Chapter 1 Process Integration

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 1 Process Integration UNIVERSITI TUNKU ABDUL RAHMAN Process Integration Dr. Lim Soo King 03/25/2013 Table of Contents Page Chapter 1 Process Integration ........................................................... 5 1.0 Introduction ................................................................................................ 5 1.1 Bipolar Technology .................................................................................... 5 1.1.1 Conventional Bipolar Junction Transistor ........................................................ 5 1.1.2 Figures of Merit of Bipolar Junction Transistor ............................................... 7 1.1.3 Performance of Bipolar Junction Transistor ..................................................... 8 1.1.4 Device Optimization ............................................................................................. 9 1.1.5 Advanced Bipolar Junction Transistor ............................................................ 12 1.1.6 Self Aligned Double-Polysilicon Bipolar Structure ......................................... 14 1.1.7 Heterojunction Bipolar Junction Transistor ................................................... 16 1.2 CMOS Technology ................................................................................... 19 1.2.1 Gate Engineering Technology ........................................................................... 20 1.2.2 Salicidation .......................................................................................................... 22 1.2.3 Local Interconnect .............................................................................................. 22 1.2.4 Well-Formation Technology .............................................................................. 23 1.2.5 Advanced Isolation Technology ........................................................................ 24 1.3 BiCMOS Technology ............................................................................... 25 1.3.1 BiCMOS Device Structure and Fabrication .................................................... 25 1.3.2 BiCMOS Digital Logic Circuits ........................................................................ 28 1.4 Gallium Arsenide Technology................................................................. 30 1.4.1 Basic MESFET Operation ................................................................................. 31 1.4.2 Modulation Doping Field Effect Transistor ..................................................... 33 1.4.3 Analysis of Current Equations .......................................................................... 37 1.4.4 Cut-Off Frequency ............................................................................................. 41 1.5 Microelectromechanical Systems (MEMs) ............................................ 41 1.5.1 Applications of MEMs ....................................................................................... 42 1.5.1.1 Medicine .......................................................................................................................... 42 1.5.1.2 Communication .............................................................................................................. 42 1.5.1.3 Inertial Sensing ............................................................................................................... 43 1.5.2 Fabrication of MEMs ......................................................................................... 43 1.5.2.1 Bulk Micromachining .................................................................................................... 43 1.5.2.2 Surface Micromachining................................................................................................ 47 1.5.3 Wafer Bonding .................................................................................................... 48 Exercises .......................................................................................................... 49 Bibliography ................................................................................................... 52 - ii - List of Figures Page Figure 1.1: Structure of a bipolar junction transistor showing two pn junctions ................. 6 Figure 1.2: It illustrates the current components of a p+np transistor .................................. 6 Figure 1.3: The high frequency small signal model of bipolar junction transistor .............. 8 Figure 1.4: Equations and typical values for the bipolar junction transistor model ............. 9 Figure 1.5: Flowchart of a generic bipolar device design optimization ............................. 10 Figure 1.6: A simple traditional npn bipolar junction transistor showing the active or intrinsic region and parasitic or extrinsic region.............................................. 12 Figure 1.7: Illustration of poly emitter technology used to diffuse emitter and intrinsic base .................................................................................................................. 14 Figure 1.8: Process sequence of fabrication of self align double polysilicon for the emitter of an npn bipolar transistor .............................................................................. 15 Figure 1.9: The cross sectional view of a self-aligned double polysilicon npn bipolar junction transistor............................................................................................. 16 Figure 1.10: Emitter-base energy band diagram of a homojunction and heterojunction bipolar junction transistor ................................................................................ 17 Figure 1.11: An AlxGa1-xAs/ GaAs/ AlxGa1-xAs heterojunction bipolar junction transistor 18 Figure 1.12: Structure of complementary MOSFET (CMOS): (a) cross-sectional view of CMOS, (b) top plain view of CMOS ............................................................... 19 Figure 1.13: Basic process flow of CMOS ........................................................................... 20 Figure 1.14: Conventional CMOS structure with a single polysilicon gate ......................... 21 Figure 1.15: Advanced CMOS structure with dual polysilicon gates .................................. 22 Figure 1.16: TiN is used to provide local short connection from diffusion region of MOSFET to a polyslicon gate.......................................................................... 23 Figure 1.17: Various well formation technologies (a) single well and (b) twin well ........... 23 Figure 1.18: Process sequence for forming deep and narrow trench isolation ..................... 24 Figure 1.19: A shallow trench isolation for CMOS process ................................................ 25 Figure 1.20: Cross-sectional view of BiCMOS structure ..................................................... 26 Figure 1.21: Typical process flow of a BiCMOS device ..................................................... 26 Figure 1.22: Relative gate delays for equal area CMOS and BiCMOS devices .................. 27 Figure 1.23: Digital and mixed-signal BiCMOS device structures ...................................... 28 Figure 1.24: A BiCMOS inverter or NOT gate .................................................................... 29 Figure 1.25: BiCMOS 2-input NAND gate .......................................................................... 30 Figure 1.26: Cross sectional of a simple mesa-isolated MESFET ....................................... 32 + Figure 1.27: Energy band diagram of n -Al0.3Ga0.7As/n-GaAs heterojunction ................... 34 + Figure 1.28: A schematic of a recess-gate n -AlxGa1-xAs/GaAs MODFET ........................ 35 + Figure 1.29: Energy band diagram of n -AlxGa1-xAs and GaAs MODFET at thermal equilibrium ....................................................................................................... 35 + Figure 1.30: Energy band diagram of n -AlxGa1-xAs and GaAs MODFET for VG > Vt ..... 36 + Figure 1.31: Energy band diagram of n -AlxGa1-xAs and GaAs MODFET for –Vt <VG < 0 .......................................................................................................................... 36 + Figure 1.32: Energy band diagram of n -AlxGa1-xAs and GaAs MODFET for –Vt =VG .... 37 Figure 1.33: Isotropic etch section showing undercutting (a) with agitation and (b) without agitation of etch profile .................................................................................... 44 Figure 1.34: Illustration of shape of the etch profiles of a (100) oriented silicon substrate after immersion in an anisotropic wet etchant solution ................................... 46 Figure 1.35: SEM picture of a (100) orientation silicon substrate after immersion in an anisotropic wet etchant .................................................................................... 46 - iii - List of Figures Page Figure 1.36: Illustration of a surface micromachining process for fabricating an anchor cantilever .......................................................................................................... 47 Figure 1.37: Set-up for anodic bonding ................................................................................ 48 - iv - Chapter 1 Process Integration _____________________________________________ 1.0 Introduction In this chapter, we shall discuss the process integration technologies. The process integration technologies that would be covered including bipolar technology, CMOS and BiCMOS technologies, gallium arsenide technology, and MEM‟s technology. 1.1 Bipolar Technology The
Recommended publications
  • (12) United States Patent (10) Patent No.: US 6,737,723 B2 Farrar (45) Date of Patent: *May 18, 2004
    USOO6737723B2 (12) United States Patent (10) Patent No.: US 6,737,723 B2 Farrar (45) Date of Patent: *May 18, 2004 (54) LOW DIELECTRIC CONSTANT SHALLOW 4,096,227 A 6/1978 Gore ...................... 264/210 R TRENCH ISOLATION 4,368,350 A 1/1983 Perelman .................... 174/102 4,482.516. A 11/1984 Bowman et al. ............ 264/127 (75) Inventor: Paul A. Farrar, So. Burlington, VT 4,561,173 A 12/1985 Te Velde .................... 438/619 (US) 4,599,136 A 7/1986 Araps et al. ................ 156/643 (73) Assignee: Micron Technology, Inc., Boise, ID ( List continued on next page.)page. (US) FOREIGN PATENT DOCUMENTS EP 57.8856 A1 7/1992 ......... HO1 L/21/334 (*) Notice: Subject to any disclaimer, the term of this GB 2158995 A 11/1985 .......... HO1O/17/OO patent is extended or adjusted under 35 p. O1-2305.05 8/2001 ............ HO5K/1/03 U.S.C. 154(b) by 0 days. OTHER PUBLICATIONS This patent is subject to a terminal dis- Labadie et al., Nanopore Foams of High Temperature Poly claimer. mers, IEEE Trans. Components, Hybrids, Manufacturing Tech., 15 (Dec. 1992)925.* (21) Appl. No.: 10/184,321 Bhusari et al., Fabrication of Air-Channel Structures for Microfluidic, Microelectromechanical, and Microelectronic (22) Filed: Jun. 27, 2002 Applications, J. Microelectromechanical Systems, 10 (Sep. (65) Prior Publication Data 2001) 400.* US 2002/0163044 A1 Nov. 7, 2002 (List continued on next page.) Related U.S. ApplicationO O Dat Primaryy Examiner-Richard Elms eae pplication Uata ASSistant Examiner-Christian Wilson (62) Division of application No. 09/503.278, filed on Feb.
    [Show full text]
  • Introduction to Microelectronic Fabrication
    020144941jaegFM_v5 9/10/01 8:55 PM Page i MODULAR SERIES ON SOLID STATE DEVICES Gerold W. Neudeck and Robert F. Pierret, Editors Volume V Introduction to Microelectronic Fabrication Second Edition Richard C. Jaeger Auburn University Prentice Hall Upper Saddle River, New Jersey 07458 020144941jaegFM_v5 9/10/01 8:55 PM Page ii Library of Congress CataIoging-in-Publication Data Jaeger, Richard C. Introduction to microelectronic fabrication / Richard C. Jaeger—2nd Edition p. cm. (Modular series on solid state devices; v. 5) Includes bibliographical references and index. ISBN 0-201-44494-7 1. Integrated circuits—Very large scale integration—Design and construction—Congresses. I. Title. II. Series. CIP Data available. Vice President and Editorial Director, ECS: Marcia J. Horton Publisher: Tom Robbins Associate Editor: Alice Dworkin Editorial Assistant: Jody McDonnell Vice President and Director of Production and Manufacturing, ESM: David W. Riccardi Executive Managing Editor: Vince O’Brien Managing Editor: David A. George Production Editor: Irwin Zucker Director of Creative Services: Paul Belfanti Manager of Electronic Composition and Digital Content: Jim Sullivan Electronic Composition: William Johnson Creative Director: Carole Anson Art Director: Jayne Conte Art Editor: Gregory Dulles Manufacturing Manager: Trudy Pisciotti Manufacturing Buyer: Lisa McDowell Marketing Manager: Holly Stark Marketing Assistant: Karen Moon © 2002, 1998 by Prentice Hall Published by Prentice-Hall, Inc. Upper Saddle River, New Jersey 07458 All rights reserved. No part of this book may he reproduced in any format or by any means, without permis- sion in writing from the publisher The author and publisher of this book have used their best efforts in preparing this book.
    [Show full text]
  • Characterization and Modeling of Polysilicon MEMS Chemical-Mechanical Polishing by Brian D
    Characterization and Modeling of Polysilicon MEMS Chemical-Mechanical Polishing By Brian D. Tang Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of MASSACHUSETTS INSTITUE OF Master of Engineering TECHNOLOGY at the JUL 2 0 2004 MASSACHUSETTS INSTITUTE OF TECHNOLOGY LIBRARIES May 21, 2004 a e e C @ Massachusetts Institute of Technology, 2004. All Rights Reserved. Author Electrical Enginegring and Computer Science May 21, 2004 Certified by ane S. Boning Professor Electrical Engineering and Computer Science Accepted byV (- Arthur C. Smith Chairman, Department Committee on Graduate Studies Electrical Engineering and Computer Science BARKER 2 Characterization and Modeling of Polysilicon MEMS Chemical-Mechanical Polishing By Brian D. Tang Submitted to the Department of ElectricalEngineering and Computer Science May 20, 2004 In PartialFulfillment of the Requirementsfor the Degree of Master of Engineering in ElectricalEngineering and Computer Science ABSTRACT Heavily used in the manufacture of integrated circuits, chemical-mechanical polishing (CMP) is becoming an enabling technology for microelectomechanical systems (MiEMS). To reliably use CMP in the manufacturing process, designers must be able to accurately predict the CMP process and control final surface uniformity. This thesis extends integrated circuit CMP knowledge towards MEMS applications. Experiments were performed to characterize polysilicon MEMS CMP. A new test mask was created which contains test structures relevant to MEMS. Both single and dual material polish experiments were carried out and the resulting data fit against an adapted step height density model. Results show that integrated circuit CMIP models are applicable to MEMS CMP, but the models need to be adjusted in order to contend with issues inherent to MEMS CMP.
    [Show full text]
  • 2003Nnunreura.Pdf
    The 2003 National Nanofabrication Users Network Research Experience for Undergraduates Program Table of Contents NNUN REU Introduction ............................. 3 NNUN REU Interns ....................................... 4 Blast From the Past ........................................ 5 2003 NNUN REU Program at Howard...... 41 The Effects of Thermal Annealing on InGaAsN and GaAsN .................................... 42 Characterization of Ion-Implanted Nanofiltration Membranes ................................. 44 2003 NNUN REU Program at CNF............ 15 GaAlAs/GaAs Heterojunction Prosthetic Retina ... 46 Laser Lysis of Liposomes in a Microfluidic Device . 16 Catalytic Growth of GaN and other Nitride Nanowires Interdigitated Microelectrode Arrays for for Electronic and Photonic Applications ............. 48 Organic Light Emitting Diodes .......................... 18 Fabrication of Silicon Carbide Optimizing Shallow Trench Isolation for Atomic Force Microscopy Probes ...................... 50 SOI CMOS Transistors....................................... 20 Developing IR (8-14 µm) Detectors Two-D Nanobumps Using Ion Sputtering ............. 22 (External Photoemission) ................................... 52 Microfluidic Device for Pharmaceutical Research ... 24 Fabrication of Biomolecular Sieves with Novel Geometry ......................................... 26 Chemistry-on-a-Chip: Multiphase Microfluidic Devices ....................... 28 Embossing Polymer Waveguides for Integrated Optical Devices ........................... 30 Novel Gate
    [Show full text]