Metric-Driven Robust Design – Robustness Quantification of Complex Engineering Systems
Total Page:16
File Type:pdf, Size:1020Kb
Downloaded from orbit.dtu.dk on: Dec 20, 2017 Metric-driven Robust Design – Robustness Quantification of Complex Engineering Systems Göhler, Simon Moritz; Howard, Thomas J.; Eifler, Tobias; Hansen, Niels-Aage Publication date: 2017 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Göhler, S. M., Howard, T. J., Eifler, T., & Hansen, N-A. (2017). Metric-driven Robust Design – Robustness Quantification of Complex Engineering Systems. (DCAMM Special Report; No. S224). General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Metric-driven Robust Design – Robustness Quantifi cation of Complex Engineering Systems PhD Thesis Simon Moritz Göhler DCAMM Special Report No. S224 February 2017 Metric-driven Robust Design – Robustness Quantification of Complex Engineering Systems PhD Thesis Simon Moritz Göhler February 2017 Academic Supervisor Thomas J. Howard, Associate Professor Section of Engineering Design and Product Development Department of Mechanical Engineering Technical University of Denmark Academic Co-Supervisor Tobias Eifler, Assistant Professor Section of Engineering Design and Product Development Department of Mechanical Engineering Technical University of Denmark Industrial Supervisor Niels-Aage Hansen, Chief Engineer Device R&D Novo Nordisk A/S Hillerød, Denmark DTU Mechanical Engineering Section of Engineering Design and Product Development Technical University of Denmark (DTU) Produktionstorvet, Bldg. 426 DK-2800 Kgs. Lyngby Denmark Phone (+45) 4525 6263 www.mek.dtu.dk Abstract Variation is omnipresent - no two manufactured products are exactly the same or are used in exactly the same way and under the exact same conditions. To ensure quality and functionality for customer satisfaction, variation needs to be addressed in product development and production. In recent decades, the initiatives to deal with and address variation have moved more and more from quality control in production to the design and development phase. Rather than addressing the source of variation, Robust Design is applied as a strategy and paradigm to design products that are inherently insensitive to variation and function despite them. However, the ever-increasing complexity of products and engineering systems due to the integration of more functionality challenges engineers in designing robust products. In this PhD thesis, this challenge of designing complex products and engineering systems to be robust to variation is addressed. More specifically, the robustness quantification and evaluation as an essential part of the design process to measure, monitor, select, prioritize and optimize for robustness has been investigated. A “metric-driven” approach enables an efficient and systematic Robust Design process. Different angles on the quantification of robustness have been researched. A study of the landscape of Robust Design methods and tools revealed the mechanisms and coherences between the individual methods. An iterative Robust Design process was proposed based on the coherences and the associated activities of the engineers. It was also shown that the robustness evaluation plays a central role in the Robust Design process. However, even though there is consensus among Robust Design practitioners and academics regarding the general concept of robustness as a paradigm and strategy to design products insensitive to variation, some ambiguities were still observed in the literature and in practice. A systematic literature study and analysis of robustness metrics led to the conclusion that four different notions of robustness exist: concept robustness, design robustness, function robustness and product robustness. For the latter, the complexity of the product has a large influence. This could be shown in a case study as well as in a model-based study which both revealed a reduction of robustness with an increased level of contradiction in the functions with larger/smaller- the-better requirements. This augments the work on Axiomatic Design by Suh, who proved this to be true for coupling and nominal-the-best requirements. To support the evaluation of the level of contradiction of a design, a method and metric, the Contradiction Index (CI), was developed. Based on the insights gained throughout the research regarding the quantification of robustness, the VMF Tool was proposed to support a holistic and metric-driven Robust Design. By modeling and sensible decomposition of the (complex) product through relations of different degrees of fidelity, structural and functional robustness analyses have been incorporated. The VMF Tool supports the engineers to build a comprehensive functional understanding and enables efficient robustness quantification throughout the design process. Two case studies were conducted showing the merit and applicability of the tool, which has also been confirmed by qualitative feedback from participating engineers in the case companies. i Resumé (in Danish) Variation er allestedsnærværende – ingen fremstillede produkter er helt ens, bruges præcist på den samme måde eller ved de præcist samme omstændigheder. For at sikre at kvaliteten og funktionaliteten tilfredsstiller kunden, er det nødvendigt at tage sig af variation i løbet af produktudviklingen og produktionen. I de seneste årtier har indsatsen for at adressere variation bevæget sig mere og mere fra kvalitetskontrol i produktionen til design- og udviklingsfasen. I stedet for at adressere variationskilderne anvendes Robust Design som en strategi eller et paradigme til at designe produkter, som er grundlæggende ufølsomme overfor variation og virker på trods af variation. Den stadigt stigende produkt- og systemkompleksitet, som skyldes forøgelsen af funktionalitet, udfordrer imidlertid ingeniører, når de skal designe robuste produkter. I denne Ph.d.-afhandling adresseres udfordringen at designe komplekse produkter og systemer, så de bliver robuste overfor variation. Mere specifikt undersøges robusthedskvantificering og -evaluering for at måle, monitorere, vælge, prioritere, og optimere robusthed som en essentiel del af designprocessen. En ”metric- driven” tilgang tillader en effektiv og systematisk Robust Design-Proces. Forskellige vinkler på robusthedskvantificeringen er blevet undersøgt. Et studie af landskabet af Robust Design- metoder og -værktøjer afslørede mekanismerne og fællestrækkende for de individuelle metoder. En iterativ Robust Design-Proces baseret på disse fællestræk og ingeniørernes tilhørende aktiviteter blev foreslået. Det blev også vist, at robusthedsevaluering spiller en central rolle i Robust Design-Processen. Selvom der er konsensus iblandt akademikere og udøvere af Robust Design vedrørende det generelle robusthedsbegreb som et paradigme og en strategi til at designe produkter, der er ufølsomme over for variation, blev flertydigheder imidlertid stadig observeret i litteraturen og i praksis. Et systematisk litteraturstudie og analyse af robusthedsgrad førte til konklusionen, at fire forskellige opfattelser af robusthed eksisterer: konceptrobusthed, designrobusthed, funktionsrobusthed og produktrobusthed. Produktets kompleksitet har stor indflydelse på den sidstnævnte. Dette kunne vises i et casestudie og ligeså i et modelbaseret studie, som begge afslørede, at robustheden reduceres når ”jo-større/mindre-des-bedre”-krav til produktfunktioner modstrider hinanden i højere grad. Dette udvider Suhs arbejde med Axiomatisk Design, som beviste, at dette er sandt for koblinger og ”jo-tættere-på-nominelt-des-bedre”-krav. En metode og en måleenhed, Contradiction Index (CI), blev udviklet for at understøtte evalueringen af i hvor høj grad kravene modstrider hinanden i et design. VMF-værktøjet blev foreslået baseret på den indsigt, der blev opnået gennem denne forskning vedrørende kvantificeringen af robusthed, således at en holistisk og “metric-driven” Robust Design-Proces kan understøttes. Strukturelle og funktionelle robusthedsanalyser er blevet inkorporeret ved modellering og fornuftig dekomposition af det (komplekse) produkt via sammenhænge med forskellige grader af nøjagtighed. VFM værktøjet understøtter ingeniørerne, så de kan opnå en omfattende funktionel forståelse og muliggør effektiv robusthedskvantificering igennem hele designprocessen. To casestudier blev gennemført, som viste værdien og anvendeligheden af værktøjet, som også blev bekræftet via kvalitativ feedback fra deltagende ingeniører i case-virksomhederne. ii Acknowledgements This thesis concludes my 3 year PhD research project conducted from 2014-2017 at the Technical University of Denmark Department of Mechanical Engineering in the section of Engineering Design and Product Development. The project has been a part of and made possible by the Novo Nordisk – DTU Robust Design Program. First of all, I would like to thank my academic supervisor