April 2019 01 Scheme Highlights 05 Value Propositions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Proceedings of Spie
Volume holographic lens spectrum-splitting photovoltaic system for high energy yield with direct and diffuse solar illumination Item Type Article Authors Chrysler, Benjamin D.; Wu, Yuechen; Kostuk, Raymond K.; Yu, Zhengshan Citation Benjamin D. Chrysler, Yuechen Wu, Zhengshan Yu, Raymond K. Kostuk, "Volume holographic lens spectrum-splitting photovoltaic system for high energy yield with direct and diffuse solar illumination", Proc. SPIE 10368, Next Generation Technologies for Solar Energy Conversion VIII, 103680G (25 August 2017); doi: 10.1117/12.2273204; https://doi.org/10.1117/12.2273204 DOI 10.1117/12.2273204 Publisher SPIE-INT SOC OPTICAL ENGINEERING Journal NEXT GENERATION TECHNOLOGIES FOR SOLAR ENERGY CONVERSION VIII Rights © 2017 SPIE. Download date 28/09/2021 10:32:44 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/627188 PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Volume holographic lens spectrum- splitting photovoltaic system for high energy yield with direct and diffuse solar illumination Benjamin D. Chrysler, Yuechen Wu, Zhengshan Yu, Raymond K. Kostuk Benjamin D. Chrysler, Yuechen Wu, Zhengshan Yu, Raymond K. Kostuk, "Volume holographic lens spectrum-splitting photovoltaic system for high energy yield with direct and diffuse solar illumination," Proc. SPIE 10368, Next Generation Technologies for Solar Energy Conversion VIII, 103680G (25 August 2017); doi: 10.1117/12.2273204 Event: SPIE Optical Engineering + Applications, 2017, San Diego, California, United States Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 3/30/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use Volume holographic lens spectrum-splitting photovoltaic system for high energy yield with direct and diffuse solar illumination Benjamin D. -
III-V-Based Optoelectronics with Low-Cost Dynamic Hydride Vapor Phase Epitaxy
crystals Article III-V-Based Optoelectronics with Low-Cost Dynamic Hydride Vapor Phase Epitaxy John Simon *, Kevin L. Schulte, Kelsey A. W. Horowitz, Timothy Remo, David L. Young and Aaron J. Ptak National Renewable Energy Laboratory, Golden, CO 80401, USA; [email protected] (K.L.S.); [email protected] (K.A.W.H.); [email protected] (T.R.); [email protected] (D.L.Y.); [email protected] (A.J.P.) * Correspondence: [email protected] Received: 27 September 2018; Accepted: 14 December 2018; Published: 20 December 2018 Abstract: Silicon is the dominant semiconductor in many semiconductor device applications for a variety of reasons, including both performance and cost. III-V materials exhibit improved performance compared to silicon, but currently, they are relegated to applications in high-value or niche markets, due to the absence of a low-cost, high-quality production technique. Here we present an advance in III-V materials synthesis, using a hydride vapor phase epitaxy process that has the potential to lower III-V semiconductor deposition costs, while maintaining the requisite optoelectronic material quality that enables III-V-based technologies to outperform Si. We demonstrate the impacts of this advance by addressing the use of III-Vs in terrestrial photovoltaics, a highly cost-constrained market. Keywords: HVPE; III-V semiconductors 1. Introduction Silicon as a semiconductor technology is beginning to run into significant technical limits. The death of Moore’s Law has been predicted for decades, but there is now a clear evidence that transistor size limits have been reached, and improvements are only being realized through increases in complexity and cost. -
DOE Solar Energy Technologies Program FY 2005 Annual
DOE Solar Energy Technologies Program Cover Photos (clockwise from lower right): On August 8, 2005, President George W. Bush visited the National Solar Thermal Test Facility at Sandia National Laboratories as part of his signing of the Energy Bill. R.J. Montoya Photo National Renewable Energy Laboratory researchers use a computer-controlled data acquisition system at the laboratory’s Outdoor Test Facility to characterize the performance and reliability of PV cells and modules. Jim Yost, PIX14094 A Cornell University student cleans the solar-powered rooftop of his team’s entry in preparation for the 2005 Solar Decathlon competition in Washington, D.C. Stefano Paltera/Solar Decathlon Global Solar Energy, a member of the Thin Film PV Partnership, produces PV material by depositing CIGS (copper indium gallium diselenide) on a lightweight, flexible polymide substrate in roll form. Global Solar Energy, PIX13419 The DOE Solar Energy Technologies Program Raymond A. Sutula, Manager, DOE Solar Energy Technologies Program The Solar Energy Technologies Program, within the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE), is responsible for developing solar energy technologies that can convert sunlight to useful energy and make that energy available to satisfy a significant portion of our nation's energy needs in a cost-effective way. The Solar Program supports research and development that addresses a wide range of applications, including on- site electricity generation, thermal energy for space heating and hot water, and large-scale power production. This is a great time to be involved with solar energy. Photovoltaic (PV) systems are being installed in the United States and around the world in unprecedented quantities. -
III-V-Based Optoelectronics with Low-Cost Dynamic Hydride Vapor Phase Epitaxy John Simon, Kelsey Horowitz, Kevin L
III-V-based optoelectronics with low-cost dynamic hydride vapor phase epitaxy John Simon, Kelsey Horowitz, Kevin L. Schulte, Timothy Remo, David L. Young, and Aaron J. Ptak National Renewable Energy Laboratory, Golden, CO 80401, USA Silicon is the dominant semiconductor in many semiconductor device applications for a variety of reasons, including both performance and cost. III-V materials have improved performance compared to silicon, but currently they are relegated to applications in high-value or niche markets due to the absence of a low-cost, high-quality production technique. Here we present an advance in III-V materials synthesis using hydride vapor phase epitaxy that has the potential to lower III-V semiconductor deposition costs while maintaining the requisite optoelectronic material quality that enables III-V-based technologies to outperform Si. We demonstrate the impacts of this advance by addressing the use of III-Vs in terrestrial photovoltaics, a highly cost-constrained market. Silicon as a semiconductor technology is beginning to run into significant technical limits. The death of Moore’s Law has been predicted for decades, but there is now clear evidence that transistor size limits have been reached, and improvements are only being realized through increases in complexity and cost. Si is also rapidly approaching the practical limit for solar conversion efficiency with current best performance sitting at 26.6%1. In contrast to Si, III-V materials such as GaAs and GaInP have some of the best electronic and optical properties of any semiconductor materials. III-Vs have higher electron mobilities than Si, enabling transistors operating at high frequencies for wireless communication applications, and direct bandgaps that lead to extremely efficient absorption and emission of light. -
Solar Is Driving a Global Shift in Electricity Markets
SOLAR IS DRIVING A GLOBAL SHIFT IN ELECTRICITY MARKETS Rapid Cost Deflation and Broad Gains in Scale May 2018 Tim Buckley, Director of Energy Finance Studies, Australasia ([email protected]) and Kashish Shah, Research Associate ([email protected]) Table of Contents Executive Summary ......................................................................................................... 2 1. World’s Largest Operational Utility-Scale Solar Projects ........................................... 4 1.1 World’s Largest Utility-Scale Solar Projects Under Construction ............................ 8 1.2 India’s Largest Utility-Scale Solar Projects Under Development .......................... 13 2. World’s Largest Concentrated Solar Power Projects ............................................... 18 3. Floating Solar Projects ................................................................................................ 23 4. Rooftop Solar Projects ................................................................................................ 27 5. Solar PV With Storage ................................................................................................. 31 6. Corporate PPAs .......................................................................................................... 39 7. Top Renewable Energy Utilities ................................................................................. 44 8. Top Solar Module Manufacturers .............................................................................. 49 Conclusion ..................................................................................................................... -
Hanergy Solar 566 Hk
18 NOVEMBER 2013 HONGINITIATION KONG / ALTERNATIVE 34 TAIWAN ENERGY /TECHNOLOGY HANERGY SOLAR 566 HK HOW WE DIFFER FROM CONSENSUS MARKET RECS TARGET PRICE HKD1.34 TARGET PRICE (%) 52 POSITIVE 1 HOLD CLOSE HKD1.25 EPS 2013 (%) NA NEUTRAL 0 UP/DOWNSIDE +7.4% CHANGEPRIOR TP IN TP HKD % EPS 2014 (%) NA NEGATIVE 1 Wait on the sidelines KEY STOCK DATA YE Dec (HKD m) 2012A 2013E 2014E 2015E Revenue 2,756 4,556 5,275 6,182 n Downstream business is still too small to move the needle The 1H results were a surprise, with sales and profit growing 86% Rec. net profit 1,316 2,955 2,985 3,264 and 165% h-h. Momentum is likely to persist in 2H13 thanks to a Recurring EPS (HKD) 0.10 0.11 0.11 0.12 stable equipment business. However, concerns lie in the fact that EPS growth (%) 47.0 8.0 1.0 9.4 parent company Hanergy Group (not listed , 63% stake) is also the Recurring P/E (x) 12.8 11.8 11.7 10.7 sole customer. High reliance on the parent is a double-edged sword: Dividend yield (%) 0.0 0.0 0.0 0.0 Hanergy Solar receives both technical and financial support, but does not have total control over its business strategy. Expansion into EV/EBITDA (x) 9.5 7.0 8.6 7.2 downstream solar farms is a way out, as it could diversify the Price/book (x) 1.4 2.2 1.8 1.6 customer base, yet at 7% of projected sales in 2014, it is still too Net debt/Equity (%) (6.2) (14.2) (1.8) (4.8) small to move the needle. -
HANERGY THIN FILM POWER GROUP LIMITED 漢能薄膜發電集團有限公司 (Incorporated in Bermuda with Limited Liability) (Stock Code: 566)
Hong Kong Exchanges and Clearing Limited and The Stock Exchange of Hong Kong Limited take no responsibility for the contents of this announcement, make no representation as to its accuracy or completeness and expressly disclaim any liability whatsoever for any loss howsoever arising from or in reliance upon the whole or any part of the contents of this announcement. HANERGY THIN FILM POWER GROUP LIMITED 漢能薄膜發電集團有限公司 (Incorporated in Bermuda with limited liability) (Stock code: 566) ANNOUNCEMENT OF 2018 RESULTS The board of directors (the “Board”) of Hanergy Thin Film Power Group Limited (the “Company”) hereby announces the consolidated results of the Company and its subsidiaries (collectively the “Group”) for the year ended 31 December 2018 with comparative figures in 2017 as follows: CONSOLIDATED STATEMENT OF PROFIT OR LOSS AND OTHER COMPREHENSIVE INCOME For the year ended 31 December 2018 2018 2017 Notes HK$’000 HK$’000 Revenue from contracts with customers 4 21,251,772 6,147,385 Cost of sales (9,129,410) (3,472,144) Gross profit 12,122,362 2,675,241 Other income and gains 224,130 76,470 Loss on disposal of subsidiaries, net – (5,568) Selling and distribution expenses (854,160) (414,463) Administrative expenses (2,250,896) (990,090) Research and development costs (1,050,418) (621,678) Other expenses (578,673) (214,449) Finance costs (41,849) (59,339) PROFIT BEFORE TAX 5 7,570,496 446,124 Income tax expense 6 (2,377,428) (185,092) PROFIT FOR THE YEAR 5,193,068 261,032 1 2018 2017 Notes HK$’000 HK$’000 OTHER COMPREHENSIVE (LOSS)/ INCOME -
Contract Manufacturing Opportunities in Printed Electronics
CONTRACT MANUFACTURING OPPORTUNITIES IN PRINTED ELECTRONICS 2013 EDITION Copyright © 2013 New Venture Research Corporation 337 Clay Street, Suite 101 Nevada City, CA 95959 (Tel) 530‐265‐2004 (Fax) 530‐265‐1998 2013 Edition Copyright © 2013 by New Venture Research Corp. All rights reserved This publication may not be reproduced, in whole or in part, in any manner or in any form or otherwise, without the written prior permission of New Venture Research Corp. _____________________________________________________________________________________________ Contract Manufacturing Opportunities in Printed Electronics ‐ 2013 Edition © 2013 New Venture Research Corp. Page i ABOUT THE AUTHOR Randall Sherman is president of New Venture Research Corp., a market research publishing and business consulting firm focused on the electronics manufacturing industries, and serves as principal analyst for this report. Mr. Sherman has more than 25 years’ experience in technology, product, and business research. He began his career as a telecom network design engineer. He has held senior analyst and management positions at various market research firms, including Creative Strategies International and Frost and Sullivan. Mr. Sherman holds a BS in Astrophysics, an MSEE from the University of Colorado, and an MBA from the Edinburgh School of Business. _____________________________________________________________________________________________ Contract Manufacturing Opportunities in Printed Electronics ‐ 2013 Edition © 2013 New Venture Research Corp. Page ii ABOUT NEW VENTURE RESEARCH CORPORATION New Venture Research (NVR) was formed in 1988 to assist industry executives in their decision making. We began as an independent consultancy and have recently evolved into a publisher of off‐ the‐shelf market research reports in key areas of the electronics industry. The reports are written by a team of staff analysts and independent consultants. -
ANJIE Law FIRM
E: [email protected] T: +44 (0)20 7396 9292 F: +44 (0)20 7396 9300 @TheLegal500 ASIA PACIFIC The Legal 500 Asia Pacific 2019 The clients’ guide to law firms ANJIE LAW FIRM • Antitrust/competition • Banking and finance 19F, TOWER D1, LIANGMAQIAO DIPLOMATIC BUILDING, • Dispute resolution No.19 DONGFANGDONGLU, • Corporate and M&A CHAOYANG DISTRICT, BEIJING 100600, CHINA • Intellectual property • Labour and employment Tel: +86 10 8567 5988 Fax: +86 10 8567 5999 • TMT legal500.com E: [email protected] T: +44 (0)20 7396 9292 F: +44 (0)20 7396 9300 @TheLegal500 ANJIE LAW FIRM 19F, TOWER D1, LIANGMAQIAO DIPLOMATIC BUILDING, NO.19 DONGFANGDONGLU, CHAOYANG DISTRICT, BEIJING 100600, CHINA T: +86 10 8567 5988 F: +86 10 8567 5999 THE FIRM AnJie Law Firm is an elite PRC law firm providing full services to both international and domestic clients including Fortune 500 companies, large state-owned enterprises, financial institutions, as well as leading private companies. Since its establishment, AnJie has been growing rapidly and soundly with currently more than 300 professionals. AnJie’s lawyers are well- regarded experts in their professional fields. Based on their deep understanding of the regulatory landscape and strong practical experience, they have handled numerous high-stakes cases in Chinese court. AnJie lawyers are often consulted by regulators on leading legal and policy issues, and have built strong work relationships with government agencies and industry regulatory bodies. All partners at AnJie Law Firm have worked in leading international and domestic law firms, and many are qualified to practice both in China and abroad. AnJie lawyers frequently speak at major international legal and business conferences and actively contribute to well-known legal and academic journals. -
Expanding the Photovoltaic Supply Chain in the United States: Opportunities and Challenges
Expanding the Photovoltaic Supply Chain in the United States: Opportunities and Challenges Brittany L. Smith and Robert Margolis NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-6A20-73363 Operated by the Alliance for Sustainable Energy, LLC July 2019 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 Expanding the Photovoltaic Supply Chain in the United States: Opportunities and Challenges Brittany L. Smith and Robert Margolis Suggested Citation Smith, Brittany L., and Robert Margolis. (2019). Expanding the Photovoltaic Supply Chain in the United States: Opportunities and Challenges. Golden, CO: National Renewable Energy Laboratory. NREL/TP-6A20-73363. https://www.nrel.gov/docs/fy19osti/73363.pdf. NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-6A20-73363 Operated by the Alliance for Sustainable Energy, LLC July 2019 This report is available at no cost from the National Renewable Energy National Renewable Energy Laboratory Laboratory (NREL) at www.nrel.gov/publications. 15013 Denver West Parkway Golden, CO 80401 Contract No. DE-AC36-08GO28308 303-275-3000 • www.nrel.gov NOTICE This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36- 08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office. -
25Th Space Photovoltaic Research and Technology Conference
NASA/CP—2019-220051 25th Space Photovoltaic Research and Technology Conference Jeremiah S. McNatt, Compiler Glenn Research Center, Cleveland, Ohio February 2019 NASA STI Program . in Profi le Since its founding, NASA has been dedicated • CONTRACTOR REPORT. Scientifi c and to the advancement of aeronautics and space science. technical fi ndings by NASA-sponsored The NASA Scientifi c and Technical Information (STI) contractors and grantees. Program plays a key part in helping NASA maintain this important role. • CONFERENCE PUBLICATION. Collected papers from scientifi c and technical conferences, symposia, seminars, or other The NASA STI Program operates under the auspices meetings sponsored or co-sponsored by NASA. of the Agency Chief Information Offi cer. It collects, organizes, provides for archiving, and disseminates • SPECIAL PUBLICATION. Scientifi c, NASA’s STI. The NASA STI Program provides access technical, or historical information from to the NASA Technical Report Server—Registered NASA programs, projects, and missions, often (NTRS Reg) and NASA Technical Report Server— concerned with subjects having substantial Public (NTRS) thus providing one of the largest public interest. collections of aeronautical and space science STI in the world. Results are published in both non-NASA • TECHNICAL TRANSLATION. English- channels and by NASA in the NASA STI Report language translations of foreign scientifi c and Series, which includes the following report types: technical material pertinent to NASA’s mission. • TECHNICAL PUBLICATION. Reports of For more information about the NASA STI completed research or a major signifi cant phase program, see the following: of research that present the results of NASA programs and include extensive data or theoretical • Access the NASA STI program home page at analysis. -
The Seeds of Solar Innovation: How a Nation Can Grow a Competitive Advantage by Donny Holaschutz
The Seeds of Solar Innovation: How a Nation can Grow a Competitive Advantage by Donny Holaschutz B.A. Hispanic Studies (2004), University of Texas at Austin B.S. Aerospace Engineering (2004), University of Texas at Austin M.S.E Aerospace Engineering (2007), University of Texas at Austin Submitted to the System Design and Management Program In Partial Fulfillment of the Requirements for the Degree of Master of Science in Engineering and Management ARCHIVES MASSACHUSETTS INSTITUTE at the OF TECHNOLOGY Massachusetts Institute of Technology February 2012 © 2012 Donny Holaschutz. All rights reserved The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereqfter reated. Signed by Author: Donny Holaschutz Engineering Systems Division and Sloan School of Management January 20, 2012 Certified by: James M. Utterback, Thesis Supervisor David . McGrath jr (1959) Professor of Management and Innovation and Professor of neering SysemsIT oan School of Management Accepted by: Patrick C.Hale Director otS ystem Design and Management Program THIS PAGE INTENTIONALLY LEFT BLANK Table of Contents Fig u re List ...................................................................................................................................................... 5 T ab le List........................................................................................................................................................7 Executive