Dynamic Host Configuration Protocol
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
P2B: NPF in Netbsd 6
NPF in NetBSD 6 S.P.Zeidler [email protected] Mindaugas Rasiukevicius [email protected] The NetBSD Foundation The NetBSD Foundation Abstract form for a packet. This design has the advantage of pro- tocol independence, therefore support for new protocols NPF has been released with NetBSD 6.0 as an exper- (for example, layer 7) or custom filtering patterns can be imental packet filter, and thus has started to see actual easily added at userspace level without any modifications use. While it is going to take a few more cycles before to the kernel itself. it is fully ”production ready”, the exposure to users has NPF provides rule procedures as the main interface to given it a strong push to usability. Fixing small bugs use custom extensions. The syntax of the configuration and user interface intuitivity misses will help to evolve it file supports arbitrary procedures with their parameters, from a theoretical well-designed framework to a practical as supplied by the extensions. An extensions consists of packet filtering choice. The talk will cover distinguish- two parts: a dynamic module (.so file) supplementing the ing features of NPF design, give an overview of NPF’s npfctl(8) utility and a kernel module (.kmod file). Thus, current practical capabilities, ongoing development, and kernel interfaces can be used instead of modifications to will attempt to entice more people to try out NPF and the NPF core code. give feedback. The internals of NPF are abstracted into well defined modules and follow strict interfacing principles to ease 1 Introduction extensibility. Communication between userspace and the kernel is provided through the library libnpf, described NPF is a layer 3 packet filter, supporting IPv4 and IPv6, in the npf(3) manual page. -
XEP-0347: Internet of Things - Discovery
XEP-0347: Internet of Things - Discovery Peter Waher mailto:peterwaher@hotmail:com xmpp:peter:waher@jabber:org http://www:linkedin:com/in/peterwaher Ronny Klauck mailto:rklauck@informatik:tu-cottbus:de xmpp:TBD http://www-rnks:informatik:tu-cottbus:de/~rklauck 2018-11-03 Version 0.5.1 Status Type Short Name Deferred Standards Track iot-discovery This specification describes an architecture based on the XMPP protocol whereby Things can be in- stalled and safely discovered by their owners and connected into networks of Things. Legal Copyright This XMPP Extension Protocol is copyright © 1999 – 2020 by the XMPP Standards Foundation (XSF). Permissions Permission is hereby granted, free of charge, to any person obtaining a copy of this specification (the ”Specification”), to make use of the Specification without restriction, including without limitation the rights to implement the Specification in a software program, deploy the Specification in a network service, and copy, modify, merge, publish, translate, distribute, sublicense, or sell copies of the Specifi- cation, and to permit persons to whom the Specification is furnished to do so, subject to the condition that the foregoing copyright notice and this permission notice shall be included in all copies or sub- stantial portions of the Specification. Unless separate permission is granted, modified works that are redistributed shall not contain misleading information regarding the authors, title, number, or pub- lisher of the Specification, and shall not claim endorsement of the modified works by the authors, any organization or project to which the authors belong, or the XMPP Standards Foundation. Warranty ## NOTE WELL: This Specification is provided on an ”AS IS” BASIS, WITHOUT WARRANTIES OR CONDI- TIONS OF ANY KIND, express or implied, including, without limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PARTICULAR PURPOSE. -
Well Known TCP and UDP Ports Used by Apple Software Products
Well known TCP and UDP ports used by Apple Languages English software products Symptoms Learn more about TCP and UDP ports used by Apple products, such as OS X, OS X Server, Apple Remote Desktop, and iCloud. Many of these are referred to as "well known" industry standard ports. Resolution About this table The Service or Protocol Name column lists services registered with the Internet Assigned Numbers Authority (http://www.iana.org/), except where noted as "unregistered use." The names of Apple products that use these services or protocols appear in the Used By/Additional Information column. The RFC column lists the number of the Request For Comment document that defines the particular service or protocol, which may be used for reference. RFC documents are maintained by RFC Editor (http://www.rfc- editor.org/). If multiple RFCs define a protocol, there may only be one listed here. This article is updated periodically and contains information that is available at time of publication. This document is intended as a quick reference and should not be regarded as comprehensive. Apple products listed in the table are the most commonly used examples, not a comprehensive list. For more information, review the Notes below the table. Tip: Some services may use two or more ports. It is recommend that once you've found an instance of a product in this list, search on the name (Command-F) and then repeat (Command-G) to locate all occurrences of the product. For example, VPN service may use up to four diferent ports: 500, 1701, 1723, and 4500. -
Sna003-Network.Resources.Pdf
link aggregation Link aggregation https://en.wikipedia.org/wiki/Link_aggregation Link Aggregation and LACP basics https://www.thomas-krenn.com/en/wiki/Link_Aggregation_and_LACP_basics Chapter 4. VLANs and Trunking https://www.oreilly.com/library/view/packet-guide-to/9781449311315/ch04.html balance modes Chapter: Layer 2 LAN Port Configuration https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst6500/ios/15-4SY/config_guide/sup6T/15_3_sy_swcg_6T/layer2.html Aruba 2930F / 2930M Management and Configuration Guide for ArubaOSSwitch 16.05 https://higherlogicdownload.s3.amazonaws.com/HPE/MigratedAssets/AOS-SW-Management%20and%20Configuration%20Guide- v16.05.pdf lacp An Overview of Link Aggregation and LACP https://web.archive.org/web/20170713130728/https://thenetworkway.wordpress.com/2015/05/01/an-overview-of-link-aggregation-and- lacp/ Link Aggregation Control Protocol (LACP) (802.3ad) for Gigabit Interfaces https://www.cisco.com/c/en/us/td/docs/ios/12_2sb/feature/guide/gigeth.html IEEE 802.3ad Link Aggregation (LAG) https://www.ieee802.org/3/hssg/public/apr07/frazier_01_0407.pdf Understanding IEEE 802.3ad Link Aggregation https://www.juniper.net/documentation/en_US/junose15.1/topics/concept/802.3ad-link-aggregation-understanding.html Link Aggregation Control Protocol (LACP) (802.3ad) for Gigabit Interfaces https://www.cisco.com/c/en/us/td/docs/ios/12_2sb/feature/guide/gigeth.html linux bonding Linux Ethernet Bonding Driver HOWTO https://www.kernel.org/doc/Documentation/networking/bonding.txt –> 2. Bonding Driver Options Manual:Interface/Bonding -
Lesson-13: INTERNET ENABLED SYSTEMS NETWORK PROTOCOLS
DEVICES AND COMMUNICATION BUSES FOR DEVICES NETWORK– Lesson-13: INTERNET ENABLED SYSTEMS NETWORK PROTOCOLS Chapter-5 L13: "Embedded Systems - Architecture, Programming and Design", 2015 1 Raj Kamal, Publs.: McGraw-Hill Education Internet enabled embedded system Communication to other system on the Internet. Use html (hyper text markup language) or MIME (Multipurpose Internet Mail Extension) type files Use TCP (transport control protocol) or UDP (user datagram protocol) as transport layer protocol Chapter-5 L13: "Embedded Systems - Architecture, Programming and Design", 2015 2 Raj Kamal, Publs.: McGraw-Hill Education Internet enabled embedded system Addressed by an IP address Use IP (internet protocol) at network layer protocol Chapter-5 L13: "Embedded Systems - Architecture, Programming and Design", 2015 3 Raj Kamal, Publs.: McGraw-Hill Education MIME Format to enable attachment of multiple types of files txt (text file) doc (MSOFFICE Word document file) gif (graphic image format file) jpg (jpg format image file) wav format voice or music file Chapter-5 L13: "Embedded Systems - Architecture, Programming and Design", 2015 4 Raj Kamal, Publs.: McGraw-Hill Education A system at one IP address Communication with other system at another IP address using the physical connections on the Internet and routers Since Internet is global network, the system connects to remotely as well as short range located system. Chapter-5 L13: "Embedded Systems - Architecture, Programming and Design", 2015 5 Raj Kamal, Publs.: McGraw-Hill Education -
951 John Gilmore (Sun Microsystems) September 1985
Network Working Group Bill Croft (Stanford University) Request for Comments: 951 John Gilmore (Sun Microsystems) September 1985 BOOTSTRAP PROTOCOL (BOOTP) 1. Status of this Memo This RFC suggests a proposed protocol for the ARPA-Internet community, and requests discussion and suggestions for improvements. Distribution of this memo is unlimited. 2. Overview This RFC describes an IP/UDP bootstrap protocol (BOOTP) which allows a diskless client machine to discover its own IP address, the address of a server host, and the name of a file to be loaded into memory and executed. The bootstrap operation can be thought of as consisting of TWO PHASES. This RFC describes the first phase, which could be labeled 'address determination and bootfile selection'. After this address and filename information is obtained, control passes to the second phase of the bootstrap where a file transfer occurs. The file transfer will typically use the TFTP protocol [9], since it is intended that both phases reside in PROM on the client. However BOOTP could also work with other protocols such as SFTP [3] or FTP [6]. We suggest that the client's PROM software provide a way to do a complete bootstrap without 'user' interaction. This is the type of boot that would occur during an unattended power-up. A mechanism should be provided for the user to manually supply the necessary address and filename information to bypass the BOOTP protocol and enter the file transfer phase directly. If non-volatile storage is available, we suggest keeping default settings there and bypassing the BOOTP protocol unless these settings cause the file transfer phase to fail. -
Optional Interniche Protocol Modules for Nichelite For
fåíÉêkáÅÜÉ=qÉÅÜåçäçÖáÉëI=fåÅK bãÄÉÇÇÉÇ=mêçíçÅçä=péÉÅá~äáëíë ïïïKáåáÅÜÉKÅçã Available from NXP : Optional InterNiche Protocol Modules for InterNiche Technologies and NXP have collaborated to NicheLite for LPC provide an OEM version of InterNiche’s NicheLite™ InterNiche’s optional protocol modules have been optimized for the LPC developed from the ground up to address the needs of low architecture. NicheLite for LPC provides the functionality of cost embedded systems. The result is a modular solution NicheLite and is RFC compliant. that is functionally comprehensive, requiring minimal system and memory requirements, and is tuned for both Key Features portability and performance. • Transmission Control Protocol (TCP) supporting InterNiche's lightweight API, and a Zero-Copy option NicheStack™ SNMP(v1, v2c or v3) are fully compliant agent • Internet Protocol (IPv4), without implementations enabling industry standard device fragmentation and reassembly monitoring with SNMP management workstations. The • User Datagram Protocol (UDP) • Address Resolution Protocol (ARP) complete SDK includes a MIB Compiler tool. • Internet Control Message Protocol (ICMP) NicheStack HTTPServer™ is an innovative robust embedded • Dynamic Host Configuration Protocol (DHCP) Client web server that has been designed specifically to optimize • Name Service (DNS) Client size, performance and support for dynamic data displays • Bootstrap Protocol (BOOTP) • Trivial File Transfer Protocol (TFTP), and important security features. client and server • Ping Protocol Options: A variety of optional protocols support • NicheTool ™ solutions for specific applications including Point to Point • NicheFile ™ VFS • Single Ethernet interface Protocol (PPP), PPPoE, Telnet, FTP, SMTP and POP3. • No "GPL Contamination" Includes two operating systems Options • SuperLoop : a very fast, do-forever loop running various tasks and Email applications in a run-to-completion FTP model. -
A SOLUTION for ARP SPOOFING: LAYER-2 MAC and PROTOCOL FILTERING and ARPSERVER Yuksel Arslan
A SOLUTION FOR ARP SPOOFING: LAYER-2 MAC AND PROTOCOL FILTERING AND ARPSERVER Yuksel Arslan ABSTRACT Most attacks are launched inside the companies by the employees of the same company. These kinds of attacks are generally against layer-2, not against layer-3 or IP. These attacks abuse the switch operation at layer-2. One of the attacks of this kind is Address Resolution Protocol (ARP) Spoofing (sometimes it is called ARP poisoning). This attack is classified as the “man in the middle” (MITM) attack. The usual security systems such as (personal) firewalls or virus protection software can not recognize this type of attack. Taping into the communication between two hosts one can access the confidential data. Malicious software to run internal attacks on a network is freely available on the Internet, such as Ettercap. In this paper a solution is proposed and implemented to prevent ARP Spoofing. In this proposal access control lists (ACL) for layer-2 Media Access Control (MAC) address and protocol filtering and an application called ARPserver which will reply all ARP requests are used. Keywords Computer Networks, ARP, ARP Spoofing, MITM, Layer-2 filtering. 1. INTRODUCTION Nowadays Ethernet is the most common protocol used at layer-2 of Local Area Networks (LANs). Ethernet protocol is implemented on the Network Interface Card (NIC). On top of Ethernet, Internet Protocol (IP), Transmission Control/User Datagram Protocols (TCP/UDP) are employed respectively. In this protocol stack for a packet to reach its destination IP and MAC of destination have to be known by the source. This can be done by ARP which is a protocol running at layer-3 of Open System Interface (OSI) model. -
IP Host Configuration IK2218/EP2120
IP Host Configuration IK2218/EP2120 Markus Hidell, [email protected] KTH School of ICT Acknowledgements • The presentation builds upon material from - Previous slides by Markus Hidell, Björn Knutsson and Peter Sjödin - Computer Networking: A Top Down Approach, 5th ed. Jim Kurose, Keith Ross. Addison-Wesley. - TCP/IP Protocol Suite, 4th ed, Behrouz Foruzan. McGraw-Hill. 2 Outline • Introduction • Automating IP Configuration • Stateful configuration - DHCP • Stateless configuration – SLAAC • Further reading 3 Basic Question • IP (Internet Protocol): - what packets look like and how to interpret IP addresses • Routing protocols: - calculate paths through the network • DNS (Domain Name System): - how to translate between names and IP addresses But how do we get an IP address for a network interface? 4 Manual IP Address Configuration • System administrator: - Manually select an IP address from currently unassigned addresses in the subnet - Assign to host machine - Manually edit configuration file on host machine • Statically assigned address - require work to change address • What if... - Sysadmin forgets to mark address as assigned? - Subnet changes address? Manual IP address configuration is not a practical solution 5 IP Configuration Information • Just IP address is not enough information for hosts - Need to know subnet mask for local traffic • CIDR notation: 10.1.1.0/24 - Need to know IP address of gateway for non-local traffic • Gateway: the router that connects our subnet to the Internet (default gateway) • What else might we want to tell -
Detecting Packet Injection a Guide to Observing Packet Spoofing by Isps
Detecting Packet Injection A GUidE TO OBSERVING PACKET SPOOFING BY ISPs By Seth Schoen [email protected] ELECTRONIC FRONTIER FOUNDATION eff.org Version .0 November 28, 2007 Detecting Packet Injection: A Guide To Observing Packet Spoofing by ISPs Introduction Certain Internet service providers have begun to interfere with their users’ communications by injecting forged or spoofed packets – data that appears to come from the other end but was actually generated by an Internet service provider (ISP) in the middle. This spoofing is one means (although not the only means) of blocking, jamming, or degrading users’ ability to use particular applications, services, or protocols. One important means of holding ISPs account- able for this interference is the ability of some subscribers to detect and document it reliably. We have to learn what ISPs are doing before we can try to do something about it. Internet users can often detect interference by comparing data sent at one end with data received at the other end of a connection. Techniques like these were used by EFF and the Associated Press to produce clear evidence that Comcast was deliberately interfering with file sharing applications; they have also been used to document censorship by the Great Firewall of China.1 In each of these cases, an in- termediary was caught injecting TCP reset packets that caused a communication to hang up – even though the communicating parties actually wanted to continue talking to one another. In this document, we describe how to use a network analyzer like Wireshark to run an experi- ment with a friend and detect behavior like this. -
Bootstrap Protocol, BOOTP, Is the Recommended Way to Establish Communications from the Host to the Printer in an Internet Protocol Environment
BOOTP Bootstrap protocol, BOOTP, is the recommended way to establish communications from the host to the printer in an internet protocol environment. BOOTP obtains booting data from the bootptab file. With the proper information stored in the bootptab file, the printer can find its own name and IP address and boot from the network without any intervention, even for a first time boot. 1. Verify that the bootpd and bootptab files are in the correct directories: UNIX: /etc or /usr/etc directory OS/2: \TCPIP\ETC (for bootptab) and \TCPIP\BIN (for bootpd) LAN Server: MPTN\ETC (for bootptab) and \MPTN\BIN (for bootpd) Type: ls bootp* 2. Edit the hosts file to add the printer internet addresses and names: 128.07.60.30 P340-mktg 128.07.60.31 P340-sales For OS/2, use the TCP/IP Configuration Notebook under the Services tab to add the printer internet addresses and names. 3. Some UNIX hosts may require an explicit update to the arp table to add the new entries. This command is host-specific; check your host documentation for details. arp -s ether P340-mktg 08:00:11:01:00:45 arp -s ether P340-sales 08:00:11:01:00:46 The ether switch indicates that you are providing an Ethernet address. 4. Set up the bootptab file. 5. Start or restart the inetd or bootpd daemon. For OS/2 Warp, LAN Server 4.0, and UNIX, use the bootpd daemon. Here is a sample bootptab file; check your host system documentation to see which fields your implementation of BOOTP supports. -
Integration and Configuration of a Safe Hotspot Throught a Communication
Centro Universitario de la Defensa en la Escuela Naval Militar FINAL YEAR PROJECT Integration and configuration of a safe hotspot through a communication tunnel on TOR net Mechanical Engineering Bachelor Degree STUDENT: Ernesto Golmayo Fernández SUPERVISORS: Rafael Asorey Cacheda ACADEMIC YEAR: 2016-2017 Centro Universitario de la Defensa en la Escuela Naval Militar FINAL YEAR PROJECT Integration and configuration of a safe hotspot through a communication tunnel on TOR net Mechanical Engineering Bachelor Degree Naval Technology Specialization Naval Branch ABSTRACT The present project develops the design and integration of a TOR’s net redirecting device into a Raspberry Pi (versions 2 model B and 3 model B). Therefore, information will be encrypted between clients and servers. According to nets’ menaces, system will provide security within LAN and WAN by the means of virtual private networks and protection software (an antivirus and a firewall). Acting as a hotspot it will generate a Wi-Fi area (shell with wireless encryption, WPA2), supplying certificates to the workstations to authenticate themselves. Last sections analyse the capabilities of the device created, studying possible solutions to the problems presented. Finally, the document concludes displaying profiles of potential users and future lines of investigation. KEYWORDS Raspberry Pi, hotspot, TOR’s redirection, encryption, tracking i ii RESUMEN El actual documento recoge el diseño y la implementación de un sistema de redirección de tráfico de datos a través de un canal de comunicación en la red TOR en una Raspberry Pi 2 modelo B y en una Raspberry Pi 3 modelo B. El objetivo es crear un instrumento capaz de encriptar toda la información transmitida creando un punto de acceso seguro a una red abierta.