spectroscopy of the ZrO3H2 and ZrO3D2 anions and complementary electronic structure calculations are used to investigate the reaction between zirconium 0/– – – dioxide and a single water molecule, ZrO2 + H2O. Experimental spectra of ZrO3H2 and ZrO3D2 were obtained using slow photoelectron velocity-map imaging (cryo-SEVI), revealing the presence of two dissociative adduct conformers and yielding insight into the vibronic structure of the corresponding neutral species. Franck-Condon simulations for both the cis– and trans–dihydroxide structures are required to fully reproduce the experimental spectrum. Additionally, it was found that water-splitting is stabilized more by ZrO2 than TiO2, suggesting Zr-based catalysts are more reactive toward hydrolysis. I. INTRODUCTION Zirconium dioxide (ZrO2) is an extensively studied material with widespread applications in medicine,[1–3] gas-cleaning technology,[4] ceramics,[5–7] corrosion-resistant materials [8– 10], and heterogeneous catalysis [11]. As in the case of titania (TiO2), photosensitization of water on a ZrO2 electrode has inspired the development of ZrO2 based technologies to exploit its photocatalytic properties for solar–powered hydrogen fuel cells [12–16].
    [Show full text]
  • Dissolved Oxygen Measurements in Aquatic Environments: the E! Ects of Changing Temperature and Pressure on Three Sensor Technologies
    SHORTTECHNICAL COMMUNICATIONS REPORTS Dissolved Oxygen Measurements in Aquatic Environments: The E! ects of Changing Temperature and Pressure on Three Sensor Technologies Corey D. Markfort* and Miki Hondzo University of Minnesota–Twin Cities Dissolved oxygen (DO) is probably the most important measurement of DO is one of the most frequently used and parameter related to water quality and biological habitat in one of the most important of all chemical variables investigated aquatic environments. In situ DO sensors are some of the T in aquatic environments (Wetzel, 2001). Dissolved oxygen most valuable tools used by scientists and engineers for the evaluation of water quality in aquatic ecosystems. Presently, we data provide valuable information regarding the biological and cannot accurately measure DO concentrations under variable biochemical reactions in aquatic ecosystems. For example, DO can temperature and pressure conditions. Pressure and temperature be used to measure how environmental factors aff ect aquatic life and infl uence polarographic and optical type DO sensors compared the capacity of aquatic ecosystem to produce and decompose organic to the standard Winkler titration method. ! is study combines matter. Consequently, DO is often used as an indicator of aquatic laboratory and fi eld experiments to compare and quantify the accuracy and performance of commercially available macro ecosystem health. While a signifi cant number of studies have been and micro Clark-type oxygen sensors as well as optical sensing conducted on the diff erent applications of DO sensor technologies, technology to the Winkler method under changing pressure most have focused on the steady-state operating characteristics of DO and temperature conditions.
    [Show full text]
  • A Combined Proteomic and Targeted Analysis Unravels New Toxic
    A combined proteomic and targeted analysis unravels new toxic mechanisms for zinc oxide nanoparticles in macrophages Catherine Aude-Garcia, Bastien Dalzon, Jean-Luc Ravanat, Véronique Collin-Faure, Hélène Diemer, Jean-Marc Strub, Sarah Cianférani, Alain van Dorsselaer, Marie Carrière, Alain Dorsselaer, et al. To cite this version: Catherine Aude-Garcia, Bastien Dalzon, Jean-Luc Ravanat, Véronique Collin-Faure, Hélène Diemer, et al.. A combined proteomic and targeted analysis unravels new toxic mechanisms for zinc oxide nanoparticles in macrophages. Journal of Proteomics, Elsevier, 2016, 134, pp.174 - 185. 10.1016/j.jprot.2015.12.013. hal-01691352 HAL Id: hal-01691352 https://hal.archives-ouvertes.fr/hal-01691352 Submitted on 23 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. This document is an author version of a paper published in Journal of Proteomics (2016) under the doi: 10.1016/j.jprot.2015.12.013 A combined proteomic and targeted analysis unravels new toxic mechanisms for zinc oxide nanoparticles in macrophages Catherine Aude-Garcia 1,2,3 , Bastien Dalzon 1,2,3, Jean-Luc Ravanat 4,5 , Véronique Collin-Faure 1,2,3 Hélène Diemer 6, Jean Marc Strub 6 , Sarah Cianferani 6, Alain Van Dorsselaer 6, Marie Carrière 4,5 , Thierry Rabilloud 1,2,3* 1: CEA Grenoble, iRTSV/CBM, Laboratory of Chemistry and Biology of Metals, Grenoble, France 2: Univ.
    [Show full text]
  • Protocol for Use and Maintenance of Oxygen Monitoring Devices 2021
    National Institutes of Health Protocol for Use and Maintenance of Oxygen Monitoring Devices 2021 Authored by the Division of Occupational Health and Safety (DOHS) Oxygen Monitoring Program Manager. CONTENTS INTRODUCTION………………………………………………………………... 2 I. PURPOSE………………………………………………………………… 2 II. SCOPE……………………………………………………………………. 2 III. APPLICABLE REGULATORY, POLICY, AND INDUSTRY STANDARDS………………………………………... 3 IV. RESPONSIBILITIES …………………………………………….………. 4 V. TECHNICAL INFORMATION………………………………………….. 6 VI. REFERENCES…………………………………………………….……… 9 APPENDIX A – MANDATORY SIGNAGE………………………………….… 11 APPENDIX B – RECOMMENDED SIGNAGE………………………………… 13 ACRONYMS BAS Building Automation System DOHS Division of Occupational Health and Safety DRM Design Requirements Manual IC Institute/Center MRI Magnetic Resonance Imaging NMR Nuclear Magnetic Resonance OSHA Occupational Safety and Health Administration PI Principal Investigator TEM Transmission Electron Microscope TAB Technical Assistance Branch Disclaimer of Endorsement: Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government, and shall not be used for advertising or product endorsement purposes. 1 INTRODUCTION Compressed gases and cryogenic liquids (e.g. nitrogen, helium, carbon dioxide, oxygen and argon)
    [Show full text]