Stethacanthus Altonensis Stethacanthus Was a Shark That Lived During Time: 300 Million the Jurassic Period Around 300 Million Years Ago

Total Page:16

File Type:pdf, Size:1020Kb

Stethacanthus Altonensis Stethacanthus Was a Shark That Lived During Time: 300 Million the Jurassic Period Around 300 Million Years Ago Crazy Creatures Stethacanthus altonensis Stethacanthus was a shark that lived during Time: 300 Million the Jurassic period around 300 million years ago. It is one of the most unusual sharks that years ago have ever lived, and is a mystery to scientists today! Period: Carboniferous Stethacanthus means “chest spine” after its most famous feature. It was around 70cm long, Shark with which means it was both a predator and prey for the many larger sharks around at the time. a Hat! Your task 1: Draw Stethacanthus! It had: A blunt nose A long shark body Two sets of short fins on the underside of its body Long whip like fins on its sides A huge crest of pointy spines on its back Your task 2: Male Stethacanthus had a unique tall crest of spines on it's back. Noone knows what it was used for. What do you think it could have been for? Creature Fact! Your task 3: Stethacanthus' crest was made of cartilage, not bone. Can you find out if sharks have bones like humans do? Stethacanthus closest What are the differences? living relatives are called the Ratfish and the Elephant fish! Your task 4: The long whip fins that Stethacanthus had are also a mystery! Why do you think a shark would have long thin fins like this? Your task 5: Male and Female Stethacanthus looked very different. Palaeontologists call this “dimorphism” meaning two shapes. Can you find another animal where the males and females are very different? You might want to look at animals with horns or manes to answer this one! Your task 6: Sharks have been around for millions of years and usually look very similar now to how they did in the past. Can you think of four reasons why Sharks are such good survivors? 1. 2. 3. 4. Research key words: Holocephali Cartilage Dimorphism CRAZYOMETER! How weird do you think this creature was? Boring! Yeah Ok A bit weird Really weird! Woah! By DiBgd - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=42204950 By Dmitry Bogdanov, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=3461298.
Recommended publications
  • Symmoriiform Sharks from the Pennsylvanian of Nebraska
    Acta Geologica Polonica, Vol. 68 (2018), No. 3, pp. 391–401 DOI: 10.1515/agp-2018-0009 Symmoriiform sharks from the Pennsylvanian of Nebraska MICHAŁ GINTER University of Warsaw, Faculty of Geology, Żwirki i Wigury 93, PL-02-089 Warsaw, Poland. E-mail: [email protected] ABSTRACT: Ginter, M. 2018. Symmoriiform sharks from the Pennsylvanian of Nebraska. Acta Geologica Polonica, 68 (3), 391–401. Warszawa. The Indian Cave Sandstone (Upper Pennsylvanian, Gzhelian) from the area of Peru, Nebraska, USA, has yielded numerous isolated chondrichthyan remains and among them teeth and dermal denticles of the Symmoriiformes Zangerl, 1981. Two tooth-based taxa were identified: a falcatid Denaea saltsmani Ginter and Hansen, 2010, and a new species of Stethacanthus Newberry, 1889, S. concavus sp. nov. In addition, there occur a few long, monocuspid tooth-like denticles, similar to those observed in Cobelodus Zangerl, 1973, probably represent- ing the head cover or the spine-brush complex. A review of the available information on the fossil record of Symmoriiformes has revealed that the group existed from the Late Devonian (Famennian) till the end of the Middle Permian (Capitanian). Key words: Symmoriiformes; Microfossils; Carboniferous; Indian Cave Sandstone; USA Midcontinent. INTRODUCTION size and shape is concerned [compare the thick me- dian cusp, almost a centimetre long, in Stethacanthus The Symmoriiformes (Symmoriida sensu Zan- neilsoni (Traquair, 1898), and the minute, 0.5 mm gerl 1981) are a group of Palaeozoic cladodont sharks wide, multicuspid, comb-like tooth of Denaea wangi sharing several common characters: relatively short Wang, Jin and Wang, 2004; Ginter et al. 2010, figs skulls, large eyes, terminal mouth, epicercal but ex- 58A–C and 61, respectively].
    [Show full text]
  • Chondrichthyan Fauna of the Frasnian–Famennian Boundary Beds in Poland
    Chondrichthyan fauna of the Frasnian–Famennian boundary beds in Poland MICHAŁ GINTER Michał Ginter. 2002. Chondrichthyan fauna of the Frasnian–Famennian boundary beds in Poland. Acta Palaeontologica Polonica 47 (2): 329–338. New chondrichthyan microremains from several Frasnian–Famennian sections in the Holy Cross Mountains and Dębnik area (Southern Poland) are investigated and compared to previous data. The reaction of different groups of chondrichthyans to environmental changes during the Kellwasser Event is analysed. Following the extinction of phoebodont sharks of Phoebodus bifurcatus group before the end of the Frasnian, only two chondrichthyan species, viz. Protacrodus vetustus Jaekel, 1921 and Stethacanthus resistens sp. nov. (possibly closely related to “Cladodus” wildungensis Jaekel, 1921), occur in the upper part of Frasnian Palmatolepis linguiformis conodont Zone and persist into the Famennian. Global cooling is considered a possible cause of the extinction of Frasnian subtropical phoe− bodonts on Laurussian margins. Key words: Chondrichthyes, Kellwasser Event, Devonian, Poland. Michał Ginter [[email protected]], Instytut Geologii Podstawowej, Uniwersytet Warszawski, Żwirki i Wigury 93, PL−02−089 Warszawa, Poland. Introduction Characteristics of the localities Chondrichthyan faunas of the late Palmatolepis linguiformis Three sections spanning the Frasnian–Famennian boundary and the Palmatolepis triangularis conodont zones on south− were sampled bed by bed (for location of most samples, see ern Laurussian margins substantially differ from those of the Racka 2000): the middle wall of the Kowala–Wola Quarry in rest of the Frasnian and Famennian. The main difference is the south−western Holy Cross Mts, south of Kielce; an artficial the absence of Phoebodus, a typical Mid− to Late Devonian trench on the eastern bank of Łagowica River, between the vil− pelagic, shelf dwelling shark (Ginter and Ivanov 1992).
    [Show full text]
  • Copyrighted Material
    06_250317 part1-3.qxd 12/13/05 7:32 PM Page 15 Phylum Chordata Chordates are placed in the superphylum Deuterostomia. The possible rela- tionships of the chordates and deuterostomes to other metazoans are dis- cussed in Halanych (2004). He restricts the taxon of deuterostomes to the chordates and their proposed immediate sister group, a taxon comprising the hemichordates, echinoderms, and the wormlike Xenoturbella. The phylum Chordata has been used by most recent workers to encompass members of the subphyla Urochordata (tunicates or sea-squirts), Cephalochordata (lancelets), and Craniata (fishes, amphibians, reptiles, birds, and mammals). The Cephalochordata and Craniata form a mono- phyletic group (e.g., Cameron et al., 2000; Halanych, 2004). Much disagree- ment exists concerning the interrelationships and classification of the Chordata, and the inclusion of the urochordates as sister to the cephalochor- dates and craniates is not as broadly held as the sister-group relationship of cephalochordates and craniates (Halanych, 2004). Many excitingCOPYRIGHTED fossil finds in recent years MATERIAL reveal what the first fishes may have looked like, and these finds push the fossil record of fishes back into the early Cambrian, far further back than previously known. There is still much difference of opinion on the phylogenetic position of these new Cambrian species, and many new discoveries and changes in early fish systematics may be expected over the next decade. As noted by Halanych (2004), D.-G. (D.) Shu and collaborators have discovered fossil ascidians (e.g., Cheungkongella), cephalochordate-like yunnanozoans (Haikouella and Yunnanozoon), and jaw- less craniates (Myllokunmingia, and its junior synonym Haikouichthys) over the 15 06_250317 part1-3.qxd 12/13/05 7:32 PM Page 16 16 Fishes of the World last few years that push the origins of these three major taxa at least into the Lower Cambrian (approximately 530–540 million years ago).
    [Show full text]
  • Color and Learn: Sharks of Massachusetts!
    COLOR AND LEARN: SHARKS OF MASSACHUSETTS! This book belongs to: WHAT IS A SHARK? Sharks are fish that have vertebrae (skeletons) made ofcartilage instead of bones. Sharks come in all different shapes, sizes, and colors. Sharks have different kinds of teeth, feeding patterns, swimming styles, and behaviors that help them to survive in all different kinds of aquatic habitats! Can you label the different parts of a shark? second dorsal fin caudal (tail) fin pelvic fin gills anal fin pectoral fin nostril mouth eye Dorsal fin There are around 500 species of sharks in the world. Massachusetts coastal waters provide ideal habitat for several kinds of Atlantic Ocean sharks that visit our waters each season! Massachusetts HOW LONG HAVE SHARKS BEEN ON EARTH? Sharks have been on Earth since before the dinosaurs! Scientists learn about early sharks by studying fossils. Shark fossils can tell us a lot about what food the shark ate, what their habitat looked like, and how they are related to other sharks. The ancient sharks on this page are extinct. Acanthodes (ah-can-tho-deez), or “spiny shark,” was the first fish to have a cartilage skeleton! Cladoselache (clay-do-sel-ah-kee) had a body and tail shaped for swimming fast. It did not have the same kind of skin that we see in modern sharks today. Stethacanthus (stef-ah-can-thus), or “anvil shark”, had a dorsal fin shaped like an ironing board! 450 370 360 200 145 60 6.5 MILLIONS OF YEARS AGO DINOSAURS EVOLVE WHAT ARE “MODERN” SHARKS? “Modern” sharks are species that have body parts (both inside and out!) that can be found on sharks living today.
    [Show full text]
  • Mississippian Chondrichthyan Fishes from the Area of Krzeszowice, Southern Poland
    Mississippian chondrichthyan fishes from the area of Krzeszowice, southern Poland MICHAŁ GINTER and MICHAŁ ZŁOTNIK Ginter, M. and Złotnik, M. 2019. Mississippian chondrichthyan fishes from the area of Krzeszowice, southern Poland. Acta Palaeontologica Polonica 64 (3): 549–564. Two new assemblages of Mississippian pelagic chondrichthyan microremains were recovered from the pelagic lime- stone of the area of Krzeszowice, NW of Kraków, Poland. The older assemblage represents the upper Tournaisian of Czatkowice Quarry and the younger one the upper Viséan of the Czernka stream valley at Czerna. The teeth of sym- moriiform Falcatidae are the major component of both collections. A comparison of the taxonomic composition of the assemblage from Czerna (with the falcatids and Thrinacodus as the major components) to the previously published materials from the Holy Cross Mountains (Poland), Muhua (southern China), and Grand Canyon (Northern Arizona, USA) revealed the closest similarity to the first of these, probably deposited in a deeper water environment, relatively far from submarine carbonate platforms. A short review of Mississippian falcatids shows that the late Viséan–Serpukhovian period was the time of the greatest diversity of this group. Key words: Chondrichthyes, Falcatidae, teeth, Carboniferous, Tournaisian, Viséan, Poland, Kraków Upland. Michał Ginter [[email protected]] and Michał Złotnik [[email protected]], Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02-089 Warszawa, Poland. Received 27 March 2019, accepted 30 April 2019, available online 23 August 2019. Copyright © 2019 M. Ginter and M. Złotnik. This is an open-access article distributed under the terms of the Creative Commons Attribution License (for details please see http://creativecommons.org/licenses/by/4.0/), which permits unre- stricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Noqvtates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
    AMERICAN MUSEUM Noqvtates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2828, pp. 1-24, figs. 1-11 October 21, 1985 Stethacanthid Elasmobranch Remains from the Bear Gulch Limestone (Namurian E2b) of Montana RICHARD LUND' ABSTRACT Four chondrichthyan species assigned to the atoquadrate and mandible, numbers oftooth fam- cladodontid genus Stethacanthus are described ilies and pectoral prearticular basals, morphology from the Bear Gulch Limestone ofMontana. Spec- ofthe pelvic girdle and areas ofsquamation. Com- imens are referred to Stethacanthus cf. S. alto- parison with other Bear Gulch stethacanthids nensis and S. cf. S. productus. Two other species strongly suggests that the presence of specialized are too immature to assign with certainty to known cranial and first dorsal fin squamation, with the stethacanthid spine species. The histology and presence of the first dorsal fin and spine, are sec- morphology ofthree isolated cladodont tooth types ondary sexual characters ofmature males. Clado- is described, one of which is referred to Cladodus selache is indicated as the sister group of the Ste- robustus. The species of Stethacanthidae are dis- thacanthidae, with the "Symmoriidae" being the tinguishable on the shapes and proportions ofpal- sister group of Stethacanthus altonensis. INTRODUCTION The Upper Mississippian marine Bear taxa have also provided excellent data on the Gulch limestone member of the Heath For- relative values of the spines and other mor- mation has
    [Show full text]
  • Mississippian: Osagean)
    CHONDRICHTHYAN DIVERSITY WITHIN THE BURLINGTON- KEOKUK FISH BED OF SOUTHEAST IOWA AND NORTHWEST ILLINOIS (MISSISSIPPIAN: OSAGEAN) A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science By MATTHEW MICHAEL JAMES HOENIG B.S., Hillsdale College, 2017 2019 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL Thursday, September 5th, 2019 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Matthew Michael James Hoenig ENTITLED Chondrichthyan diversity within the Burlington-Keokuk Fish Bed of Southeast Iowa and Northwest Illinois (Mississippian: Osagean) BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science Charles N. Ciampaglio, Ph.D. Thesis Director Doyle R. Watts, Ph.D. Chair, Department of Earth & Environmental Sciences Committee on Final Examination David A. Schmidt, Ph.D. Stephen J. Jacquemin, Ph.D. Barry Milligan, Ph.D. Professor and Interim Dean of the Graduate School ABSTRACT Hoenig, Matthew Michael James. M.S. Department of Earth & Environmental Sciences, Wright State University, 2019. Chondrichthyan diversity within the Burlington-Keokuk Fish Bed of Southeast Iowa and Northwest Illinois (Mississippian: Osagean) Chondrichthyan remains occur in abundance within a thin layer of limestone at the top of the Burlington Limestone at the point of the contact with the overlying Keokuk Limestone. This layer of rock, the “Burlington-Keokuk Fish Bed,”1 is stratigraphically consistent and laterally extensive in exposures of the Burlington Limestone near its type section along the Iowa-Illinois border. Deposition of the fish bed occurred on the Burlington Continental Shelf carbonate ramp off the subtropical western coast of Laurussia during the Lower Carboniferous (Late Tournaisian; Osagean) due to a drop in sea level, although the specific mechanism(s) that concentrated the vertebrate fossils remain(s) unknown.
    [Show full text]
  • Callorhinchus Milii
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1382 Development and three- dimensional histology of vertebrate dermal fin spines ANNA JERVE ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9596-1 UPPSALA urn:nbn:se:uu:diva-286863 2016 Dissertation presented at Uppsala University to be publicly examined in Lindahlsalen, Evolutionary Biology Center, Norbyvägen 18A, Uppsala, Monday, 13 June 2016 at 09:00 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Philippe Janvier (Muséum National d'Histoire Naturelle, Paris, France). Abstract Jerve, A. 2016. Development and three-dimensional histology of vertebrate dermal fin spines. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1382. 53 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9596-1. Jawed vertebrates (gnathostomes) consist of two clades with living representatives, the chondricthyans (cartilaginous fish including sharks, rays, and chimaeras) and the osteichthyans (bony fish and tetrapods), and two fossil groups, the "placoderms" and "acanthodians". These extinct forms were thought to be monophyletic, but are now considered to be paraphyletic partly due to the discovery of early chondrichthyans and osteichthyans with characters that had been previously used to define them. Among these are fin spines, large dermal structures that, when present, sit anterior to both median and/or paired fins in many extant and fossil jawed vertebrates. Making comparisons among early gnathostomes is difficult since the early chondrichthyans and "acanthodians", which have less mineralized skeleton, do not have large dermal bones on their skulls. As a result, fossil fin spines are potential sources for phylogenetic characters that could help in the study of the gnathostome evolutionary history.
    [Show full text]
  • Akmonistion Zangerli, Gen
    Journal of Vertebrate Paleontology 21(3):438–459, September 2001 ᭧ 2001 by the Society of Vertebrate Paleontology A NEW STETHACANTHID CHONDRICHTHYAN FROM THE LOWER CARBONIFEROUS OF BEARSDEN, SCOTLAND M. I. COATES*1 and S. E. K. SEQUEIRA*2 Department of Biology, Darwin Building, University College London, Gower Street, London WC1E 6BT, United Kingdom ABSTRACT—Exceptionally complete material of a new stethacanthid chondrichthyan, Akmonistion zangerli, gen. et sp. nov., formerly attributed to the ill-defined genera Cladodus and Stethacanthus, is described from the Manse Burn Formation (Serpukhovian, Lower Carboniferous) of Bearsden, Scotland. Distinctive features of A. zangerli include a neurocranium with broad supraorbital shelves; a short otico-occipital division with persistent fissure and Y-shaped basicranial canal; scalloped jaw margins for 6–7 tooth files along each ramus; a pectoral-level, osteodentinous dorsal spine with an outer layer of acellular bone extending onto a brush-complex of up to 160% of neurocranial length; a heterosquamous condition ranging from minute, button-shaped, flank scales to the extraordinarily long-crowned scales of the brush apex; and a sharply up-turned caudal axis associated with a broad hypochordal lobe. The functional implications of this anatomy are discussed briefly. The rudimentary mineralization of the axial skeleton and small size of the paired fins (relative to most neoselachian proportions) are contrasted with the massive, keel-like, spine and brush complex: Akmonistion zangerli was unsuited for sudden acceleration and sustained high-speed pursuit of prey. Cladistic analysis places Akmonistion and other stethacanthid genera in close relation to the symmoriids. These taxa are located within the basal radiation of the chondrichthyan crowngroup, but more detailed affinities are uncertain.
    [Show full text]
  • New Fossil Fish Microremains from the Upper Carboniferous of Eastern North Greenland
    New fossil fish microremains from the Upper Carboniferous of eastern North Greenland GILLES CUNY & LARS STEMMERIK Cuny, G. & Stemmerik, L. 2018. New fossil fish microremains from the Upper Carboniferous of eastern North Greenland. © 2018 by Bulletin of the Geological Society of Denmark, vol. 66, pp. 47-60. ISSN 2245-7070. (www.2dgf.dk/publikationer/bulletin). https://doi.org/10.37570/bgsd-2018-66-03 The Moscovian of eastern North Greenland has yielded an assemblage dominated by teeth and dermal denticles of chondrichthyans with rarer teeth of actinopterygians. The rather poor preservation of the material precludes precise identification but the following taxa have been recorded: Adamantina foliacea, Bransonella spp., Denaea sp., “Stemmatias” simplex, Lagarodus specularis, Received 27 January 2017 Actinopterygii indet., as well as teeth probably belonging to new genera of Heslerodidae, ? Accepted in revised form Protacrodontidae and Hybodontiformes. This fauna appears therefore quite endemic. The abundance of 27 October 2017 Bransonella and durophagous chondrichthyans is in accordance with the shallow marine depositional Published online environment. The record of a ?protacrodontid is possibly the youngest one for this taxon. 6 March 2018 Keywords: Greenland, Carboniferous, Moscovian, Foldedal Formation, sharks, euchondrocephals. Gilles Cuny [[email protected]], Université de Lyon, UCBL, ENSL, CNRS, LGL-TPE, F-69622 Villeurbanne, France. Lars Stemmerik [[email protected]], Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, DK-1350 København K, Denmark; also The University Centre in Svalbard (UNIS), Longyearbyen, Norway. In Greenland, marine Carboniferous sediments are of Lagarodus was expanded to also include Svalbard restricted to the Wandel Sea Basin of eastern North (Cuny et al.
    [Show full text]
  • Vertebrate Evolution (PDF)
    Vertebrate Evolution Torsten Bernhardt Redpath Museum, McGill University This teaching resource was made possible with funding from the PromoScience programme of NSERC. © McGill University 2010 History of the Earth Origins of Origins of Bacteria Eukaryotes Phanerozoic 4.6 3.8-3.5 1.5 0.542 0 (Billions of years) (Millions of years) Paleozoic Mesozoic Cenozoic http://associationpourlasanteetlenvironnement.skynetblogs.be/ archive-day/20060514 Pikaia Chordates http://media-2.web.britannica.com/eb-media/54/4054-004-F5EB3891.jpg Tunicates (sea squirts)Tunicates http://permian.files.wordpress.com/2007/05/vida-antes-de-los-dinosaurios-02.jpg The FirstFish?The Haikouichthys Agnathans: Jawless Fish (i) Ostracoderms -armoured, jawless fish -used gills only for respiration -no paired fins, so probably poor swimmers Endeiolepis aneri Agnathans: Jawless Fish (ii) http://www.ne.jp/asahi/fragi/ragi/gallery/cephalaspis.html Cephalaspis Ostracoderms went extinct in the Devonian, most likely due to the placoderms (who we’ll get to in a minute…) Agnathans: Jawless Fish (iii) http://www.utsc.utoronto.ca/~youson/images/lamprey.jpg A modern agnathan: the lamprey Placoderms: Jaws Evolve (i) -Still armoured -Jaws are a major advantage -First live birth -Paired fins http://www.pangaeadesigns.com/_gra phics/page/retail/large/bothriolepis.jpg Bothriolepis Placoderms: Jaws Evolve (ii) http://www.dinotime.de/pictures/dunkleosteus.jpg Dunkleosteus http://www.nmnh.si.edu/rtp/students/2006/images/paleo_day72.jpg No teeth Cartilaginous Fish (Chondrichthyes) (i) -Sharks,
    [Show full text]
  • Late Devonian - Early Permian Chondrichthyans of the Russian Arctic
    Acta Geologica Polonica, Vol. 49 (1999), No.3, pp. 267-285 406 IU S UNES 0 I Late Devonian - Early Permian chondrichthyans of the Russian Arctic ALEXANDER IVANOV Laboratory of Palaeontology, Institute of Earth Crust, St. Petersburg University, 16 Linija 29, St. Petersburg, 199178, Russia. E-mail: [email protected] ABSTRACT: IVANOV, A. 1999. Late Devonian - Early Permian chondrichthyans of the Russian Arcitc. Acta Geologica Polonica, 49 (3), 267-285. Warszawa. New chondrichthyan material is reported from the Upper Devonian - Lower Permian of the various regions of the Russian Arctic. Shark remains are recorded from the Novaya Zemlya Archipelago for the first time. Ten species are described, two of which are new, Denaea? decora sp.n. and Adamantina foliacea sp.n. Upper Devonian - Lower Permian shark assemblages are discussed. Key words: Chondrichthyans, Devonian - Permian, Russian Arctic. INTRODUCTION the Mikhailovian Regional Stage of the North Urals (rivers Podcherem and Kozhva), Nearpolar Urals Chondrichthyans from the Upper Devonian - (rivers Kozhim and Schugor) and Polar Urals (River Lower Permian of the Russian Arctic have not been Vorkuta); and Cochliodus contortus AGASSIZ from adequately studied and there are only isolated refer­ the Upper Visean (7) of the Chemyshev Ridge ences documenting their occurrences. Cladodus, (River Vangyr). Teeth of Phoebodus bifurcatus Helodus, ?Psephodus, Cochliodontidae and a new GINTER & IVANOV and Bransonella nebraskensis genus of Bradyodonti were mentioned from the (JOHNSON) were described from the Upper Devonian Upper Visean of the Lower Carboniferous (Tulian (Upper Frasnian) of South Timan and the Lower and Mikhailovian Regional stages) of the North Carboniferous (Upper Visean) of the Nearpolar Urals (River Podcherem) and Nearpolar Urals Urals, respectively (see GINTER & IVANOV 1992, (rivers Kozhim and Schugor) (KALASHNIKOV 1967).
    [Show full text]