Alkaloids in E-Cigarettes: Their Effects on Cell Growth and Gene Regulation

Total Page:16

File Type:pdf, Size:1020Kb

Alkaloids in E-Cigarettes: Their Effects on Cell Growth and Gene Regulation University of Tennessee at Chattanooga UTC Scholar Student Research, Creative Works, and Honors Theses Publications 5-2016 Alkaloids in e-cigarettes: their effects on cell growth and gene regulation Maxwell H. Marlowe University of Tennessee at Chattanooga, [email protected] Follow this and additional works at: https://scholar.utc.edu/honors-theses Part of the Environmental Sciences Commons Recommended Citation Marlowe, Maxwell H., "Alkaloids in e-cigarettes: their effects on cell growth and gene regulation" (2016). Honors Theses. This Theses is brought to you for free and open access by the Student Research, Creative Works, and Publications at UTC Scholar. It has been accepted for inclusion in Honors Theses by an authorized administrator of UTC Scholar. For more information, please contact [email protected]. Alkaloids in E-cigarettes: Their Effects on Cell Growth and Gene Regulation Maxwell H. Marlowe Departmental Honors Thesis The University of Tennessee at Chattanooga Department of Biology, Geology, and Environmental Science Project Director: Dr. Ethan A. Carver Examination Date: April 4th, 2016 Members of Examination Committee: Dr. Margaret J. Kovach Dr. Gretchen E. Potts Mrs. Beverly Kutz Examining Committee Signatures: _________________________________________________________ Project Director _________________________________________________________ Department Examiner _________________________________________________________ Department Examiner _________________________________________________________ Liaison, Departmental Honors Committee _________________________________________________________ Chairperson, University Departmental Honors Committee 1 Table of Contents List of Figures ................................................................................................................................. 4 List of Tables .................................................................................................................................. 5 List of Equations ............................................................................................................................ 5 ABSTRACT .................................................................................................................................... 7 ACKNOWLEDGMENTS ............................................................................................................. 8 GOALS and HYPOTHESIS ......................................................................................................... 9 BACKGROUND INFORMATION ........................................................................................... 10 Cell Cultures ............................................................................................................................. 10 E-Cigarette ............................................................................................................................... 11 E-Cigarette Alkaloids .............................................................................................................. 15 Nicotine ................................................................................................................................. 15 Cotinine ................................................................................................................................. 18 Anabasine ............................................................................................................................. 20 Myosmine .............................................................................................................................. 21 Nicotine CNS Physiology ......................................................................................................... 22 Selected Candidate and Control Genes .................................................................................. 24 CYPIA1 and AhR ................................................................................................................ 25 ALDH3A1 ............................................................................................................................. 26 GPX2 ..................................................................................................................................... 28 SLIT1 .................................................................................................................................... 28 PIR ......................................................................................................................................... 30 CX3CL1 ................................................................................................................................ 31 TLR4 ..................................................................................................................................... 32 CEACAM6............................................................................................................................ 32 Control Genes ....................................................................................................................... 33 Materials and Methods ................................................................................................................ 34 Tissue Culture Maintenance ................................................................................................... 34 Chemical Set-up of Tobacco Alkaloid Exposure Plates........................................................ 35 Cell-Titer Glo Luminescent Viability Assay .......................................................................... 36 Real Time RT-PCR .................................................................................................................. 40 RNA Isolation ....................................................................................................................... 42 Two-Step Quantitative RT-PCR......................................................................................... 43 2 Primer Design ....................................................................................................................... 45 Results ........................................................................................................................................... 46 Statistical Analysis ................................................................................................................... 46 RT-PCR Experiments .............................................................................................................. 46 Cell Proliferation ...................................................................................................................... 48 Nicotine ................................................................................................................................. 49 Cotinine ................................................................................................................................. 50 Myosmine .............................................................................................................................. 52 Anabasine ............................................................................................................................. 54 Gene Expression Results ......................................................................................................... 56 Differential Gene Expression in Nicotine Treated Cell Cultures .................................... 57 Differential Gene Expression in Myosmine Treated Cell Cultures ................................. 59 Differential Gene Expression in Anabasine Treated Cell Cultures ................................. 61 Differential Gene Expression in Cotinine Treated Cell Cultures .................................... 63 Discussion ..................................................................................................................................... 65 Cell-Titer Glo Luminescent Cell Proliferation Assay ........................................................... 65 Differential Gene Expression in Response to Alkaloid Exposure ........................................ 70 Alkaloid Effects on CX3CL1 ............................................................................................... 70 Alkaloid Effects on SLIT1 ................................................................................................... 72 Alkaloid Effects on CEACAM6 .......................................................................................... 74 Alkaloid Effects on ALDH3A1............................................................................................ 77 Alkaloid Effects on PIR ....................................................................................................... 79 Alkaloid Effects on TLR4 .................................................................................................... 83 Limitations .................................................................................................................................... 85 Conclusion .................................................................................................................................... 87 Future Directions ......................................................................................................................... 88 Work Cited ................................................................................................................................... 90 3 List of Figures Figure 1: Functional
Recommended publications
  • Hallucinogens - LSD, Peyote, Psilocybin, and PCP
    Hallucinogens - LSD, Peyote, Psilocybin, and PCP Hallucinogenic compounds found in some • Psilocybin (4-phosphoryloxy-N,N- plants and mushrooms (or their extracts) dimethyltryptamine) is obtained from have been used—mostly during religious certain types of mushrooms that are rituals—for centuries. Almost all indigenous to tropical and subtropical hallucinogens contain nitrogen and are regions of South America, Mexico, and classified as alkaloids. Many hallucinogens the United States. These mushrooms have chemical structures similar to those of typically contain less than 0.5 percent natural neurotransmitters (e.g., psilocybin plus trace amounts of acetylcholine-, serotonin-, or catecholamine- psilocin, another hallucinogenic like). While the exact mechanisms by which substance. hallucinogens exert their effects remain • PCP (phencyclidine) was developed in unclear, research suggests that these drugs the 1950s as an intravenous anesthetic. work, at least partially, by temporarily Its use has since been discontinued due interfering with neurotransmitter action or to serious adverse effects. by binding to their receptor sites. This DrugFacts will discuss four common types of How Are Hallucinogens Abused? hallucinogens: The very same characteristics that led to • LSD (d-lysergic acid diethylamide) is the incorporation of hallucinogens into one of the most potent mood-changing ritualistic or spiritual traditions have also chemicals. It was discovered in 1938 led to their propagation as drugs of abuse. and is manufactured from lysergic acid, Importantly, and unlike most other drugs, which is found in ergot, a fungus that the effects of hallucinogens are highly grows on rye and other grains. variable and unreliable, producing different • Peyote is a small, spineless cactus in effects in different people at different times.
    [Show full text]
  • Molecular Modeling of Major Tobacco Alkaloids in Mainstream Cigarette Smoke Caren Kurgat, Joshua Kibet* and Peter Cheplogoi
    Kurgat et al. Chemistry Central Journal (2016) 10:43 DOI 10.1186/s13065-016-0189-5 RESEARCH ARTICLE Open Access Molecular modeling of major tobacco alkaloids in mainstream cigarette smoke Caren Kurgat, Joshua Kibet* and Peter Cheplogoi Abstract Background: Consensus of opinion in literature regarding tobacco research has shown that cigarette smoke can cause irreparable damage to the genetic material, cell injury, and general respiratory landscape. The alkaloid family of tobacco has been implicated is a series of ailments including addiction, mental illnesses, psychological disorders, and cancer. Accordingly, this contribution describes the mechanistic degradation of major tobacco alkaloids including the widely studied nicotine and two other alkaloids which have received little attention in literature. The principal focus is to understand their energetics, their environmental fate, and the formation of intermediates considered harmful to tobacco consumers. Method: The intermediate components believed to originate from tobacco alkaloids in mainstream cigarette smoke were determined using as gas-chromatography hyphenated to a mass spectrometer fitted with a mass selective detector (MSD) while the energetics of intermediates were conducted using the density functional theory framework (DFT/B3LYP) using the 6-31G basis set. Results: The density functional theory calculations conducted using B3LYP correlation function established that the scission of the phenyl C–C bond in nicotine and β-nicotyrine, and C–N phenyl bond in 3,5-dimethyl-1-phenylpyrazole were respectively 87.40, 118.24 and 121.38 kcal/mol. The major by-products from the thermal degradation of nicotine, β-nicotyrine and 3,5-dimethyl-1-phenylpyrazole during cigarette smoking are predicted theoretically to be pyridine, 3-methylpyridine, toluene, and benzene.
    [Show full text]
  • Hallucinogens and Dissociative Drugs
    Long-Term Effects of Hallucinogens See page 5. from the director: Research Report Series Hallucinogens and dissociative drugs — which have street names like acid, angel dust, and vitamin K — distort the way a user perceives time, motion, colors, sounds, and self. These drugs can disrupt a person’s ability to think and communicate rationally, or even to recognize reality, sometimes resulting in bizarre or dangerous behavior. Hallucinogens such as LSD, psilocybin, peyote, DMT, and ayahuasca cause HALLUCINOGENS AND emotions to swing wildly and real-world sensations to appear unreal, sometimes frightening. Dissociative drugs like PCP, DISSOCIATIVE DRUGS ketamine, dextromethorphan, and Salvia divinorum may make a user feel out of Including LSD, Psilocybin, Peyote, DMT, Ayahuasca, control and disconnected from their body PCP, Ketamine, Dextromethorphan, and Salvia and environment. In addition to their short-term effects What Are on perception and mood, hallucinogenic Hallucinogens and drugs are associated with psychotic- like episodes that can occur long after Dissociative Drugs? a person has taken the drug, and dissociative drugs can cause respiratory allucinogens are a class of drugs that cause hallucinations—profound distortions depression, heart rate abnormalities, and in a person’s perceptions of reality. Hallucinogens can be found in some plants and a withdrawal syndrome. The good news is mushrooms (or their extracts) or can be man-made, and they are commonly divided that use of hallucinogenic and dissociative Hinto two broad categories: classic hallucinogens (such as LSD) and dissociative drugs (such drugs among U.S. high school students, as PCP). When under the influence of either type of drug, people often report rapid, intense in general, has remained relatively low in emotional swings and seeing images, hearing sounds, and feeling sensations that seem real recent years.
    [Show full text]
  • Product Name: NFKB1 (Ser893) Polyclonal Antibody, ALEXA FLUOR® 594 Conjugated Catalog No
    Product Name: NFKB1 (Ser893) Polyclonal Antibody, ALEXA FLUOR® 594 Conjugated Catalog No. : TAP01-94487R-A594 Intended Use: For Research Use Only. Not for used in diagnostic procedures. Size 100ul Concentration 1ug/ul Gene ID 4790 ISO Type Rabbit IgG Clone N/A Immunogen Range 880-900/968 Conjugation ALEXA FLUOR® 594 Subcellular Locations Cytoplasm, Nucleus Applications IF(IHC-P) Cross Reactive Species Human Source KLH conjugated synthetic phosphopeptide derived from human NF KappaB p105 around the phosphorylation site of Ser893 Applications with IF(IHC-P)(1:50-200) Dilutions Purification Purified by Protein A. Background NF-kappa-B is a pleiotropic transcription factor present in almost all cell types and is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli related to many biological processes such as inflammation, immunity, differentiation, cell growth, tumorigenesis and apoptosis. NF-kappa-B is a homo- or heterodimeric complex formed by the Rel-like domain-containing proteins RELA/p65, RELB, NFKB1/p105, NFKB1/p50, REL and NFKB2/p52 and the heterodimeric p65-p50 complexappears to be most abundant one. The dimers bind at kappa-B sites in the DNA of their target genes and the individual dimers have distinct preferences for different kappa-B sites that they can bind with distinguishable affinity and specificity. Differentdimer combinations act as transcriptional activators or repressors, respectively. NF-kappa-B is controlled by various mechanisms of post-translational modification and subcellular compartmentalization as well as by interactions with other cofactors or corepressors. NF-kappa-B complexes are held in the cytoplasm in an inactive state complexed with members of the NF-kappa-B inhibitor (I-kappa-B) family.
    [Show full text]
  • Long-Lasting Analgesic Effect of the Psychedelic Drug Changa: a Case Report
    CASE REPORT Journal of Psychedelic Studies 3(1), pp. 7–13 (2019) DOI: 10.1556/2054.2019.001 First published online February 12, 2019 Long-lasting analgesic effect of the psychedelic drug changa: A case report GENÍS ONA1* and SEBASTIÁN TRONCOSO2 1Department of Anthropology, Philosophy and Social Work, Universitat Rovira i Virgili, Tarragona, Spain 2Independent Researcher (Received: August 23, 2018; accepted: January 8, 2019) Background and aims: Pain is the most prevalent symptom of a health condition, and it is inappropriately treated in many cases. Here, we present a case report in which we observe a long-lasting analgesic effect produced by changa,a psychedelic drug that contains the psychoactive N,N-dimethyltryptamine and ground seeds of Peganum harmala, which are rich in β-carbolines. Methods: We describe the case and offer a brief review of supportive findings. Results: A long-lasting analgesic effect after the use of changa was reported. Possible analgesic mechanisms are discussed. We suggest that both pharmacological and non-pharmacological factors could be involved. Conclusion: These findings offer preliminary evidence of the analgesic effect of changa, but due to its complex pharmacological actions, involving many neurotransmitter systems, further research is needed in order to establish the specific mechanisms at work. Keywords: analgesic, pain, psychedelic, psychoactive, DMT, β-carboline alkaloids INTRODUCTION effects of ayahuasca usually last between 3 and 5 hr (McKenna & Riba, 2015), but the effects of smoked changa – The treatment of pain is one of the most significant chal- last about 15 30 min (Ott, 1994). lenges in the history of medicine. At present, there are still many challenges that hamper pain’s appropriate treatment, as recently stated by American Pain Society (Gereau et al., CASE DESCRIPTION 2014).
    [Show full text]
  • Corymine Potentiates NMDA-Induced Currents in Xenopus Oocytes Expressing Nr1a/NR2B Glutamate Receptors
    J Pharmacol Sci 98, 58 – 65 (2005) Journal of Pharmacological Sciences ©2005 The Japanese Pharmacological Society Full Paper Corymine Potentiates NMDA-Induced Currents in Xenopus Oocytes Expressing NR1a/NR2B Glutamate Receptors Pathama Leewanich1,2,*, Michihisa Tohda2, Hiromitsu Takayama3, Samaisukh Sophasan4, Hiroshi Watanabe2, and Kinzo Matsumoto2 1Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand 2Division of Medicinal Pharmacology, Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan 3Laboratory of Molecular Structure and Biological Function, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan 4Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand Received January 5, 2005; Accepted March 31, 2005 Abstract. Previous studies demonstrated that corymine, an indole alkaloid isolated from the leaves of Hunter zeylanica, dose-dependently inhibited strychnine-sensitive glycine-induced currents. However, it is unclear whether this alkaloid can modulate the function of the N-methyl- D-aspartate (NMDA) receptor on which glycine acts as a co-agonist via strychnine-insensitive glycine binding sites. This study aimed to evaluate the effects of corymine on NR1a/NR2B NMDA receptors expressed in Xenopus oocytes using the two-electrode voltage clamp technique. Corymine significantly potentitated the NMDA-induced currents recorded from oocytes on days 3 and 4 after cRNA injection but it showed no effect when the current was recorded on days 5 and 6. The potentiating effect of corymine on NMDA-induced currents was induced in the presence of a low concentration of glycine (≤0.1 µM). Spermine significantly enhanced the potentiating effect of corymine observed in the oocytes on days 3 and 4, while the NMDA- receptor antagonist 2-amino-5-phosphonopentanone (AP5) and the NMDA-channel blocker 5- methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801) reversed the effect of corymine.
    [Show full text]
  • MRO Manual Before 2004
    Note: This manual is essentially the same as the 1997 HHS Medical Review Officer (MRO) Manual except for changes related to the new Federal Custody and Control Form (CCF). The appendix has also been deleted since the new Federal Custody and Control Form is available as a separate file on the website. Medical Review Officer Manual for Federal Agency Workplace Drug Testing Programs for use with the new Federal Drug Testing Custody and Control Form (OMB Number 0930-0158, Exp Date: June 30, 2003) This manual applies to federal agency drug testing programs that come under Executive Order 12564 and the Department of Health and Human Services (HHS) Mandatory Guidelines. Table of Contents Chapter 1. The Medical Review Officer (MRO) ............................................................... 1 Chapter 2. Federal Drug Testing Custody and Control Form .......................................... 3 Chapter 3. The MRO Review Process ............................................................................ 3 A. Administrative Review of the CCF ........................................................................... 3 I. State Initiatives and Laws ....................................................................................... 15 Chapter 4. Specific Drug Class Issues .......................................................................... 15 A. Amphetamines ....................................................................................................... 15 B. Cocaine ................................................................................................................
    [Show full text]
  • (DMT), Harmine, Harmaline and Tetrahydroharmine: Clinical and Forensic Impact
    pharmaceuticals Review Toxicokinetics and Toxicodynamics of Ayahuasca Alkaloids N,N-Dimethyltryptamine (DMT), Harmine, Harmaline and Tetrahydroharmine: Clinical and Forensic Impact Andreia Machado Brito-da-Costa 1 , Diana Dias-da-Silva 1,2,* , Nelson G. M. Gomes 1,3 , Ricardo Jorge Dinis-Oliveira 1,2,4,* and Áurea Madureira-Carvalho 1,3 1 Department of Sciences, IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; [email protected] (A.M.B.-d.-C.); ngomes@ff.up.pt (N.G.M.G.); [email protected] (Á.M.-C.) 2 UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal 3 LAQV-REQUIMTE, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal 4 Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal * Correspondence: [email protected] (D.D.-d.-S.); [email protected] (R.J.D.-O.); Tel.: +351-224-157-216 (R.J.D.-O.) Received: 21 September 2020; Accepted: 20 October 2020; Published: 23 October 2020 Abstract: Ayahuasca is a hallucinogenic botanical beverage originally used by indigenous Amazonian tribes in religious ceremonies and therapeutic practices. While ethnobotanical surveys still indicate its spiritual and medicinal uses, consumption of ayahuasca has been progressively related with a recreational purpose, particularly in Western societies. The ayahuasca aqueous concoction is typically prepared from the leaves of the N,N-dimethyltryptamine (DMT)-containing Psychotria viridis, and the stem and bark of Banisteriopsis caapi, the plant source of harmala alkaloids.
    [Show full text]
  • Revealing Transcription Factor and Histone Modification Co-Localization and Dynamics Across Cell Lines by Integrating Chip-Seq A
    Zhang et al. BMC Genomics 2018, 19(Suppl 10):914 https://doi.org/10.1186/s12864-018-5278-5 RESEARCH Open Access Revealing transcription factor and histone modification co-localization and dynamics across cell lines by integrating ChIP-seq and RNA-seq data Lirong Zhang1*, Gaogao Xue1, Junjie Liu1, Qianzhong Li1* and Yong Wang2,3,4* From 29th International Conference on Genome Informatics Yunnan, China. 3-5 December 2018 Abstract Background: Interactions among transcription factors (TFs) and histone modifications (HMs) play an important role in the precise regulation of gene expression. The context specificity of those interactions and further its dynamics in normal and disease remains largely unknown. Recent development in genomics technology enables transcription profiling by RNA-seq and protein’s binding profiling by ChIP-seq. Integrative analysis of the two types of data allows us to investigate TFs and HMs interactions both from the genome co-localization and downstream target gene expression. Results: We propose a integrative pipeline to explore the co-localization of 55 TFs and 11 HMs and its dynamics in human GM12878 and K562 by matched ChIP-seq and RNA-seq data from ENCODE. We classify TFs and HMs into three types based on their binding enrichment around transcription start site (TSS). Then a set of statistical indexes are proposed to characterize the TF-TF and TF-HM co-localizations. We found that Rad21, SMC3, and CTCF co-localized across five cell lines. High resolution Hi-C data in GM12878 shows that they associate most of the Hi-C peak loci with a specific CTCF-motif “anchor” and supports that CTCF, SMC3, and RAD2 co-localization serves important role in 3D chromatin structure.
    [Show full text]
  • UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Bcl3 and REG-gamma are the Regulators of NF-kappaB p50 and p52 Permalink https://escholarship.org/uc/item/2293k9sk Author Du, Qian Publication Date 2017 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERISTY OF CALIFORNIA, SAN DIEGO Bcl3 and REG-gamma are the Regulators of NF-kappaB p50 and p52 A thesis submitted in partial satisfaction of the requirements for the degree Master of Science in Chemistry by Qian Du Committee in Charge: Professor Gourisankar Ghosh, Chair Professor Simpson Joseph Professor Emmanuel Theodorakis Professor Wei Wang 2017 ii The Thesis of Qian Du is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2017 iii DEDICATION This thesis is dedicated to my beloved parents, for their endless love, caring and under- standing throughout my life. This thesis is also dedicated to my beloved grandparents, for their kindness and devo- tion. Their selflessness will always be remembered. iv TABLE OF CONTENTS Signature Page……………………………………………………………………………ⅲ Dedication.......................................................................................................................…ⅳ Table of Contents…………………………………………………………………………ⅴ List of Figures…………………………………………………………………………….ⅵ Preface……………………………………………………….....………………………...ⅷ Acknowledgemnts………………………………………….……...……………………...ⅸ Abstract of the Thesis……………………………………...…………………...………....ⅺ
    [Show full text]
  • Stability Evaluation of DMT and Harmala Alkaloids in Ayahuasca Tea Samples
    molecules Communication Stability Evaluation of DMT and Harmala Alkaloids in Ayahuasca Tea Samples Gabriela de Oliveira Silveira 1,* , Rafael Guimarães dos Santos 2,3, Felipe Rebello Lourenço 4 , Giordano Novak Rossi 2 , Jaime E. C. Hallak 2,3 and Mauricio Yonamine 1 1 Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; [email protected] 2 Department of Neurosciences and Behaviour, University of São Paulo, Ribeirão Preto 14049-900, Brazil; [email protected] (R.G.d.S.); [email protected] (G.N.R.); [email protected] (J.E.C.H.) 3 National Institute of Science and Technology—Translational Medicine, Ribeirão Preto 14049-900, Brazil 4 Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; [email protected] * Correspondence: [email protected] Academic Editors: Monika Waksmundzka-Hajnos and Miroslaw Hawryl Received: 4 April 2020; Accepted: 24 April 2020; Published: 29 April 2020 Abstract: Ayahuasca tea is a hallucinogenic beverage used for religious purposes in Brazil and many other countries that has therapeutic potential in the treatment of some mental health disorders. In the context of psychedelic research, quantification of the tea’s main alkaloids prior to its administration in animal or human studies is essential. For this reason, this study aims to provide information regarding the stability of the main ayahuasca alkaloids (dimethyltryptamine, DMT; harmine, HRM; tetrahydroharmine, THH; harmaline, HRL) in three different conditions: (1) A year stored in a refrigerator either in plastic or glass containers, (2) seven days at 37 ◦C to reproduce usual mail transportation, and (3) after three freeze–thaw cycles.
    [Show full text]
  • Immunological Defects in Mice with a Targeted Disruption in Bcl-3
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Immunological defects in mice with a targeted disruption in Bcl-3 Edward M. Schwarz/'^ Paul Krimpenfort/'^ Anton Berns,^ and Inder M. Verma 1,4 ^Laboratory of Genetics, The Salk Institute, San Diego, California 92186-5800 USA; ^Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands The proto-oncogene bcl-3 is a member ol the IKB family. The Bcl-3 protein is known to interact specifically with the p50 and p52 subunits of NFKB. However, the function of this interaction is not well understood. To determine the in vivo role of Bcl-3, mice were generated that lack the bcl-3 gene, Bel 3(-/-). Here we report that Bel 3(-/-) mice appear developmentally normal, but exhibit severe defects in humoral immune responses and protection from in vivo pathogenic challenges. Relative to wild-type mice, Bel 3(-/-) mice are unable to clear L. monocytogenes and are more susceptible to infection with S. pneumoniae. This phenotype is similar to that observed in the p50(-/-) mice and the cross between the Bcl-3(-/-) and p50(-/-) mice generates animals with an enhanced phenotype. In accordance with the observed defects in their immune response, the Bel 3(-/-) mice have normal immunoglobulin levels before and after immunization, but fail to produce antigen-specific antibodies. Additionally, spleens from Bcl-3(-/-) mice are abnormal and void of germinal centers. In contrast, the p50(-/-) mice have normal germinal centers. We propose that in in vivo, Bcl-3 can function independently of p50.
    [Show full text]