Environmental Clean Technologies

Total Page:16

File Type:pdf, Size:1020Kb

Environmental Clean Technologies Environmental Clean Technologies Clean sweep in hydrogen Share Price: A$0.001 ASX: ECT This company’s leading technology, Coldry, allows the transformation of low-grade brown coal into a product with Sector: Commercial & Professional Services qualities closer to high-grade black coal. A related technology 8 December 2020 called HydroMOR allows primary iron to be made using lignite instead of coking coal. ECT is also entering the waste-to- Market Cap. (A$ m) 9.6 energy space where there is potentially a shorter lead time to # shares outstanding (m) 9,601.0 commercialisation and higher finished product margin. # share fully diluted (m) 11,475.0 Currently addressing near-term cash flow Market Cap Ful. Dil. (A$ m) 11.5 Free Float 77% During 2015–2019, ECT collaborated with two Indian federal 12 months high/low ($) 0.002 / 0.001 government majority-owned companies to set up an Average daily volume (m) 7.0 integrated Coldry demonstration and Matmor pilot plant in Website ectltd.com.au India. However, the collaborations failed to materialise and Source: Company, Pitt Street Research ECT had to withdraw from the projects. ECT is currently executing an alternative strategy outlined in September 2019 Share price (A$) and avg. daily volume (m, r.h.s.) which involves expanding and upgrading the Bacchus Marsh facility for end products such as Coldry solid fuel, Char and $0.005 120.00 Syngas. The upgrade project will be executed in two phases, $0.004 100.00 with the first phase being completed by mid-2021 which is $0.004 expected to generate positive cash flow. We think the shift $0.003 80.00 $0.003 60.00 in strategy to focus on near-term operational profitability will $0.002 be welcomed by investors once ECT executes this project $0.002 40.00 $0.001 successfully. 20.00 $0.001 $0.000 - Promising play in the hydrogen market Aug-19 Sep-19 Nov-19 Dec-19 Feb-20 Mar-20 May-20 Jun-20 Aug-20 Sep-20 Nov-20 Hydrogen industry development is the next big emerging play, especially for Victoria’s lignite resource. ECT believes Source: Refinitiv Eikon, Pitt Street Research that Coldry can be useful in preparing feedstock for the standard hydrogen production route known as steam Valuation metrics reforming. However, its newer COHgen technology may DCF (cents) 0.30 – 0.41 provide a low-cost, lower CO2 emission alternative to the WACC 13.9% steam reforming route to produce hydrogen from brown coal, if scaled successfully. We see potential for this Assumed terminal growth rate None technology to find a valuable commercialisation partner in the near term. Valuation range of 0.30 – 0.41 cents per share Subscribe to our research HERE ECT is sufficiently funded for its plant upgrade project and our intrinsic value for the stock based on just this project indicates a significant upside potential. In our view, the stock Analysts: Stuart Roberts, Cheng Ge price is being dragged down by the disappointment over the Tel: +61 (0)447 247 909 India collaboration not working out and investors have still not factored in the potential benefits of the change in the [email protected] company’s strategy. [email protected] Readers should be aware that Pitt Street Research Pty Ltd has been engaged and paid by the company covered in this report for ongoing research coverage. Please refer to the final page of this report for the General Advice Warning, disclaimer and full disclosures. 1 Environmental Clean Technologies Table of Contents Introducing Environmental Clean Technologies 3 Coldry continues to hold promise as one of the better ‘clean coal’ technologies available 4 ECT’s September 2019 recovery plan 6 Priority focus on upgrading Coldry project 6 Sufficient funding available through multiple channels 7 Market for ECT’s end products 8 Matmor/HydroMOR and COHgen allow other valuable products to be made from lignite 10 CDP-WTE’s acquisition has enabled ECT to move into the promising waste-to-energy sector 11 Valuation 12 Re-rating 14 Risks 14 Companies to watch in the ‘clean coal’ tech space 15 Appendix I – ECT’s Intellectual Property 15 Appendix II – Glossary 15 Appendix III – Analyst Qualifications 16 General Advice Warning, Disclaimer & Disclosures 17 Readers should be aware that Pitt Street Research Pty Ltd has been engaged and paid by the company covered in this report for ongoing research coverage. Please refer to the final page of this report for the General Advice Warning, disclaimer and full disclosures. 2 Environmental Clean Technologies Introducing Environmental Clean Technologies Environmental Clean Technologies (ASX: ECT) is a Melbourne-based company developing a suite of technologies designed to upgrade waste and low-grade resources with low carbon emissions. The company’s leading technology, called Coldry, allows a zero net emissions transformation of low- grade brown coal into a product with qualities closer to high-grade black coal. Coldry provides the base technology platform upon which its other technologies are then integrated. ECT has developed a Coldry pilot plant at Bacchus Marsh in outer Melbourne and has looked to develop commercial- scale plants in Australia and India. The company also has technology which produces low-emission/low-cost primary iron and low-emission hydrogen production technology. ECT in its current form has largely been built on Coldry and Matmor/HydroMOR. The company’s work on Coldry began in 20061 with the acquisition of Asia Pacific Coal and Steel Pty Ltd, which held the rights to the Coldry technology, and a related iron-production technology called Matmor2. ECT spent the next 12 years largely focusing on developing the Coldry and Matmor technologies, with a goal of establishing commercial-scale Coldry and Matmor plants in Victoria and India for producing high-value solid fuel and primary iron. These commercial projects have completed feasibility and basic engineering design phases. ECT has also started to move into the waste-to-energy space, where there is potentially a shorter lead-time to commercialisation and higher finished product margin. In July 2019, the company acquired a waste-to-energy technology3. The technology, called CDP-WTE, has the potential to provide a low-cost way to process wood, end-of-life plastics and other wastes into diesel fuel, particularly when the feedstock is combined with fuel produced from the Coldry technology. ECT’s primary focus in the near term is on generating positive group cash ECT believes it can be cash flow from expansion of its existing Coldry pilot plant. A September 2019 flow break-even within 12 market release lays out a plan for the company to be cash flow positive within months 12 months, which involves expanding and upgrading the Bacchus Marsh facility for end products beyond coal in addition to the company’s move into the waste-to-energy and hydrogen sectors. If ECT is so good, why is it only capitalised at A$9.6m (US$6.7m)? We believe the current low market capitalisation of ECT is due to disappointment over the India collaboration not working out as planned. However, now that ECT has obtained fresh funding through its rights issue, it can move ahead and execute the value creation strategy outlined in the September 2019 announcement. We believe that ECT’s shift in strategy to focus on near-term operational profitability and cash flow is a prudent step and will help support the advancement of its multiple clean-tech opportunities in the medium term. While investors may not have still factored in the benefits of this positive step, we expect the situation to change once ECT’s management starts demonstrating success in executing the strategy. 1 Prior to 2006 the company’s main focus was Enersludge, a pyrolysis and gasification-based method for managing sewage sludge. For background on Enersludge see Water Sci Technol. 2004;49(10):217-23. The company worked on Enersludge as ‘Environmental Solutions International Ltd’ but changed its name to ‘Environmental Clean Technologies Ltd’ in late 2006 to reflect the change of focus. For many years it retained the old ASX code of ESI but changed this in mid-2018 to ECT. 2 See ECT’s 10 February 2006 market release headlined ‘ESI enters into an agreement to acquire 100% of Asia Pacific Coal and Steel Pty Ltd’. 3 See the company’s 7th and 13th June 2019 market releases. Readers should be aware that Pitt Street Research Pty Ltd has been engaged and paid by the company covered in this report for ongoing research coverage. Please refer to the final page of this report for the General Advice Warning, disclaimer and full disclosures. 3 Environmental Clean Technologies Coldry continues to hold promise as one of the better ‘clean coal’ technologies available Coldry can convert brown coal to black coal equivalent. First developed in the 1980s, Coldry allows lignite, that is, brown coal, to be processed into a coal product similar in properties to higher-grade black coal. Lignite is considered a low-grade coal because it has a high moisture content which means that it produces less energy and more carbon emissions compared to black coal when it is combusted, typically for use in electricity generation. Upgrading lignite to a black coal equivalent using Coldry will result in reduced carbon emissions because less coal will be required for the equivalent level of power generation, while the potential price of the black coal equivalent product will likely be much higher than raw lignite because of the higher calorific value per tonne. Since power stations are significant users of lignite around the world, particularly in Australia, Germany, India, Poland, Russia, Turkey and the US4, ECT has until recently focused on developing Coldry to integrate as part of power station coal supply, targeting a reduction in overall emissions.
Recommended publications
  • Petrographic and Vitrinite Reflectance Analyses of a Suite of High Volatile Bituminous Coal Samples from the United States and Venezuela
    Petrographic and vitrinite reflectance analyses of a suite of high volatile bituminous coal samples from the United States and Venezuela Open-File Report 2008-1230 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Dirk A. Kempthorne, Secretary U.S. Geological Survey Mark D. Myers, Director U.S. Geological Survey, Reston, Virginia 2008 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Hackley, P.C., Kolak, J.J., 2008, Petrographic and vitrinite reflectance analyses of a suite of high volatile bituminous coal samples from the United States and Venezuela: U.S. Geological Survey Open-File Report 2008-1230, 36 p., http://pubs.usgs.gov/of/2008/1230. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. ii Contents Introduction ........................................................................................................................................................................1 Methods ..............................................................................................................................................................................1
    [Show full text]
  • Update on Lignite Firing
    Update on lignite firing Qian Zhu CCC/201 ISBN 978-92-9029-521-1 June 2012 copyright © IEA Clean Coal Centre Abstract Low rank coals have gained increasing importance in recent years and the long-term future of coal -derived energy supplies will have to include the greater use of low rank coal. However, the relatively low economic value due to the high moisture content and low calorific value, and other undesirable properties of lignite coals limited their use mainly to power generation at, or, close to, the mining site. Another important issue regarding the use of lignite is its environmental impact. A range of advanced combustion technologies has been developed to improve the efficiency of lignite-fired power generation. With modern technologies it is now possible to produce electricity economically from lignite while addressing environmental concerns. This report reviews the advanced technologies used in modern lignite-fired power plants with a focus on pulverised lignite combustion technologies. CFBC combustion processes are also reviewed in brief and they are compared with pulverised lignite combustion technologies. Acronyms and abbreviations CFB circulating fluidised bed CFBC circulating fluidised bed combustion CFD computational fluid dynamics CV calorific value EHE external heat exchanger GRE Great River Energy GWe gigawatts electric kJ/kg kilojoules per kilogram kWh kilowatts hour Gt billion tonnes FBC fluidised bed combustion FBHE fluidised bed heat exchanger FEGT furnace exit gas temperature FGD flue gas desulphurisation GJ
    [Show full text]
  • Views on Coal Liquefaction, Used As a Basis for This Survey Are: M
    L~OLVENT REFINED COAL AND COAL-OIL MIXTURES/ A Thesis presented to The Faculty of the College of Engineering and Technology Ohio University In Partial Fulfillment of the Requirements for the Degree Master of Science by Avant! E-mbalia; June 13, 1981 ACKNOWLEDGEMENTS The author wishes to thank his advisor, Professor Robert L. Savage, for his advice and guidance in bringing this work to a successful com­ pletion. The author wishes to thank the Pittsburgh Midway Coal Mining Company of Dupont, Washington for supplying SRCI and SRCII samples. Finally, the author also wishes to thank Louella Rich and Diana Miller at the Word Processing Center of The Standard Oil Co, Cleveland, Ohio, for the typing of this thesis. TABLE OF CONTENTS PAGE INTRODUCTION 1 COAL-OIL MIXTURES 6 Coal-Oil Mixture Technology 6 Stability of Coal-Oil Mixture 7 Testing Procedures Used for Stability Study 8 Density of Coal-Oil Mixture 11 COAL LIQUEFACTION 12 Relations of Coal and Solvent for Extraction 13 Variables Important for Extraction 17 SRC Technology 19 OBJECTIVES 23 EQUIPMENT AND EXPERIMENTAL PROCEDURE 25 Stability Study 25 Viscosity -and Density Measurements of Coal-Oil Mixtures 38 Coal-Oil Mixture Sample Preparation 41 Preparation of Low-Ash Coal 43 Apparatus 47 RESULTS AND DISCUSSION 50 Stability Studies 50 TABLE OF CONTENTS (Cont'd) PAGE Coal Concentration with Height 72 Tuned Circuit Detector 90 Viscosity of Coal-Oil Mixtures 104 Density of Coal-Oil Mixtures 117 Low-Ash Coal 121 CONCLUSIONS 130 RECOMMENDATIONS 132 REFERENCES 134 Appendix A- Derivation of the
    [Show full text]
  • 201520003 [Third Party Communication: Release Date: 5/15/2015 Date of Communication: Month DD, YYYY] Index Number: 45.00-00 Person to Contact: ------, ID No
    Internal Revenue Service Department of the Treasury Washington, DC 20224 Number: 201520003 [Third Party Communication: Release Date: 5/15/2015 Date of Communication: Month DD, YYYY] Index Number: 45.00-00 Person To Contact: ----------------------------- ----------------------, ID No. ----------- ------------------------------------------- Telephone Number: --------------------- -------------------- ------------------------------- Refer Reply To: CC:PSI:B06 PLR-128569-14 Date: December 10, 2014 LEGEND Taxpayer = ---------------------------------------------- Parent = ---------------------------------------------------------- ---------------------- Corp A = --------------------------------------------------------------- Corp B = ------------------ Corp C = -------------------------------------------- Corp D = --------------------------------------------------------- Corp E = ------------------------------- State = ------------ Facility = ---------------------------------------- Power Plant = --------------------------------- Location 1 = ----------------------- Date 1 = --------------------- Date 2 = -------------------------- A = ----------------------------------- a = --- b = --- c = --- d = --- e = ----- Process = ----------- Process A = -------------- Process B = -------------- PLR-128569-14 2 Dear -------------: This is in response to your request, submitted by your authorized representative on Date 7, to supplement ruling PLR-141119-11 dated November 30, 2011, concerning the federal income tax consequences of the transaction described
    [Show full text]
  • Quarterly Coal Report July–September 2020
    Quarterly Coal Report July–September 2020 January 2021 Independent Statistics & Analysis U.S. Department of Energy www.eia.gov Was hington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA’s data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other federal agencies. U.S. Energy Information Administration | Quarterly Coal Report July–September 2020 i January 2021 Contacts This publication was prepared by the U.S. Energy Information Administration (EIA). You can request general information about the data in this report by emailing [email protected]. You can send questions about coal statistics to the Office of Stakeholder Outreach and Communications at 202- 586-8800 or at [email protected]. U.S. Energy Information Administration | Quarterly Coal Report July–September 2020 ii January 2021 Preface EIA publishes this report to fulfill data collection and dissemination responsibilities under the Federal Energy Administration Act of 1974 (Public Law 93-275), as amended. The Quarterly Coal Report (QCR) provides information about U.S. coal production, exports, imports, receipts, prices, consumption, quality, stocks, and refined coal data to a wide audience, including Congress, federal and state agencies, the coal industry, and the general public. In addition, the QCR offers U.S. coke production, consumption, stocks, imports, and exports data. The third-quarter 2020 QCR includes detailed quarterly coal data for July 2020 to September 2020 and aggregated quarterly historical coal data for 2014 through third- quarter 2020.
    [Show full text]
  • Maceral Types and Quality of Coal in the Tuli Coalfield: a Case
    applied sciences Article Maceral Types and Quality of Coal in the Tuli Coalfield: A Case Study of Coal in the Madzaringwe Formation in the Vele Colliery, Limpopo Province, South Africa Elelwani Denge * and Christopher Baiyegunhi Department of Geology and Mining, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa; [email protected] * Correspondence: [email protected] Featured Application: Authors are encouraged to provide a concise description of the specific application or a potential application of the work. This section is not mandatory. Abstract: The Madzaringwe Formation in the Vele colliery is one of the coal-bearing Late Palaeozoic units of the Karoo Supergroup, consisting of shale with thin coal seams and sandstones. Maceral group analysis was conducted on seven representative coal samples collected from three existing boreholes—OV125149, OV125156, and OV125160—in the Vele colliery to determine the coal rank and other intrinsic characteristics of the coal. The petrographic characterization revealed that vitrinite is the dominant maceral group in the coals, representing up to 81–92 vol.% (mmf) of the total sample. Collotellinite is the dominant vitrinite maceral, with a total count varying between 52.4 vol.% (mmf) and 74.9 vol.% (mmf), followed by corpogelinite, collodetrinite, tellinite, and pseudovitrinite with a Citation: Denge, E.; Baiyegunhi, C. count ranging between 0.8 and 19.4 vol.% (mmf), 1.5 and 17.5 vol.% (mmf), 0.8 and 6.5 vol.% (mmf) Maceral Types and Quality of Coal in the Tuli Coalfield: A Case Study of and 0.3 and 5.9 vol.% (mmf), respectively. The dominance of collotellinite gives a clear indication Coal in the Madzaringwe Formation that the coals are derived from the parenchymatous and woody tissues of roots, stems, and leaves.
    [Show full text]
  • Production Tax Credit for Refined Coal Part
    Production Tax Credit for Refined Coal Part III - Administrative, Procedural, and Miscellaneous Notice 2009-90 SECTION 1. PURPOSE This notice sets forth interim guidance pending the issuance of regulations relating to the tax credit under § 45 of the Internal Revenue Code (Code) for refined coal. SECTION 2. BACKGROUND Sections 45(c)(7), (d)(8), and (e)(8) of the Code provide definitions and rules relating to the tax credit for refined coal (the refined coal credit). Section 45(e)(8) provides that the refined coal credit increases a taxpayer’s credit determined under the other provisions of § 45. The credit is allowed for qualified refined coal (1) produced by the taxpayer at a refined coal production facility during the ten-year period beginning on the date the facility is originally placed in service, and (2) sold by the taxpayer to an unrelated person during that ten-year period. Sections 45(c)(7), (d)(8), and (e)(8) were added to the Code by sections 710(a), (b)(1), and (b)(2), respectively, of the American Jobs Creation Act of 2004, 2 Pub. L. No. 108-357. These provisions were amended by sections 403(t) and 412(j)(1) and (2) of the Gulf Opportunity Zone Act of 2005, Pub. L. No. 109-135, and by sections 101 and 108 of the Energy Improvement and Extension Act of 2008, Division B of Pub. L. No. 110-343. SECTION 3. DEFINITIONS, ETC. The following definitions apply for purposes of this notice: .01 Refined Coal. (1) In General. Except as otherwise provided in this section 3.01, the term “refined coal” means fuel that-- (a) is a liquid, gaseous, or solid fuel produced from coal (including lignite) or high carbon fly ash, including (except to the extent inconsistent with section 3.01(1)(b) of this notice) such fuel used as a feedstock; (b) is sold by the taxpayer (producer), to an unrelated person, with the reasonable expectation that it will be used for the purpose of producing steam; and (c) is certified by the taxpayer as resulting (when used in the production of steam) in a qualified emission reduction.
    [Show full text]
  • Non-Energy Uses of Coal
    CCC/ 291 NOVEMBER 2018 NON-ENERGY USES OF COAL DR IAN REID NON-ENERGY USES OF COAL IEA CLEAN COAL CENTR E APSLEY HOUSE, 176 UPPER RICHMOND R OAD LONDON, SW15 2SH UNITED KINGDOM +44[0]20 3905 3870 WWW.IEA-COAL.ORG AUTHOR DR IAN REID IEA CCC REPORT NUMBER CCC/291 ISBN 978–92–9029–614–0 © IEA CLEAN COAL CENTRE PUBLICATION DATE NOVEMBER 2018 3 IEA CLEAN COAL CENTR E – NON-ENERGY USES OF C OAL PREFACE This report has been produced by the IEA Clean Coal Centre and is based on a survey and analysis of published literature, and on information gathered in discussions with interested organisations and individuals. Their assistance is gratefully acknowledged. It should be understood that the views expressed in this report are our own, and are not necessarily shared by those who supplied the information, nor by our member organisations. The IEA Clean Coal Centre was established in 1975 and has contracting parties and sponsors from: Australia, China, the European Commission, Germany, India, Italy, Japan, Poland, Russia, South Africa, Thailand, the UAE, the UK and the USA. The overall objective of the IEA Clean Coal Centre is to continue to provide our members, the IEA Working Party on Fossil Fuels and other interested parties with independent information and analysis on all coal-related trends compatible with the UN Sustainable Development Goals. We consider all aspects of coal production, transport, processing and utilisation, within the rationale for balancing security of supply, affordability and environmental issues. These include efficiency improvements, lowering greenhouse and non-greenhouse gas emissions, reducing water stress, financial resourcing, market issues, technology development and deployment, ensuring poverty alleviation through universal access to electricity, sustainability, and social licence to operate.
    [Show full text]
  • Quarterly Coal Consumption and Quality Report U.S
    Quarterly Coal Consumption and Quality Report U.S. Department of Energy Form Approved Energy Information Administration Manufacturing and Transformation/Processing Coal Plants and OMB No. 1905-0167 Form EIA-3 Expires: xx/xx/xxxx (April 2011) Commercial and Institutional Coal Users Burden: 1.25 Hours Page 1 Respondent ID # Please read the instructions provided before completing this form. NOTICE: This report is mandatory under the Federal Energy Administration Act of 1974 (Public Law 93-275). Failure to comply may result in criminal fines, civil penalties and other sanctions as provided by law. For further information concerning sanctions and data protections see the provision on sanctions and the provision concerning the disclosure of information in the instructions. Title 18 USC 1001 makes it a criminal offense for any person knowingly and willingly to make to any Agency or Department of the United States any false, fictitious, or fraudulent statements as to any matter within its jurisdiction. I. Identification. Please read the instructions for Section I on page 11 before completing this section. A. Company Information Name of Company Contact Person: _________________________________________________________________________________________ Company Name: _________________________________________________________________________________________ Company Street Address: _________________________________________________________________________________________ Company City, State, Zip: _________________________________________________________________________________________
    [Show full text]
  • Carbon Solutions Acquisition and Refined Coal Update
    Advanced Emissions Solutions, Inc. Nasdaq: ADES Advancing Cleaner Energy Carbon Solutions Acquisition and Refined Coal Update November 16, 2018 © 2018 Advanced Emissions Solutions, Inc. All rights reserved. SAFE HARBOR This presentation contains forward-looking statements within the meaning of Section 21E of the Securities Exchange Act of 1934, which provides a “safe harbor” for such statements in certain circumstances. The forward-looking statements include estimated future RC cash flows, projections on ADA Carbon Solutions, LLC (“Carbon Solutions”) revenues, Carbon Solutions’ EBITDA, amount of operating synergies from the potential combination and future RC cash flows, expectations about Carbon Solutions' business opportunities, timing of the closing of the proposed acquisition, the ability to monetize deferred tax assets, and potential transactions with tax-equity investors. These forward-looking statements involve risks and uncertainties. Actual events or results could differ materially from those discussed in the forward-looking statements as a result of various factors including, but not limited to, future demand for Carbon Solutions’ products, our ability to cost-effectively integrate Carbon Solutions and recognize anticipated synergies, the Company’s ability to secure appropriate financing, timing of new and pending regulations and any legal challenges to or extensions of compliance dates of them; as well as other factors relating to our business, as described in our filings with the SEC, with particular emphasis on the risk factor disclosures contained in those filings. You are cautioned not to place undue reliance on the forward-looking statements and to consult filings we have made and will make with the SEC for additional discussion concerning risks and uncertainties that may apply to our business and the ownership of our securities.
    [Show full text]
  • United States Patent 19 (11) 4,314,898 Nakako Et Al
    United States Patent 19 (11) 4,314,898 Nakako et al. (45) Feb. 9, 1982 (54) PROCESS FOR REFORMING COAL FOREIGN PATENT DOCUMENTS 75 Inventors: Yukio Nakako, Takarazuka; Toshio 2548946 5/1976 Fed. Rep. of Germany. 208/8 LE Ohzawa, Kobe; Shizuo Yokota, 50-67801 of 1975 Japan. Nishinomiya; Masaaki Tamura, 51-27894 of 1976 Japan. Kobe, all of Japan Primary Examiner-Delbert E. Gantz Assistant Examiner-William G. Wright 73 Assignee: Kobe Steel, Ltd., Kobe, Japan Attorney, Agent, or Firm-Oblon, Fisher, Spivak, McClelland & Maier 21 Appl. No.: 144,883 57 ABSTRACT Improvements in a process for reforming coal by sub (22 Filed: Apr. 29, 1980 jecting a mixed slurry containing a hydrocarbon solvent 30 Foreign Application Priority Data and coal fines to hydrogenation reaction under high temperature and pressure conditions, gas-liquid separa May 1, 1979 (JP) Japan ......................... 54-054516 tion, and distillation to obtain a solvent-refined coal, the improvements comprising: maintaining the reaction (51) Int. Cla........................ C10G 1/00 temperature and total reaction pressure within a hydro 52 U.S. Cl. ................................... ............... 208/8 LE genation reactor at 400 to 500° C. and 50 to 200 atms., 58) Field of Search .................... ................ 208/8 LE and controlling the residence time distribution of reac tants, excepting gaseous reactants, in the hydrogenation 56 . References Cited reaction zone to have an average residence time longer U.S. PATENT DOCUMENTS than 17 minutes, and to keep the quantity of the reac tants which have a residence time shorter than 10 min 3,508,203 4/1970 Nelson ............................. 208/8LE 3,594,304 7/1971 Seitzer et al.
    [Show full text]
  • 'Clean Coal' Tax Credit
    SHARE: Join Our Email List View as Webpage Volume 5, Issue 9 ● Welcome Welcome to Volume 5, Issue 9 of Currents. Do you have topics that are especially interesting to you? We dive deep into all energy news every week, but we can always focus on a requested industry or topic. Let us know and we are happy to dig deeper. As always, thank you for reading. Nicholas S. Preservati Co-Chair, Energy Practice Group ● U.S. Congress Launches Probe Into Multibillion-Dollar 'Clean Coal' Tax Credit "The U.S. Congress is investigating a multibillion-dollar subsidy for chemically treated coal that is meant to reduce smokestack pollution, after evidence emerged that power plants using the fuel produced more smog not less." Why this is important: Congress is investigating whether a method to clean up coal plant emissions actually works. Currently under U.S. tax law, companies that treat refined coal to reduce mercury, nitrogen oxide and sulfur dioxide qualify for a tax credit worth $7.30 per ton. That adds up to $1 billion per year in tax credits from the U.S. Treasury to utilities and investment firms. Some now are alleging the process does not reduce coal emissions, but instead likely increases smoke stack emissions. Congress now will investigate those claims in the process of deciding whether to renew the credit that expires at the end of the year. --- Mark E. Heath ● GE Steam Power Unveils 'Largest Last-Stage Blade Ever Made' "Once completed, this Arabelle steam turbine will be the most powerful nuclear steam turbine in operation." Why this is important: A massive turbine blade designed for a British nuclear plant soon will be on its way to Somerset, England, where it will become an integral part of a huge 3.2 GW plant providing carbon-free power.
    [Show full text]