An Introduction to Derived Functors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Derived Functors for Hom and Tensor Product: the Wrong Way to Do It
Derived Functors for Hom and Tensor Product: The Wrong Way to do It UROP+ Final Paper, Summer 2018 Kevin Beuchot Mentor: Gurbir Dhillon Problem Proposed by: Gurbir Dhillon August 31, 2018 Abstract In this paper we study the properties of the wrong derived functors LHom and R ⊗. We will prove identities that relate these functors to the classical Ext and Tor. R With these results we will also prove that the functors LHom and ⊗ form an adjoint pair. Finally we will give some explicit examples of these functors using spectral sequences that relate them to Ext and Tor, and also show some vanishing theorems over some rings. 1 1 Introduction In this paper we will discuss derived functors. Derived functors have been used in homo- logical algebra as a tool to understand the lack of exactness of some important functors; two important examples are the derived functors of the functors Hom and Tensor Prod- uct (⊗). Their well known derived functors, whose cohomology groups are Ext and Tor, are their right and left derived functors respectively. In this paper we will work in the category R-mod of a commutative ring R (although most results are also true for non-commutative rings). In this category there are differ- ent ways to think of these derived functors. We will mainly focus in two interpretations. First, there is a way to concretely construct the groups that make a derived functor as a (co)homology. To do this we need to work in a category that has enough injectives or projectives, R-mod has both. -
A NOTE on COMPLETE RESOLUTIONS 1. Introduction Let
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 138, Number 11, November 2010, Pages 3815–3820 S 0002-9939(2010)10422-7 Article electronically published on May 20, 2010 A NOTE ON COMPLETE RESOLUTIONS FOTINI DEMBEGIOTI AND OLYMPIA TALELLI (Communicated by Birge Huisgen-Zimmermann) Abstract. It is shown that the Eckmann-Shapiro Lemma holds for complete cohomology if and only if complete cohomology can be calculated using com- plete resolutions. It is also shown that for an LHF-group G the kernels in a complete resolution of a ZG-module coincide with Benson’s class of cofibrant modules. 1. Introduction Let G be a group and ZG its integral group ring. A ZG-module M is said to admit a complete resolution (F, P,n) of coincidence index n if there is an acyclic complex F = {(Fi,ϑi)| i ∈ Z} of projective modules and a projective resolution P = {(Pi,di)| i ∈ Z,i≥ 0} of M such that F and P coincide in dimensions greater than n;thatis, ϑn F : ···→Fn+1 → Fn −→ Fn−1 → ··· →F0 → F−1 → F−2 →··· dn P : ···→Pn+1 → Pn −→ Pn−1 → ··· →P0 → M → 0 A ZG-module M is said to admit a complete resolution in the strong sense if there is a complete resolution (F, P,n)withHomZG(F,Q) acyclic for every ZG-projective module Q. It was shown by Cornick and Kropholler in [7] that if M admits a complete resolution (F, P,n) in the strong sense, then ∗ ∗ F ExtZG(M,B) H (HomZG( ,B)) ∗ ∗ where ExtZG(M, ) is the P-completion of ExtZG(M, ), defined by Mislin for any group G [13] as k k−r r ExtZG(M,B) = lim S ExtZG(M,B) r>k where S−mT is the m-th left satellite of a functor T . -
The Geometry of Syzygies
The Geometry of Syzygies A second course in Commutative Algebra and Algebraic Geometry David Eisenbud University of California, Berkeley with the collaboration of Freddy Bonnin, Clement´ Caubel and Hel´ ene` Maugendre For a current version of this manuscript-in-progress, see www.msri.org/people/staff/de/ready.pdf Copyright David Eisenbud, 2002 ii Contents 0 Preface: Algebra and Geometry xi 0A What are syzygies? . xii 0B The Geometric Content of Syzygies . xiii 0C What does it mean to solve linear equations? . xiv 0D Experiment and Computation . xvi 0E What’s In This Book? . xvii 0F Prerequisites . xix 0G How did this book come about? . xix 0H Other Books . 1 0I Thanks . 1 0J Notation . 1 1 Free resolutions and Hilbert functions 3 1A Hilbert’s contributions . 3 1A.1 The generation of invariants . 3 1A.2 The study of syzygies . 5 1A.3 The Hilbert function becomes polynomial . 7 iii iv CONTENTS 1B Minimal free resolutions . 8 1B.1 Describing resolutions: Betti diagrams . 11 1B.2 Properties of the graded Betti numbers . 12 1B.3 The information in the Hilbert function . 13 1C Exercises . 14 2 First Examples of Free Resolutions 19 2A Monomial ideals and simplicial complexes . 19 2A.1 Syzygies of monomial ideals . 23 2A.2 Examples . 25 2A.3 Bounds on Betti numbers and proof of Hilbert’s Syzygy Theorem . 26 2B Geometry from syzygies: seven points in P3 .......... 29 2B.1 The Hilbert polynomial and function. 29 2B.2 . and other information in the resolution . 31 2C Exercises . 34 3 Points in P2 39 3A The ideal of a finite set of points . -
81151635.Pdf
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Topology and its Applications 158 (2011) 2103–2110 Contents lists available at ScienceDirect Topology and its Applications www.elsevier.com/locate/topol The higher derived functors of the primitive element functor of quasitoric manifolds ∗ David Allen a, , Jose La Luz b a Department of Mathematics, Iona College, New Rochelle, NY 10801, United States b Department of Mathematics, University of Puerto Rico in Bayamón, Industrial Minillas 170 Car 174, Bayamón 00959-1919, Puerto Rico article info abstract Article history: Let P be an n-dimensional, q 1 neighborly simple convex polytope and let M2n(λ) be the Received 15 June 2011 corresponding quasitoric manifold. The manifold depends on a particular map of lattices Accepted 20 June 2011 λ : Zm → Zn where m is the number of facets of P. In this note we use ESP-sequences in the sense of Larry Smith to show that the higher derived functors of the primitive element MSC: functor are independent of λ. Coupling this with results that appear in Bousfield (1970) primary 14M25 secondary 57N65 [3] we are able to enrich the library of nice homology coalgebras by showing that certain families of quasitoric manifolds are nice, at least rationally, from Bousfield’s perspective. © Keywords: 2011 Elsevier B.V. All rights reserved. Quasitoric manifolds Toric topology Higher homotopy groups Unstable homotopy theory Toric spaces Higher derived functors of the primitive element functor Nice homology coalgebras Torus actions Cosimplicial objects 1. Introduction Given an n-dimensional q 1 neighborly simple convex polytope P , there is a family of quasitoric manifolds M that sit over P . -
The Homotopy Categories of Injective Modules of Derived Discrete Algebras
Dissertation zur Erlangung des Doktorgrades der Mathematik (Dr.Math.) der Universit¨atBielefeld The homotopy categories of injective modules of derived discrete algebras Zhe Han April 2013 ii Gedruckt auf alterungsbest¨andigemPapier nach DIN{ISO 9706 Abstract We study the homotopy category K(Inj A) of all injective A-modules Inj A and derived category D(Mod A) of the category Mod A of all A-modules, where A is finite dimensional algebra over an algebraically closed field. We are interested in the algebra with discrete derived category (derived discrete algebra. For a derived discrete algebra A, we get more concrete properties of K(Inj A) and D(Mod A). The main results we obtain are as following. Firstly, we consider the generic objects in compactly generated triangulated categories, specially in D(Mod A). We construct some generic objects in D(Mod A) for A derived discrete and not derived hereditary. Consequently, we give a characterization of algebras with generically trivial derived categories. Moreover, we establish some relations between the locally finite triangulated category of compact objects of D(Mod A), which is equivalent to the category Kb(proj A) of perfect complexes and the generically trivial derived category D(Mod A). Generic objects in K(Inj A) were also considered. Secondly, we study K(Inj A) for some derived discrete algebra A and give a classification of indecomposable objects in K(Inj A) for A radical square zero self- injective algebra. The classification is based on the fully faithful triangle functor from K(Inj A) to the stable module category Mod A^ of repetitive algebra A^ of A. -
How to Make Free Resolutions with Macaulay2
How to make free resolutions with Macaulay2 Chris Peterson and Hirotachi Abo 1. What are syzygies? Let k be a field, let R = k[x0, . , xn] be the homogeneous coordinate ring of Pn and let X be a projective variety in Pn. Consider the ideal I(X) of X. Assume that {f0, . , ft} is a generating set of I(X) and that each polynomial fi has degree di. We can express this by saying that we have a surjective homogenous map of graded S-modules: t M R(−di) → I(X), i=0 where R(−di) is a graded R-module with grading shifted by −di, that is, R(−di)k = Rk−di . In other words, we have an exact sequence of graded R-modules: Lt F i=0 R(−di) / R / Γ(X) / 0, M |> MM || MMM || MMM || M& || I(X) 7 D ppp DD pp DD ppp DD ppp DD 0 pp " 0 where F = (f0, . , ft). Example 1. Let R = k[x0, x1, x2]. Consider the union P of three points [0 : 0 : 1], [1 : 0 : 0] and [0 : 1 : 0]. The corresponding ideals are (x0, x1), (x1, x2) and (x2, x0). The intersection of these ideals are (x1x2, x0x2, x0x1). Let I(P ) be the ideal of P . In Macaulay2, the generating set {x1x2, x0x2, x0x1} for I(P ) is described as a 1 × 3 matrix with gens: i1 : KK=QQ o1 = QQ o1 : Ring 1 -- the class of all rational numbers i2 : ringP2=KK[x_0,x_1,x_2] o2 = ringP2 o2 : PolynomialRing i3 : P1=ideal(x_0,x_1); P2=ideal(x_1,x_2); P3=ideal(x_2,x_0); o3 : Ideal of ringP2 o4 : Ideal of ringP2 o5 : Ideal of ringP2 i6 : P=intersect(P1,P2,P3) o6 = ideal (x x , x x , x x ) 1 2 0 2 0 1 o6 : Ideal of ringP2 i7 : gens P o7 = | x_1x_2 x_0x_2 x_0x_1 | 1 3 o7 : Matrix ringP2 <--- ringP2 Definition. -
The Grothendieck Spectral Sequence (Minicourse on Spectral Sequences, UT Austin, May 2017)
The Grothendieck Spectral Sequence (Minicourse on Spectral Sequences, UT Austin, May 2017) Richard Hughes May 12, 2017 1 Preliminaries on derived functors. 1.1 A computational definition of right derived functors. We begin by recalling that a functor between abelian categories F : A!B is called left exact if it takes short exact sequences (SES) in A 0 ! A ! B ! C ! 0 to exact sequences 0 ! FA ! FB ! FC in B. If in fact F takes SES in A to SES in B, we say that F is exact. Question. Can we measure the \failure of exactness" of a left exact functor? The answer to such an obviously leading question is, of course, yes: the right derived functors RpF , which we will define below, are in a precise sense the unique extension of F to an exact functor. Recall that an object I 2 A is called injective if the functor op HomA(−;I): A ! Ab is exact. An injective resolution of A 2 A is a quasi-isomorphism in Ch(A) A ! I• = (I0 ! I1 ! I2 !··· ) where all of the Ii are injective, and where we think of A as a complex concentrated in degree zero. If every A 2 A embeds into some injective object, we say that A has enough injectives { in this situation it is a theorem that every object admits an injective resolution. So, for A 2 A choose an injective resolution A ! I• and define the pth right derived functor of F applied to A by RpF (A) := Hp(F (I•)): Remark • You might worry about whether or not this depends upon our choice of injective resolution for A { it does not, up to canonical isomorphism. -
Derived Functors and Homological Dimension (Pdf)
DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION George Torres Math 221 Abstract. This paper overviews the basic notions of abelian categories, exact functors, and chain complexes. It will use these concepts to define derived functors, prove their existence, and demon- strate their relationship to homological dimension. I affirm my awareness of the standards of the Harvard College Honor Code. Date: December 15, 2015. 1 2 DERIVED FUNCTORS AND HOMOLOGICAL DIMENSION 1. Abelian Categories and Homology The concept of an abelian category will be necessary for discussing ideas on homological algebra. Loosely speaking, an abelian cagetory is a type of category that behaves like modules (R-mod) or abelian groups (Ab). We must first define a few types of morphisms that such a category must have. Definition 1.1. A morphism f : X ! Y in a category C is a zero morphism if: • for any A 2 C and any g; h : A ! X, fg = fh • for any B 2 C and any g; h : Y ! B, gf = hf We denote a zero morphism as 0XY (or sometimes just 0 if the context is sufficient). Definition 1.2. A morphism f : X ! Y is a monomorphism if it is left cancellative. That is, for all g; h : Z ! X, we have fg = fh ) g = h. An epimorphism is a morphism if it is right cancellative. The zero morphism is a generalization of the zero map on rings, or the identity homomorphism on groups. Monomorphisms and epimorphisms are generalizations of injective and surjective homomorphisms (though these definitions don't always coincide). It can be shown that a morphism is an isomorphism iff it is epic and monic. -
SO, WHAT IS a DERIVED FUNCTOR? 1. Introduction
Homology, Homotopy and Applications, vol. 22(2), 2020, pp.279{293 SO, WHAT IS A DERIVED FUNCTOR? VLADIMIR HINICH (communicated by Emily Riehl) Abstract We rethink the notion of derived functor in terms of corre- spondences, that is, functors E ! [1]. While derived functors in our sense, when they exist, are given by Kan extensions, their existence is a strictly stronger property than the existence of Kan extensions. We show, however, that derived functors exist in the cases one expects them to exist. Our definition is espe- cially convenient for the description of a passage from an adjoint pair (F; G) of functors to a derived adjoint pair (LF; RG). In particular, canonicity of such a passage is immediate in our approach. Our approach makes perfect sense in the context of 1-categories. 1. Introduction This is a new rap on the oldest of stories { Functors on abelian categories. If the functor is left exact You can derive it and that's a fact. But first you must have enough injective Objects in the category to stay active. If that's the case no time to lose; Resolve injectively any way you choose. Apply the functor and don't be sore { The sequence ain't exact no more. Here comes the part that is the most fun, Sir, Take homology to get the answer. On resolution it don't depend: All are chain homotopy equivalent. Hey, Mama, when your algebra shows a gap Go over this Derived Functor Rap. P. Bressler, Derived Functor Rap, 1988 Received January 20, 2019, revised July 26, 2019, December 3, 2019; published on May 6, 2020. -
E Modules for Abelian Hopf Algebras 1974: [Papers]/ IMPRINT Mexico, D.F
llr ~ 1?J STATUS TYPE OCLC# Submitted 02/26/2019 Copy 28784366 IIIIIII IIIII IIIII IIIII IIIII IIIII IIIII IIIII IIIII IIII IIII SOURCE REQUEST DATE NEED BEFORE 193985894 ILLiad 02/26/2019 03/28/2019 BORROWER RECEIVE DATE DUE DATE RRR LENDERS 'ZAP, CUY, CGU BIBLIOGRAPHIC INFORMATION LOCAL ID AUTHOR ARTICLE AUTHOR Ravenel, Douglas TITLE Conference on Homotopy Theory: Evanston, Ill., ARTICLE TITLE Dieudonne modules for abelian Hopf algebras 1974: [papers]/ IMPRINT Mexico, D.F. : Sociedad Matematica Mexicana, FORMAT Book 1975. EDITION ISBN VOLUME NUMBER DATE 1975 SERIES NOTE Notas de matematica y simposia ; nr. 1. PAGES 177-183 INTERLIBRARY LOAN INFORMATION ALERT AFFILIATION ARL; RRLC; CRL; NYLINK; IDS; EAST COPYRIGHT US:CCG VERIFIED <TN:1067325><0DYSSEY:216.54.119.128/RRR> MAX COST OCLC IFM - 100.00 USD SHIPPED DATE LEND CHARGES FAX NUMBER LEND RESTRICTIONS EMAIL BORROWER NOTES We loan for free. Members of East, RRLC, and IDS. ODYSSEY 216.54.119.128/RRR ARIEL FTP ARIEL EMAIL BILL TO ILL UNIVERSITY OF ROCHESTER LIBRARY 755 LIBRARY RD, BOX 270055 ROCHESTER, NY, US 14627-0055 SHIPPING INFORMATION SHIPVIA LM RETURN VIA SHIP TO ILL RETURN TO UNIVERSITY OF ROCHESTER LIBRARY 755 LIBRARY RD, BOX 270055 ROCHESTER, NY, US 14627-0055 ? ,I _.- l lf;j( T ,J / I/) r;·l'J L, I \" (.' ."i' •.. .. NOTAS DE MATEMATICAS Y SIMPOSIA NUMERO 1 COMITE EDITORIAL CONFERENCE ON HOMOTOPY THEORY IGNACIO CANALS N. SAMUEL GITLER H. FRANCISCO GONZALU ACUNA LUIS G. GOROSTIZA Evanston, Illinois, 1974 Con este volwnen, la Sociedad Matematica Mexicana inicia su nueva aerie NOTAS DE MATEMATICAS Y SIMPOSIA Editado por Donald M. -
Depth, Dimension and Resolutions in Commutative Algebra
Depth, Dimension and Resolutions in Commutative Algebra Claire Tête PhD student in Poitiers MAP, May 2014 Claire Tête Commutative Algebra This morning: the Koszul complex, regular sequence, depth Tomorrow: the Buchsbaum & Eisenbud criterion and the equality of Aulsander & Buchsbaum through examples. Wednesday: some elementary results about the homology of a bicomplex Claire Tête Commutative Algebra I will begin with a little example. Let us consider the ideal a = hX1, X2, X3i of A = k[X1, X2, X3]. What is "the" resolution of A/a as A-module? (the question is deliberatly not very precise) Claire Tête Commutative Algebra I will begin with a little example. Let us consider the ideal a = hX1, X2, X3i of A = k[X1, X2, X3]. What is "the" resolution of A/a as A-module? (the question is deliberatly not very precise) We would like to find something like this dm dm−1 d1 · · · Fm Fm−1 · · · F1 F0 A/a with A-modules Fi as simple as possible and s.t. Im di = Ker di−1. Claire Tête Commutative Algebra I will begin with a little example. Let us consider the ideal a = hX1, X2, X3i of A = k[X1, X2, X3]. What is "the" resolution of A/a as A-module? (the question is deliberatly not very precise) We would like to find something like this dm dm−1 d1 · · · Fm Fm−1 · · · F1 F0 A/a with A-modules Fi as simple as possible and s.t. Im di = Ker di−1. We say that F· is a resolution of the A-module A/a Claire Tête Commutative Algebra I will begin with a little example. -
INJECTIVE OBJECTS in ABELIAN CATEGORIES It Is Known That The
INJECTIVE OBJECTS IN ABELIAN CATEGORIES AKHIL MATHEW It is known that the category of modules over a ring has enough injectives, i.e. any object can be imbedded as a subobject of an injective object. This is one of the first things one learns about injective modules, though it is a nontrivial fact and requires some work. Similarly, when introducing sheaf cohomology, one has to show that the category of sheaves on a given topological space has enough injectives, which is a not-too-difficult corollary of the first fact. I recently learned, however, of a much more general result that guarantees that an abelian category has enough injectives (which I plan to put to use soon with some more abstract nonsense posts). I learned this from Grothendieck's Tohoku paper, but he says that it was well-known. We will assume familiarity with basic diagram-chasing in abelian categories (e.g. the notion of the inverse image of a subobject). 1. Preliminaries Let C be an abelian category. An object I 2 C is called injective if the functor A ! HomC(A; I) is exact; it is always left-exact. This is the same as saying that if A is a subobject of B, then any A ! I can be extended to a morphism B ! I. Let us consider the following conditions on an abelian category C. First, assume C admits all filtered colimits. So, for instance, arbitrary direct sums exist. P Moreover, if the Ai; i 2 I are subobjects of A, then the sum Ai makes sense; L it is the image of i Ai ! A, and is a sub-object of A.