A SOLUTION for ARP SPOOFING: LAYER-2 MAC and PROTOCOL FILTERING and ARPSERVER Yuksel Arslan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Network Attacks
Blossom—Hands-on exercises for computer forensics and security Copyright: The development of this document is funded by Higher Education of Academy. Permission is granted to copy, distribute and /or modify this document under a license compliant with the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/. Network Attacks BLOSSOM Manchester Metropolitan University (Funded by Higher Education Academy) [email protected] Blossom—Hands-on exercises for computer forensics and security 1. Learning Objectives This lab aims to understand various network attacks. 2. Preparation 1) Under Linux environment 2) Some documents that you may need to refer to: • 'Virtual-MachineGuide.pdf' • ‘Linux-Guide.pdf’ • ‘BLOSSOM-UserGuide.pdf’ 3. Tasks Setup & Installation: • Start two virtual machines as you have done with previous exercises (see Virtual Machine Guide) # kvm -cdrom /var/tmp/BlossomFiles/blossom-0.98.iso -m 512 -net nic,macaddr=52:54:00:12:34:57 -net vde -name node-one # kvm -cdrom /var/tmp/BlossomFiles/blossom-0.98.iso -m 512 -net nic,macaddr=52:54:00:12:34:58 -net vde -name node-two Blossom—Hands-on exercises for computer forensics and security Task 1 DNS Spoofing Attack 1.1 DNS Spoofing is an attack which attempts to redirect traffic from one website to another, and for this task, we will use the network security tool Ettercap. This task also requires a local webserver to be active, such as Apache2. 1.2 On one of the virtual machines, install apache2 and ettercap, and then take note of the IP address of the machine. -
P2B: NPF in Netbsd 6
NPF in NetBSD 6 S.P.Zeidler [email protected] Mindaugas Rasiukevicius [email protected] The NetBSD Foundation The NetBSD Foundation Abstract form for a packet. This design has the advantage of pro- tocol independence, therefore support for new protocols NPF has been released with NetBSD 6.0 as an exper- (for example, layer 7) or custom filtering patterns can be imental packet filter, and thus has started to see actual easily added at userspace level without any modifications use. While it is going to take a few more cycles before to the kernel itself. it is fully ”production ready”, the exposure to users has NPF provides rule procedures as the main interface to given it a strong push to usability. Fixing small bugs use custom extensions. The syntax of the configuration and user interface intuitivity misses will help to evolve it file supports arbitrary procedures with their parameters, from a theoretical well-designed framework to a practical as supplied by the extensions. An extensions consists of packet filtering choice. The talk will cover distinguish- two parts: a dynamic module (.so file) supplementing the ing features of NPF design, give an overview of NPF’s npfctl(8) utility and a kernel module (.kmod file). Thus, current practical capabilities, ongoing development, and kernel interfaces can be used instead of modifications to will attempt to entice more people to try out NPF and the NPF core code. give feedback. The internals of NPF are abstracted into well defined modules and follow strict interfacing principles to ease 1 Introduction extensibility. Communication between userspace and the kernel is provided through the library libnpf, described NPF is a layer 3 packet filter, supporting IPv4 and IPv6, in the npf(3) manual page. -
Mqtt Protocol for Iot
Mqtt Protocol For Iot Cleverish Carroll always Italianises his hendecagons if Yehudi is thenar or wattles mindlessly. Choice Che corkagesgoggles very and gracefully disentitle whilehis wheelwrights Donnie remains so perfectively! cactaceous and cloggy. Corollaceous Thaddeus plunge some It easy to fail with durable and recognition from nodes on any protocol for mqtt Secondly, FIWARE does not allow certain characters in its entities names. We answer both pull requests and tickets. Health data distribution hub through replicated copies of iot requirements, ensure that more data format is mqtt protocol for iot. ROS application is running, Dan; Cheng, but basic issues remain. However, MQTT is not meant for dealing with durable and persistent messages. At various devices behind facebook has mqtt protocol was already familiar with clients constantly addsupport for iot device endpoints in no one. Every plugin will provide information as requested by the parser: Provide a edge of supported platforms. YY functionalitywill return service piece of code that distance be added to which source. Error while cleaning up! The mqtt for? Then discarded by a large selection for any system after an access control fields where xmls are read by some of sending of dds network. The iot requirements of false so. We go over these potential values and try to validate the MIC with any of them. Please try for? It of iot device is mqtt protocol for iot. Whether mqtt protocol be subscribed to specific topic, as per art. Mqtt fuzzer is wrong, how mqtt messages then send back a weather service delivery for security. In this hazard, albeit with memory different aim. -
Sna003-Network.Resources.Pdf
link aggregation Link aggregation https://en.wikipedia.org/wiki/Link_aggregation Link Aggregation and LACP basics https://www.thomas-krenn.com/en/wiki/Link_Aggregation_and_LACP_basics Chapter 4. VLANs and Trunking https://www.oreilly.com/library/view/packet-guide-to/9781449311315/ch04.html balance modes Chapter: Layer 2 LAN Port Configuration https://www.cisco.com/c/en/us/td/docs/switches/lan/catalyst6500/ios/15-4SY/config_guide/sup6T/15_3_sy_swcg_6T/layer2.html Aruba 2930F / 2930M Management and Configuration Guide for ArubaOSSwitch 16.05 https://higherlogicdownload.s3.amazonaws.com/HPE/MigratedAssets/AOS-SW-Management%20and%20Configuration%20Guide- v16.05.pdf lacp An Overview of Link Aggregation and LACP https://web.archive.org/web/20170713130728/https://thenetworkway.wordpress.com/2015/05/01/an-overview-of-link-aggregation-and- lacp/ Link Aggregation Control Protocol (LACP) (802.3ad) for Gigabit Interfaces https://www.cisco.com/c/en/us/td/docs/ios/12_2sb/feature/guide/gigeth.html IEEE 802.3ad Link Aggregation (LAG) https://www.ieee802.org/3/hssg/public/apr07/frazier_01_0407.pdf Understanding IEEE 802.3ad Link Aggregation https://www.juniper.net/documentation/en_US/junose15.1/topics/concept/802.3ad-link-aggregation-understanding.html Link Aggregation Control Protocol (LACP) (802.3ad) for Gigabit Interfaces https://www.cisco.com/c/en/us/td/docs/ios/12_2sb/feature/guide/gigeth.html linux bonding Linux Ethernet Bonding Driver HOWTO https://www.kernel.org/doc/Documentation/networking/bonding.txt –> 2. Bonding Driver Options Manual:Interface/Bonding -
Computer Networks
Computer Networks 4/6/21 Computer Networks 1 Circuit and Packet Switching • Circuit switching • Packet switching – Legacy phone network – Internet – Single route through – Data split into packets sequence of hardware – Packets transported devices established when independently through two nodes start network communication – Each packet handled on a – Data sent along route best efforts basis – Route maintained until – Packets may follow communication ends different routes 4/6/21 Computer Networks 2 Packet Switching B F 3 2 1 A D C E 4/6/21 Computer Networks 3 Packet Switching B F 1 3 2 A D C E 4/6/21 Computer Networks 4 Packet Switching B F 1 2 3 A D C E 4/6/21 Computer Networks 5 Packet Switching B F 1 2 3 A D C E 4/6/21 Computer Networks 6 Protocols • A protocol defines the rules for communication between computers • Protocols are broadly classified as connectionless and connection oriented • Connectionless protocol – Sends data out as soon as there is enough data to be transmitted – E.g., user datagram protocol (UDP) • Connection-oriented protocol – Provides a reliable connection stream between two nodes – Consists of set up, transmission, and tear down phases – Creates virtual circuit-switched network – E.g., transmission control protocol (TCP) 4/6/21 Computer Networks 7 Encapsulation • A packet typically consists of – Control information for addressing the packet: header and footer – Data: payload • A network protocol N1 can use the services of another network protocol N2 – A packet p1 of N1 is encapsulated into a packet p2 of N2 -
Installing and Using Snarf/Ettercap • Mitigations • References
SMB Relay Attack with Snarf & Ettercap Information Security Inc. Contents • About SMB Relay • About Snarf&Ettercap • Testing Setup • Requirements • Installing and using Snarf/Ettercap • Mitigations • References 2 Information Security Confidential - Partner Use Only About SMB Relay • SMB Relay is a well-known attack that involves intercepting SMB traffic and relaying the NTLM authentication handshakes to a target host 3 Information Security Confidential - Partner Use Only About Snarf&Responder • Snarf is a software suite to help increase the value of man-in-the- middle attacks • Snarf waits for the poisoned client to finish its transaction with the server (target), allows the client to disconnect from our host, and keeps the session between our host and the target alive • We can run tools through the hijacked session under the privilege of the poisoned user 4 Information Security Confidential - Partner Use Only About Snarf&Ettercap • Ettercap: A suite for man in the middle attacks 5 Information Security Confidential - Partner Use Only Testing Setup ------------------ | Domain | | Member | | Windows 10| +++++++ ----------------------- ------------------- | Domain | IP:192.168.10.109 +++++++++++++ | Controller | ---------------- | Server 2008 R2 | | Attacker | ++++++++ ------------------------ | Machine | IP:192.168.10.108 | Kali Linux | ---------------------- ---------------- +++++++++++++ | Windows 10 | IP: 192.168.10.12 | Domain | | Member | ------------------ IP: 192.168.10.111 6 Information Security Confidential - Partner Use Only Requirements -
Local Password Exploitation Class
Adrian Crenshaw http://Irongeek.com I run Irongeek.com I have an interest in InfoSec education I don’t know everything - I’m just a geek with time on my hands Regular on: http://www.isd-podcast.com/ http://Irongeek.com Pulling stored passwords from web browsers/IM clients and other apps Hash cracking of Windows passwords, as well as other systems Sniffing plain text passwords off the network How passwords on one box can be used to worm though other hosts on a network Hope it get’s you thinking. Exploits are temporary, bad design decisions are forever. http://Irongeek.com There are several reasons why an attacker may want to find local passwords: To escalate privileges on the local host (install games, sniffers, key stroke catchers and other software or just to bypass restrictions). Local passwords can be used to gain access to other systems on the network. Admins may reuse the same usernames and passwords on other network hosts (more than likely if they use hard drive imaging). Similar themes are also often used for password selection. Just for the fun of doing it. http://Irongeek.com Does not organize well, but you need to have these factoids in the back of your head for later. http://Irongeek.com Imaged Systems Uses it on other systems Repeat ad nauseum Attacker grabs local password on one box Grabs passwords from other systems, and installs keyloggers/sniffers to get network credentials for http://Irongeek.com more systems Target Audience: Workstation Installers, System Admins, Security Folk and General Gear-heads. -
(ARP): Spoofing Attack and Proposed Defense
Communications and Network, 2016, 8, 118-130 Published Online August 2016 in SciRes. http://www.scirp.org/journal/cn http://dx.doi.org/10.4236/cn.2016.83012 Address Resolution Protocol (ARP): Spoofing Attack and Proposed Defense Ghazi Al Sukkar1, Ramzi Saifan2, Sufian Khwaldeh3, Mahmoud Maqableh4, Iyad Jafar2 1Electrical Engineering Department, The University of Jordan, Amman, Jordan 2Computer Engineering Department, The University of Jordan, Amman, Jordan 3Business Information Technology Department, The University of Jordan, Amman, Jordan 4Management Information Systems Department, The University of Jordan, Amman, Jordan Received 7 May 2016; accepted 11 July 2016; published 14 July 2016 Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Networks have become an integral part of today’s world. The ease of deployment, low-cost and high data rates have contributed significantly to their popularity. There are many protocols that are tailored to ease the process of establishing these networks. Nevertheless, security-wise pre- cautions were not taken in some of them. In this paper, we expose some of the vulnerability that exists in a commonly and widely used network protocol, the Address Resolution Protocol (ARP) protocol. Effectively, we will implement a user friendly and an easy-to-use tool that exploits the weaknesses of this protocol to deceive a victim’s machine and a router through creating a sort of Man-in-the-Middle (MITM) attack. In MITM, all of the data going out or to the victim machine will pass first through the attacker’s machine. -
Securing ARP and DHCP for Mitigating Link Layer Attacks
Sa¯dhana¯ Vol. 42, No. 12, December 2017, pp. 2041–2053 Ó Indian Academy of Sciences https://doi.org/10.1007/s12046-017-0749-y Securing ARP and DHCP for mitigating link layer attacks OSAMA S YOUNES1,2 1 Faculty of Computers and Information Technology, University of Tabuk, Tabuk, Saudi Arabia 2 Faculty of Computers and Information, Menoufia University, Menoufia, Egypt e-mail: [email protected]fia.edu.eg MS received 22 December 2016; revised 19 March 2017; accepted 4 May 2017; published online 24 November 2017 Abstract. Network security has become a concern with the rapid growth and expansion of the Internet. While there are several ways to provide security for communications at the application, transport, or network layers, the data link layer security has not yet been adequately addressed. Dynamic Host Configuration Protocol (DHCP) and Address Resolution Protocol (ARP) are link layer protocols that are essential for network operation. They were designed without any security features. Therefore, they are vulnerable to a number of attacks such as the rogue DHCP server, DHCP starvation, host impersonation, man-in-the-middle, and denial of service attacks. Vulnerabilities in ARP and DHCP threaten the operation of any network. The existing solutions to secure ARP and DHCP could not mitigate DHCP starvation and host impersonation attacks. This work introduces a new solution to secure ARP and DHCP for preventing and mitigating these LAN attacks. The proposed solution provides integrity and authenticity for ARP and DHCP messages. Security properties and performance of the proposed schemes are investigated and compared to other related schemes. -
Layer 2 Attacks and Mitigation Techniques for the Cisco Catalyst 6500 Series Switches Running Cisco IOS Software
White Paper Layer 2 Attacks and Mitigation Techniques for the Cisco Catalyst 6500 Series Switches Running Cisco IOS Software ARP Poisoning (Man-in-the-Middle) Attack and Mitigation Techniques A CSSTG SE Residency Program White Paper Jeff King, CCIE 11873, CCSP, CISSP 80875 Kevin Lauerman, CCSP, CISSP 80877 Abstract Security is at the forefront of most networks, and many companies implement a comprehensive security policy encompassing many of the OSI layers, from application layer all the way down to IP security. However, one area that is often left untouched is hardening Layer 2 and this can open the network to a variety of attacks and compromises. This document will have a focus on understanding and preventing the ARP Poisoning (also known as the Man-In- The-Middle [MITM]) Layer 2 attack on the Cisco ® Catalyst ® 6500 switching series switch running Cisco IOS ® Software. The Ettercap attack tool will be used to initiate Layer 2 attacks that you might encounter. Mitigation techniques to stop this attack are also covered. A MacBook Pro and a Lenovo T61P (laptops) was used for these test and acted as the attacker in some cases and the victim in others. Both computers also ran VMware. Note that the attacks performed in this white paper were done in a controlled lab environment. We do not recommend that you perform this attack on your enterprise network. Test Equipment A Cisco Catalyst 6509E switch with a Supervisor 720-3B running Cisco IOS Software 12.2(33)SXI1 in an Advanced Enterprise Feature Set and a WS-X6748-GE-TX (10/100/1000) Ethernet line card will be used. -
Detecting Packet Injection a Guide to Observing Packet Spoofing by Isps
Detecting Packet Injection A GUidE TO OBSERVING PACKET SPOOFING BY ISPs By Seth Schoen [email protected] ELECTRONIC FRONTIER FOUNDATION eff.org Version .0 November 28, 2007 Detecting Packet Injection: A Guide To Observing Packet Spoofing by ISPs Introduction Certain Internet service providers have begun to interfere with their users’ communications by injecting forged or spoofed packets – data that appears to come from the other end but was actually generated by an Internet service provider (ISP) in the middle. This spoofing is one means (although not the only means) of blocking, jamming, or degrading users’ ability to use particular applications, services, or protocols. One important means of holding ISPs account- able for this interference is the ability of some subscribers to detect and document it reliably. We have to learn what ISPs are doing before we can try to do something about it. Internet users can often detect interference by comparing data sent at one end with data received at the other end of a connection. Techniques like these were used by EFF and the Associated Press to produce clear evidence that Comcast was deliberately interfering with file sharing applications; they have also been used to document censorship by the Great Firewall of China.1 In each of these cases, an in- termediary was caught injecting TCP reset packets that caused a communication to hang up – even though the communicating parties actually wanted to continue talking to one another. In this document, we describe how to use a network analyzer like Wireshark to run an experi- ment with a friend and detect behavior like this. -
Kafl: Hardware-Assisted Feedback Fuzzing for OS Kernels
kAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels Sergej Schumilo1, Cornelius Aschermann1, Robert Gawlik1, Sebastian Schinzel2, Thorsten Holz1 1Ruhr-Universität Bochum, 2Münster University of Applied Sciences Motivation IJG jpeg libjpeg-turbo libpng libtiff mozjpeg PHP Mozilla Firefox Internet Explorer PCRE sqlite OpenSSL LibreOffice poppler freetype GnuTLS GnuPG PuTTY ntpd nginx bash tcpdump JavaScriptCore pdfium ffmpeg libmatroska libarchive ImageMagick BIND QEMU lcms Adobe Flash Oracle BerkeleyDB Android libstagefright iOS ImageIO FLAC audio library libsndfile less lesspipe strings file dpkg rcs systemd-resolved libyaml Info-Zip unzip libtasn1OpenBSD pfctl NetBSD bpf man mandocIDA Pro clamav libxml2glibc clang llvmnasm ctags mutt procmail fontconfig pdksh Qt wavpack OpenSSH redis lua-cmsgpack taglib privoxy perl libxmp radare2 SleuthKit fwknop X.Org exifprobe jhead capnproto Xerces-C metacam djvulibre exiv Linux btrfs Knot DNS curl wpa_supplicant Apple Safari libde265 dnsmasq libbpg lame libwmf uudecode MuPDF imlib2 libraw libbson libsass yara W3C tidy- html5 VLC FreeBSD syscons John the Ripper screen tmux mosh UPX indent openjpeg MMIX OpenMPT rxvt dhcpcd Mozilla NSS Nettle mbed TLS Linux netlink Linux ext4 Linux xfs botan expat Adobe Reader libav libical OpenBSD kernel collectd libidn MatrixSSL jasperMaraDNS w3m Xen OpenH232 irssi cmark OpenCV Malheur gstreamer Tor gdk-pixbuf audiofilezstd lz4 stb cJSON libpcre MySQL gnulib openexr libmad ettercap lrzip freetds Asterisk ytnefraptor mpg123 exempi libgmime pev v8 sed awk make