Figure-Of-Eight Velocity Curves: UGC 10205? J.C

Total Page:16

File Type:pdf, Size:1020Kb

Figure-Of-Eight Velocity Curves: UGC 10205? J.C AND Your thesaurus codes are: ASTROPHYSICS 03(11.09.1 UGC 10205; 11.11.1; 11.19.2; 11.19.6) 9.5.1997 Figure-of-eight velocity curves: UGC 10205? J.C. Vega1,E.M.Corsini2, A. Pizzella2, and F. Bertola2 1 Telescopio Nazionale Galileo, Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122 Padova, Italy 2 Dipartimento di Astronomia, Universit`a di Padova, vicolo dell’Osservatorio 5, I-35122 Padova, Italy Received..................; accepted................... Abstract. We measured the velocity curve Boulesteix 1996). and the velocity dispersion profile of the ion- In the inner regions of the Sc NGC 5907 Miller ized gas along the major axis of the edge-on & Rubin (1995) observed double-valued ion- galaxy UGC 10205. The observed kinematics ized gas emissions. They attributed the higher extends up to about 4000 from the nucleus. In velocity system to disk gas near the nucleus, the inner ±1300 of this early-type spiral three and the lower velocity system to an outer kinematically distinct gaseous components are gas ring. Although these two gas components present. We disentangle a fast-rotating and are supposed to be spatially distinct, they are a slow-rotating component. They give to the viewed superimposed along the line-of-sight on UGC 10205 velocity curve a “figure-of-eight” account of NGC 5907 high inclination. appearance. A third velocity component is The spirals NGC 5746 (Kuijken & Merrifield also detected on the southeast side of the 1995; Bureau & Freeman 1996), NGC 5965 galaxy. Possibly it is produced by gas in non- (Kuijken & Merrifield 1995), IC 5096 (Bureau circular motions. & Freeman 1996) and NGC 2683 (Merrifield 1996) have boxy/peanut bulges and double- Key words: galaxies: individual: UGC 10205 peaked gas line profiles. Kuijken & Merrifield — galaxies: kinematics and dynamics — (1995) explained these features as the signa- galaxies: spiral — galaxies: structure ture of a disk non-axisymmetric potential due to the presence of a bar. In this paper we show yet an other case of edge-on disk galaxy with a multiple-valued gas velocity curve, namely UGC 10205. For 1. Introduction projected distances lower than 1300 from the Within the last year ionized gas kinematics nucleus UGC 10205 it is characterized by has revealed in a number of edge-on disk the presence of three kinematically distinct galaxies double-peaked emission lines. The gaseous components, two of which give to its analysis of the line profiles allows to derive in- velocity curve a “figure-of-eight ” appearance. dividual rotation curves characteristic of two UGC 10205 is classified as Sa spiral by Nilson kinematically distinct gas components. (1973) and by de Vaucouleurs et al. (1991). The edge-on S0 galaxy NGC 7332 has been Its total B-band magnitude is BT =14.4mag found to have an “x-shaped” velocity curve, (RC3) and the inclination of the galaxy de- ◦ indicating two gas components counterrotat- duced from the disk parameters is i =84 ing one with respect to the other (Plana & (Rubin et al. 1985). The distance is 132 Mpc −1 −1 (H0 =50kms Mpc ). Send offprint requests to:J.C.Vega; [email protected] ? Based on observations carried out at the INT 2. Observations and data reduction operated on the island La Palma by the Royal Greenwich Observatory in the Spanish Observa- The spectroscopic observations of UGC 10205 torio del Roque de Los Muchachos of the Instituto were carried out on March 19-21, 1996 at the de Astrof´ısica de Canarias, Tenerife, Spain. Isaac Newton Telescope (INT) in La Palma us- Fig. 1. UGC 10205 major axis 100 minutes spectrum in the Hα region after removal of sky and stellar continuum. Note the multiple-peaked emissions of the Hα and the [N II](λ6583.4 A)˚ lines in the central regions of the spectrum (|r|≤1300) ing the Intermediate Dispersion Spectrograph lines have a Gaussian profile shape, were de- (IDS). rived by means of the MIDAS package ALICE. The H1800V We measured the Hα and the [N II](λ6583.4 grating with 1800 grooves mm−1 was used in A)˚ lines, where they were clearly detected. The the first order in combination with a 1.900 × position, the FWHM and the uncalibrated flux 4.00 slit, the 500 mm camera and the AgRed of each emission line were individually deter- collimator. It yielded a wavelength coverage mined by interactively fitting one Gaussian of ∼ 240 A˚ between 6650 A˚ and 6890 Awith˚ plus a polynomial to each emission and to a reciprocal dispersion of 9.92 Amm˚ −1.We its surrounding continuum. The wavelength of checked that the measured FWHMs do not the Gaussian center was converted to the ve- depend on wavelength and we found a mean locity v = cz, and then an heliocentric correc- value of FWHM = 0.86 A˚ (i.e. σ =0.37 A)˚ tion of ∆v =+15.5kms−1 was applied. The that, in the range of the observed gas emission Gaussian FWHM was corrected for the in- lines, corresponds to ∼ 17 km s−1.Noon-chip strumental FWHM and then converted to the binning was done on the adopted 1024×1024 velocity dispersion σ. The ionized gas emis- TK1024A CCD. Each 24 µm × 24 µm image sion lines are double-peaked for −1300 ≤ r< pixel corresponds to 0.24 A˚ × 0.3300. 300 andeventriple-peakedfor300 ≤ r ≤ 1300. We took two separate major axis spectra They have been fitted using the above package (P.A. = 132◦) for a total exposure time of with two or three Gaussians respectively and 100 minutes (Fig. 1). The slit was centered vi- a polynomial continuum. At each radius this sually on the galaxy nucleus. A comparison multiple-Gaussian fit has been done separately copper-argon lamp exposure was obtained be- for each emission line. tween the two object integrations. All the im- The gas velocity curves and the velocity ages were reduced using standard MIDAS rou- dispersion profiles independently derived from tines. Considering a sample of 8 bright OH the Hα (Fig. 2) and the [N II] (Fig. 3) lines are night-sky emission lines, we found a mean in good agreement at all radii. The kinemati- deviation from the theorical predicted wave- cal data from Hα and [N II] lines are given in length (Osterbrock & Martel, 1992) corre- Table 1 and in Table 2 respectively. Each table sponding to ∼ 1kms−1. provides the radial distance from the galaxy The gas velocities and velocity dispersions center r in arcsec (col. 1), the observed helio- for |r| > 1300, where the ionized gas emission centric velocity v (col. 2) and the velocity dis- persion σ (col.3)inkms ,thenumbernof The reciprocal dispersion (25 A mm ) and spectrum rows binned along the spatial direc- the spatial scale (2500 mm−1) of their image- tion to improve the signal-to-noise ratio of the tube spectrum were respectively 3 and 2 times emission lines (col. 4) and the identification i lower than those of our CCD spectrum. So of the kinematically distinct gas components they did not disentangle the component (i) (col. 5). from the (ii), detecting them as a unique one. They observed a second velocity system, corre- sponding to velocity curve of component (iii). 3. Results Finally, for two distinct radii at r ∼−500 The observed gas kinematics extends out to they measured intermediate velocities between 4200 (∼ 27 kpc) in the receding NW side and those of the first and the second system and about up to 3000 (∼ 19 kpc) in the SE ap- considered them as related to a third velocity proaching side respectively. component. For |r|≤1300 (∼ 8 kpc) we are able to disen- tangle (Fig. 1 and Fig. 2) three kinematically distinct gaseous components, named as fast- 4. Discussion rotating (i), slow-rotating (ii) and third (iii). 00 The fast-rotating gas component (i) shows In the inner ±13 UGC 10205 we are facing a velocity curve with a very steep gradient, two main kinematically distinct gaseous com- reaching an observed maximum rotation of ponents, namely (i) and (ii). They have quite 240 km s−1 at |r|∼300 (∼ 2kpc)fromthe similar velocity dispersion profiles but very center and remaining almost constant for |r| > different velocity curves, which produce the 300. Its velocity dispersion has a central peak of “figure-of-eight” appearance of UGC 10205 about 90 km s−1 and it shows a sharp decrease velocity curve. to values lower than 25 km s−1 outwards. The What is the real spatial distribution of these radial velocity of the slow-rotating gas com- two components? Are they really cospatial or ponent (ii) increases linearly with the distance are they spatially distinct and seen superim- from the galaxy center reaching 240 km s−1 at posed on account of a projection effect? |r|∼1400 (∼ 9 kpc). The velocity dispersion The simultaneous presence of the two gas remains between 40 km s−1 and 50 km s−1. components at the same distance of the galaxy This range is larger in the [N II] line, which center raises the problem of the viscous in- however is characterized by a lower signal-to- teraction of distinct gaseous structures with noise ratio. In the radial range between r ∼ 300 different kinematical characteristics. One pos- and r ∼ 1300 along the SE side of the major sibility is the gas to be distributed in colli- axis the Hα and [N II] emissions have triple- sionless cloudlets, as suggested by Cinzano & peaked lines. Indeed in this region the compo- van der Marel (1994) to explain the ionized nent (iii) is observed. It has a radial velocity gas kinematics in the E4 NGC 2974.
Recommended publications
  • Astronomy Magazine Special Issue
    γ ι ζ γ δ α κ β κ ε γ β ρ ε ζ υ α φ ψ ω χ α π χ φ γ ω ο ι δ κ α ξ υ λ τ μ β α σ θ ε β σ δ γ ψ λ ω σ η ν θ Aι must-have for all stargazers η δ μ NEW EDITION! ζ λ β ε η κ NGC 6664 NGC 6539 ε τ μ NGC 6712 α υ δ ζ M26 ν NGC 6649 ψ Struve 2325 ζ ξ ATLAS χ α NGC 6604 ξ ο ν ν SCUTUM M16 of the γ SERP β NGC 6605 γ V450 ξ η υ η NGC 6645 M17 φ θ M18 ζ ρ ρ1 π Barnard 92 ο χ σ M25 M24 STARS M23 ν β κ All-in-one introduction ALL NEW MAPS WITH: to the night sky 42,000 more stars (87,000 plotted down to magnitude 8.5) AND 150+ more deep-sky objects (more than 1,200 total) The Eagle Nebula (M16) combines a dark nebula and a star cluster. In 100+ this intense region of star formation, “pillars” form at the boundaries spectacular between hot and cold gas. You’ll find this object on Map 14, a celestial portion of which lies above. photos PLUS: How to observe star clusters, nebulae, and galaxies AS2-CV0610.indd 1 6/10/10 4:17 PM NEW EDITION! AtlAs Tour the night sky of the The staff of Astronomy magazine decided to This atlas presents produce its first star atlas in 2006.
    [Show full text]
  • Flat Galaxy - Above 30 Deg
    Flat Galaxy - Above 30 Deg. DEC A B C D E F G H I J K L 1 Const. Object ID Other ID RA Dec Size (arcmin) Mag Urano. Urano. Millennium Notes 2 RFGC NGC hh mm ss dd mm ss.s Major Minor 1st Ed. 2nd Ed. 3 CVn 2245 NGC 4244 12 17 30 +37 48 31 19.4 2.1 10.2 107 54 633 Vol II Note: 4 Com 2335 NGC 4565 12 36 21 +25 59 06 15.9 1.9 10.6 149 71 677 Vol II Note: Slightly asymmetric dust lane 5 Dra 2946 NGC 5907 15 15 52 +56 19 46 12.8 1.4 11.3 50 22 568 Vol II Note: 6 Vir 2315 NGC 4517 12 32 46 +00 06 53 11.5 1.5 11.3 238 110 773 Vol II Note: Dust spots 7 Vir 2579 NGC 5170 13 29 49 -17 57 57 9.9 1.2 11.8 285 130 842 Vol II Note: Eccentric dust lane 8 UMa 2212 NGC 4157 12 11 05 +50 29 07 7.9 1.1 12.2 47 37 592 Vol II Note: 9 Vir 2449 MCG-3-33-30 13 03 17 -17 25 23 8.0 1.1 12.5 284 130 843 Vol II Note: Four knots in the centre 10 CVn 2495 NGC 5023 13 12 12 +44 02 17 7.3 0.8 12.7 75 37 609 Vol II Note: 11 Hya 2682 IC 4351 13 57 54 -29 18 57 6.1 0.8 12.9 371 148 888 Vol II Note: Dust lane.
    [Show full text]
  • Astronomy 2008 Index
    Astronomy Magazine Article Title Index 10 rising stars of astronomy, 8:60–8:63 1.5 million galaxies revealed, 3:41–3:43 185 million years before the dinosaurs’ demise, did an asteroid nearly end life on Earth?, 4:34–4:39 A Aligned aurorae, 8:27 All about the Veil Nebula, 6:56–6:61 Amateur astronomy’s greatest generation, 8:68–8:71 Amateurs see fireballs from U.S. satellite kill, 7:24 Another Earth, 6:13 Another super-Earth discovered, 9:21 Antares gang, The, 7:18 Antimatter traced, 5:23 Are big-planet systems uncommon?, 10:23 Are super-sized Earths the new frontier?, 11:26–11:31 Are these space rocks from Mercury?, 11:32–11:37 Are we done yet?, 4:14 Are we looking for life in the right places?, 7:28–7:33 Ask the aliens, 3:12 Asteroid sleuths find the dino killer, 1:20 Astro-humiliation, 10:14 Astroimaging over ancient Greece, 12:64–12:69 Astronaut rescue rocket revs up, 11:22 Astronomers spy a giant particle accelerator in the sky, 5:21 Astronomers unearth a star’s death secrets, 10:18 Astronomers witness alien star flip-out, 6:27 Astronomy magazine’s first 35 years, 8:supplement Astronomy’s guide to Go-to telescopes, 10:supplement Auroral storm trigger confirmed, 11:18 B Backstage at Astronomy, 8:76–8:82 Basking in the Sun, 5:16 Biggest planet’s 5 deepest mysteries, The, 1:38–1:43 Binary pulsar test affirms relativity, 10:21 Binocular Telescope snaps first image, 6:21 Black hole sets a record, 2:20 Black holes wind up galaxy arms, 9:19 Brightest starburst galaxy discovered, 12:23 C Calling all space probes, 10:64–10:65 Calling on Cassiopeia, 11:76 Canada to launch new asteroid hunter, 11:19 Canada’s handy robot, 1:24 Cannibal next door, The, 3:38 Capture images of our local star, 4:66–4:67 Cassini confirms Titan lakes, 12:27 Cassini scopes Saturn’s two-toned moon, 1:25 Cassini “tastes” Enceladus’ plumes, 7:26 Cepheus’ fall delights, 10:85 Choose the dome that’s right for you, 5:70–5:71 Clearing the air about seeing vs.
    [Show full text]
  • DGSAT: Dwarf Galaxy Survey with Amateur Telescopes
    Astronomy & Astrophysics manuscript no. arxiv30539 c ESO 2017 March 21, 2017 DGSAT: Dwarf Galaxy Survey with Amateur Telescopes II. A catalogue of isolated nearby edge-on disk galaxies and the discovery of new low surface brightness systems C. Henkel1;2, B. Javanmardi3, D. Mart´ınez-Delgado4, P. Kroupa5;6, and K. Teuwen7 1 Max-Planck-Institut f¨urRadioastronomie, Auf dem H¨ugel69, 53121 Bonn, Germany 2 Astronomy Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia 3 Argelander Institut f¨urAstronomie, Universit¨atBonn, Auf dem H¨ugel71, 53121 Bonn, Germany 4 Astronomisches Rechen-Institut, Zentrum f¨urAstronomie, Universit¨atHeidelberg, M¨onchhofstr. 12{14, 69120 Heidelberg, Germany 5 Helmholtz Institut f¨ur Strahlen- und Kernphysik (HISKP), Universit¨at Bonn, Nussallee 14{16, D-53121 Bonn, Germany 6 Charles University, Faculty of Mathematics and Physics, Astronomical Institute, V Holeˇsoviˇck´ach 2, CZ-18000 Praha 8, Czech Republic 7 Remote Observatories Southern Alps, Verclause, France Received date ; accepted date ABSTRACT The connection between the bulge mass or bulge luminosity in disk galaxies and the number, spatial and phase space distribution of associated dwarf galaxies is a dis- criminator between cosmological simulations related to galaxy formation in cold dark matter and generalised gravity models. Here, a nearby sample of isolated Milky Way- class edge-on galaxies is introduced, to facilitate observational campaigns to detect the associated families of dwarf galaxies at low surface brightness. Three galaxy pairs with at least one of the targets being edge-on are also introduced. Approximately 60% of the arXiv:1703.05356v2 [astro-ph.GA] 19 Mar 2017 catalogued isolated galaxies contain bulges of different size, while the remaining objects appear to be bulgeless.
    [Show full text]
  • SAA 100 Club
    S.A.A. 100 Observing Club Raleigh Astronomy Club Version 1.2 07-AUG-2005 Introduction Welcome to the S.A.A. 100 Observing Club! This list started on the USENET newsgroup sci.astro.amateur when someone asked about everyone’s favorite, non-Messier objects for medium sized telescopes (8-12”). The members of the group nominated objects and voted for their favorites. The top 100 objects, by number of votes, were collected and ranked into a list that was published. This list is a good next step for someone who has observed all the objects on the Messier list. Since it includes objects in both the Northern and Southern Hemispheres (DEC +72 to -72), the award has two different levels to accommodate those observers who aren't able to travel. The first level, the Silver SAA 100 award requires 88 objects (all visible from North Carolina). The Gold SAA 100 Award requires all 100 objects to be observed. One further note, many of these objects are on other observing lists, especially Patrick Moore's Caldwell list. For convenience, there is a table mapping various SAA100 objects with their Caldwell counterparts. This will facilitate observers who are working or have worked on these lists of objects. We hope you enjoy looking at all the great objects recommended by other avid astronomers! Rules In order to earn the Silver certificate for the program, the applicant must meet the following qualifications: 1. Be a member in good standing of the Raleigh Astronomy Club. 2. Observe 80 Silver observations. 3. Record the time and date of each observation.
    [Show full text]
  • CORONA Medlemsblad for Trondheim Astronomiske Forening Nr
    CORONA Medlemsblad for Trondheim Astronomiske Forening Nr. 1 Mars 2003 5. årgang og Autronica Astronomiske Forening Redaktørens ord Bladet dere nå har fått i hendene er god måte. Denne logoen skal også det første i 5. årgang. Det vil si at vi pryde en T-skjorte som vi kommer til har et lite jubileum i år! Jeg synes vi å anskaffe nå i vår. Fargeversjonen er kan være stolt av bladet vårt, noe på forsiden og svart/hvitt versjonen som først og fremst er takket være til høyre. bidrag fra mange av foreningens medlemmer. Jeg vil spesielt trekke Påsken står for døren snart og en del fram medlemsgalleriet, hvor med- av dere skal nok opp i fjellet for å stå lemmene selv skriver om sin interes- på ski. På fjellet er også observa- REDAKSJONEN sjonsforholdene meget gode, så ikke se, opplevelser og erfaringer i denne morsomme og spennende hobbyen glem å ta med kikkert og et stjerne- kart. Det er noe magisk med en bek- Redaktør: vår. Jeg tror nok mange i likhet med Terje Bjerkgård meg kjenner seg igjen i disse beskri- mørk himmel hvor Melkeveibåndet sees så tydelig over himmelhvelving- Gisle Johnsons gate 2a velsene. 7042 Trondheim en. Husk også at det er en rekke tele- I dette nummeret er det i tillegg til et skoper og prismekikkerter til utlån i nytt bidrag til medlemsgalleriet, en de to foreningene, for de som ønsker Tlf priv: 73 52 15 77 spennvidde fra planeten Saturn til det. Mobiltlf: 911 99 521 Universets voldsomste eksplosjoner, E-post: [email protected] og videre til de merkelige kvasarene, Siden påsken er så sein i år, vil ob- de fjerneste objektene vi kan se i Uni- servasjonssesongen når det gjelder Layout (og TAFs adresse) : verset.
    [Show full text]
  • Snake River Skies the Newsletter of the Magic Valley Astronomical Society
    Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting MVAS President’s Message June 2018 Saturday, June 9th 2018 7:00pm at the Toward the end of last month I gave two presentations to two very different groups. Herrett Center for Arts & Science College of Southern Idaho. One was at the Sawtooth Botanical Gardens in their central meeting room and covered the spring constellations plus some simple setups for astrophotography. Public Star Party Follows at the The other was for the Sun Valley Company and was a telescope viewing session Centennial Observatory given on the lawn near the outdoor pavilion. The composition of the two groups couldn’t be more different and yet their queries and interests were almost identical. Club Officers Both audiences were genuinely curious about the universe and their questions covered a wide range of topics. How old is the moon? What is a star made of? Tim Frazier, President How many exoplanets are there? And, of course, the big one: Is there life out [email protected] there? Robert Mayer, Vice President The SBG’s observing session was rained out but the skies did clear for the Sun [email protected] Valley presentation. As the SV guests viewed the moon and Jupiter, I answered their questions and pointed out how one of Jupiter’s moons was disappearing Gary Leavitt, Secretary behind the planet and how the mountains on our moon were casting shadows into [email protected] the craters. Regardless of their age, everyone was surprised at the details they 208-731-7476 could see and many expressed their amazement at what was “out there”.
    [Show full text]
  • Collapse and Final E X P Losions Collapse and Final E X P Losions
    Collapse and final explosions Collapse and final explosions Evolution of the C-O core Stars with initial mass of less then ~ 9M (this limit depends strongly on mass loss) develop degenerate cores and if shell sources cannot increase Mc to ~Mch the star becomes a WD. Other stars undergo core collapse (such as those with neutron stars as remnants) or describes T0(0) for given Mc. explosions, thereby ejecting a large part of their mass (supernova). tracks - non-degenerate region: for different - for low and small M the temperature T increases up to Evolution of the C-O core Mc values 0 c 0 a maximum value T0max, after which it decreases until T0 0 - Further evolution details depend on whether C-O core becomes degenerate or not in the (A, B; M3, M2 in Ch. 28). ensuing contraction phase. -with 0 relativistic degeneracy becomes important; we rewrite Estimating critical core mass Mcrit, which determines whether contraction will increase Tc or if EOS as ( with ): the core becomes degenerate: - consider (approximate) EOS interpolating between both (non-deg. – degen.) regimes: - rough estimate of central0 values >>106gcm-3 <<106gcm-3 this shows that T increases again with 1/3 for P dominated by non-deg. e- from hydrostatic equation 0 0 4/3≤≤5/3 (e≈2, 0≥12) rel. non-rel. ~ Homologous contraction 1015-1013 of a gas sphere ≈ if : T0 T0max & decreases afterwards use EOS for P0 if : T continuously increases with 1/3. dominates for both terms are about 0 0 non-degeneracy equal for high-degeneracy Collapse and final explosions Collapse and final explosions Evolution of the C-O core estimate T0max for in non-relativistic regime: Evolution of the C-O core (A, B): ≈ shell-burning source(s) cannot increase core mass to MCh: T0 to T0max until core becomes degenerate and core cools pair creation down to become a WD.
    [Show full text]
  • Neutron Star
    Explosive end of a star (masses M > 8 M⊙ ) Death of massive stars M > 8 M⊙ nuclear reactions stop at Fe ⟹ contraction continues to T = 1010 K (e− degenerate gas cannot support the star for core mass Mcore > 1.4 M⊙ ) ⟹ Fe photo-disintegration (production of α particles, neutrons, protons) ⟹ energy absorbed, contraction goes faster, density grows to point when: e− + p → n + νe ⟹ e− are removed support of e− degenerate gas drops ⟹ collapse continues 12 17 3 T = 10 K, core density 3×10 kg / m ⟹ neutron degeneracy pressure ⟹ collapse suddenly stops ⟹ matter falling inward at high high speed matter bounces when core reached ⟹ shock front outwards ⟹ STAR EXPLODES (SUPERNOVA) ⟹ STAR EXPLODES (SUPERNOVA) Not clear what happens, some or all of the following processes: • Shock wave blows apart outer layer, mainly light elements • Shock wave heats gas to T = 1010 K ⟹ explosive nuclear reactions ⟹ fusion produce Fe-peak elements ⟹ outer layer blown apart • Enormous amount of neutrinos formed. Most escape without interaction, some lift off mass in outer layer External envelope falling inwards at speed up to v ~ 70,000 km/s Bounce backward when core reached → Shock front outward Star destroyed by explosion Stellar explosion = supernova (computer simulation) Video: https://www.youtube.com/watch?v=xVk48Nyd4zY Final result of core collapse: neutron star Supernova remnant: Crab Nebula Distance: 6500 light years Explosion seen in 1054 Size of the bubble: ~ 10 pc Final result of core collapse: neutron star Supernova remnant: Crab Nebula Distance: 6500 light
    [Show full text]
  • NASA Astronauts
    PUBLISHED BY Public Affairs Divisio~l Washington. D.C. 20546 1983 IColor4-by-5 inch transpar- available free to information lead and sent to: Non-informstionmedia may obtain identical material for a fee through a photographic contractor by using the order forms in the rear of this book. These photqraphs are government publications-not subject to copyright They may not be used to state oiimply the endorsement by NASA or by any NASA employee of a commercial product piocess or service, or used in any other manner that might mislead. Accordingly, it is requested that if any photograph is used in advertising and other commercial promotion. layout and copy be submitted to NASA prior to release. Front cover: "Lift-off of the Columbia-STS-2 by artist Paul Salmon 82-HC-292 82-ti-304 r 8arnr;w u vowzn u)rorr ~ nsrvnv~~nrnno................................................ .-- Seasat .......................................................................... 197 Skylab 1 Selected Pictures .......................................................150 Skylab 2 Selected Pictures ........................................................ 151 Skylab 3 Selected Pictures ........................................................152 Skylab 4 Selected Pictures ........................................................ 153 SpacoColony ...................................................................183 Space Shuttle ...................................................................171 Space Stations ..................................................................198 \libinn 1 1f.d Apoiio 17/Earth 72-HC-928 72-H-1578 Apolb B/Earth Rise 68-HC-870 68-H-1401 Voyager ;//Saturn 81-HC-520 81-H-582 Voyager I/Ssturian System 80-HC-647 80-H-866 Voyager IN~lpiterSystem 79-HC-256 79-H-356 Viking 2 on Mars 76-HC-855 76-H-870 Apollo 11 /Aldrin 69-HC-1253 69-H-682 Apollo !I /Aldrin 69-HC-684 69-H-1255 STS-I /Young and Crippen 79-HC-206 79-H-275 STS-1- ! QTPLaunch of the Columbia" 82-HC-23 82-H-22 Major Launches NAME UUNCH VEHICLE MISSIONIREMARKS 1956 VANGUARD Dec.
    [Show full text]
  • The Polar Stellar Ring and Dark Halo of NGC 5907 V
    Astronomy Letters, Vol. 26, No. 5, 2000, pp. 277–284. Translated from Pis’ma v Astronomicheskiœ Zhurnal, Vol. 26, No. 5, 2000, pp. 333–341. Original Russian Text Copyright © 2000 by Reshetnikov, Sotnikova. The Polar Stellar Ring and Dark Halo of NGC 5907 V. P. Reshetnikov* and N. Ya. Sotnikova Astronomical Institute, St. Petersburg State University, Bibliotechnaya pl. 2, Petrodvorets, 198904 Russia Received December 29, 1998; in final form, November 11, 1999 Abstract—Numerical simulations of the disruption of a dwarf companion moving in the polar plane of a massive galaxy are presented. The constructed model is compared with observational data on the recently discovered low- surface-brightness stellar ring around the galaxy NGC 5907. Constraints on the ring lifetime (≤1.5 Gyr after the first approach of the galaxies), on the structure of the companion—the ring precursor, and on the mass of the dark halo of the main galaxy in whose gravitational field the companion moves are provided. The dark-halo mass within 50 kpc of the NGC 5907 center cannot exceed 3 or 4 “visible” masses. © 2000 MAIK “Nauka/Interperiodica”. Key words: galaxies, groups and clusters of galaxies, intergalactic gas 1. INTRODUCTION 19.3 kpc, and the exponential disk scale is 5.7 kpc [12]. Its × 9 B In recent years, many new approaches to studying absolute magnitude is MB = –19.10 (LB = 6.8 10 L( ). the distribution of mass, in particular, dark mass, in gal- The planes of the gaseous and stellar disks of the galaxy axies of various types have appeared because of the exhibit a large-scale warping [13, 14].
    [Show full text]
  • Astronomy 2009 Index
    Astronomy Magazine 2009 Index Subject Index 1RXS J160929.1-210524 (star), 1:24 4C 60.07 (galaxy pair), 2:24 6dFGS (Six Degree Field Galaxy Survey), 8:18 21-centimeter (neutral hydrogen) tomography, 12:10 93 Minerva (asteroid), 12:18 2008 TC3 (asteroid), 1:24 2009 FH (asteroid), 7:19 A Abell 21 (Medusa Nebula), 3:70 Abell 1656 (Coma galaxy cluster), 3:8–9, 6:16 Allen Telescope Array (ATA) radio telescope, 12:10 ALMA (Atacama Large Millimeter/sub-millimeter Array), 4:21, 9:19 Alpha (α) Canis Majoris (Sirius) (star), 2:68, 10:77 Alpha (α) Orionis (star). See Betelgeuse (Alpha [α] Orionis) (star) Alpha Centauri (star), 2:78 amateur astronomy, 10:18, 11:48–53, 12:19, 56 Andromeda Galaxy (M31) merging with Milky Way, 3:51 midpoint between Milky Way Galaxy and, 1:62–63 ultraviolet images of, 12:22 Antarctic Neumayer Station III, 6:19 Anthe (moon of Saturn), 1:21 Aperture Spherical Telescope (FAST), 4:24 APEX (Atacama Pathfinder Experiment) radio telescope, 3:19 Apollo missions, 8:19 AR11005 (sunspot group), 11:79 Arches Cluster, 10:22 Ares launch system, 1:37, 3:19, 9:19 Ariane 5 rocket, 4:21 Arianespace SA, 4:21 Armstrong, Neil A., 2:20 Arp 147 (galaxy pair), 2:20 Arp 194 (galaxy group), 8:21 art, cosmology-inspired, 5:10 ASPERA (Astroparticle European Research Area), 1:26 asteroids. See also names of specific asteroids binary, 1:32–33 close approach to Earth, 6:22, 7:19 collision with Jupiter, 11:20 collisions with Earth, 1:24 composition of, 10:55 discovery of, 5:21 effect of environment on surface of, 8:22 measuring distant, 6:23 moons orbiting,
    [Show full text]