Taxonomic Importance of Seed Morphology of Veronica L. Subsect

Total Page:16

File Type:pdf, Size:1020Kb

Taxonomic Importance of Seed Morphology of Veronica L. Subsect Biodiv. Res. Conserv. 50: 39-52, 2018 BRC www.brc.amu.edu.pl DOI 10.2478/biorc-2018-0008 Submitted 14.05.2018, Accepted 29.06.2018 Taxonomic importance of seed morphology of Veronica L. subsect. Agrestes Benth. (Plantaginaceae) Małgorzata Mazur1*, Magdalena Gawlak2, Elżbieta Sandurska3, Tomasz Kałuski2 & Katarzyna Marcysiak1 1Botanical Garden, Kazimierz Wielki University, Ossolińskich 12, 85-093 Bydgoszcz, Poland 2Research Centre of Quarantine, Invasive and Genetically Modified Organism, Institute of Plant Protection – National Research Institute, Władysława Węgorka 20, 60-318 Poznań, Poland 3Department of Genetics, Kazimierz Wielki University, Powstańców Wielkopolskich 10, 85-090 Bydgoszcz, Poland * correspondence author (e-mail: [email protected]) Abstract. The study was conducted on five species ofVeronica L. subsection Agrestes occurring in Central Europe: Veronica agrestis L., V. polita Fr., V. opaca Fr., V. persica Poir. and V. filiformisSm. These species are very similar morphologically and are often misidentified. Last thorough studies of morphology and micromorphology of their seeds were conducted in 1960s. Based on 48 herbarium specimens, we examined SEM images of 422 seeds. We found that 22 of the 30 studied morphological traits differentiated five species at statistical level and V. agrestis and V. persica differed with the greatest number of features from other species. Our measurements of seed size were not fully congruent with previous studies, suggesting dependence of these features on external conditions. Seeds were usually cochlidiospermous and ovoid with a reticulate-verrucate seed coat, but these features were, at the same time, quite variable. The results of discriminant function confirmed that some characters of the seed size, shape and coat sculpture could be taxonomically useful in distinguishing species of Veronica subsect. Agrestes. In addition, we believe that similarity of the examined seeds may confirm unity of this group and the need of identifying a subsection. Key words: Veronica taxonomy, SEM, micromorphology, seed coat, seed size, seed shape, seed sculpture, testa surface 1. Introduction Fruit and seed traits play a significant role in the taxonomy of many species (Stace 1989; Szkudlarz Veronica L. is the largest genus in the family Plan- 2009; Davitashvili & Karrer 2010; Szkudlarz & Celka taginaceae sensu Angiosperm Phylogeny Group (2009) 2016). The morphology and micromorphology of seeds and comprises 450-500 species, including about 62 are often utilised for taxonomic purposes also in Plan- occurring in Europe (Walters & Webb 1972). In spite taginaceae and related families, like Scrophulariaceae of a great deal of taxonomic research that has been or Orobanchaceae (e.g.: Elisens & Tomb 1983; Dong done on the genus worldwide, several groups still et al. 2015; Richardson Ahedor & Elisens 2015). require detailed investigation of additional characters Studies conducted on some of the species belonging to distinguish species and clarify their taxonomy. One to the subsect. Agrestes showed that seeds of this such group is Veronica subsection Agrestes Benth. subsection differed from the others of subg. Pocilla by The subsect. Agrestes of subgenus Pocilla (Dumort.) their smaller size – the seed length is less than 2 mm; M. M. Mart. Ort., Albach & M. A. Fisch. consists of by the specific cochlidiospermous (concave ventrally) three cosmopolitan species: V. polita Fries, V. persica type of seed, less frequently flattened (V. ceratocarpa); Poiret and V. filiformis Sm. and two representing the by occurrence of wrinkles on the dorsal surface of the European type of range: V. agrestis L., and V. opaca seed; by the shape and size of the raphal ridge and cha- Fries. Other species belonging to the subsect. Agrestes lazal plate and by reticulate-verrucate coat sculpturing are restricted to the hyrcanian-caucasian region (Kulpa with a polygonal cell and variable sizes, their anticlinal 1968; Albach et al. 2005). cell walls irregularly thickened forming, a more or less, AND PHYLOGENY TAXONOMY VARIABILITY, ©Adam Mickiewicz University in Poznań (Poland), Department of Plant Taxonomy. All rights reserved. 40 Małgorzata Mazur et al. Taxonomic importance of seed morphology of Veronica L. subsect. Agrestes Benth. ... convex reticulum and by periclinal cell walls with a part of the country (Żukowski 1959; Zając, Zając central or eccentric papilla (Kulpa 1968; Juan et al. 2001). V. filiformis is regarded as propagating mainly 1994; Muñoz-Centeno et al. 2006; Yilmaz 2013; Hassan asexually and rarely producing seeds, thus, the pres- & Khalik 2014). ence of capsules in some specimens in KRA herbarium The European species belonging to the subsect. should be treated as quite exceptional. This is why we Agrestes are considered as morphologically quite decided to use the small number of seeds of this species similar and, thus, they may be misidentified. Previous that were available in our investigation. analyses of the species within the subsect. Agrestes Observations and measurements of seeds were showed several morphological characteristics which carried out on images from an S-3000N Hitachi Co were useful in distinguishing some of them: the type SEM at the Institute of Plant Protection in Poznań. Dry (procumbent or decumbent) and thickness of the stem, seeds were attached to table mounts using double sided the ratio of the length to the width of the capsule, the adhesive carbon discs. The samples were then sputter type of coverage by hairs and the ratio of the incision coated with gold and photographed using SEM. Seeds in a capsule to the length of its style, the number of of Veronica have a ventro-dorsal construction, with one seeds in a capsule, the shape and overlapping of calyx- axis of symmetry. Therefore, observations were made segments (Tacik & Trzcińska-Tacik 1963; Walters on three sides: the ventral (2-6 seeds per individual), & Webb 1972; Fischer 1981). Fruit morphology and dorsal (1-4 seeds per individual) and lateral (1-3 seeds anatomy (Juan et al. 1997; Saeidi Mehrvarz et al. 2001), per individual). In total, 184 seeds were photographed as well as chemical characteristics (e.g.: Albach et al. on ventral, 125 on dorsal and 113 on lateral surfaces. 2005; Jensen et al. 2005; Saeidi Mehrvarz et al. 2008), We used magnification from 60x to 150x, depending on pollen size (Sánchez Agudo et al. 2009), chromosome the seed size. The coat sculpture was investigated using number (Saeidi Mehrvarz & Kharabian 2005), distri- two magnifications: 500x and 1000x. bution of glycosides (Tomas-Barberan et al. 1988) and In order to statistically characterize seeds we selected molecular data (e.g.: Albach & Greilhuber 2004; Albach 29 quantitative traits, some following already published et al. 2004) also provided important characters within research (e.g.: Tacik & Trzcińska-Tacik 1963; Kulpa the subsection. 1968; Walters & Webb 1972). Thirteen characters were However, none of these researchers examined and measured on the photographs using digiShape software compared all the European species of the subsect. (Moraczewski 2005): the perimeter (P), the length (L), Agrestes, using SEM. Last thorough morphological and the width measured at ½, ¼ and ¾ of the length (W½, micromorphological examinations of seeds of all Euro- W¼, W¾), the thickness at ½, ¼ and ¾ (T½, T¼, T¾), pean species of the subsect. Agrestes were conducted in angles of micropylar and chalazal top (AMi, ACh), the 1960s by Kulpa (1968). This is why we decided to study length of chalaza (LCh) and the length and the width this group using methods that were not accessible at that of chalaza plate (LPl, WPl). Two features were counted time. We conducted our study on examples of Polish directly from the images: the number of wrinkles on the flora assuming they would make good representatives dorsal side (WrN) and the average number of angles in of European plants, due to central European location of the centrally located 5 cells of the seed coat (ACN). In Poland. addition, fourteen traits were obtained from the calcula- Our first aim was to characterize the seed morpho- tions: P/L, P/W½, L/W½, L/T½ L/W¼, L/W¾, L/T¼, L/ logy and seed coat sculpture of the species of subsect. T¾, W¼/W¾, T¼/T¾, LCh/L, LCh/LPl, LPl/WPl and Agrestes. Basing on the results of this examination, we L/WrN. wanted to determine if seed traits can help in identifying To describe the seeds, we also used other features. the subsection as the unity, or if they differ the species The degree of folding of the edge (FE) at the ventral side enough to have a taxonomic value. of seeds was assessed with a three-level scale: 1 – not folded, 2 – medium folded, 3 – strongly folded. Follow- 2. Material and methods ing the nomenclature of other authors (e.g.: Yamazaki 1957; Kulpa 1968), we found all seeds in subsection The research was based on the study of herbarium Agrestes to be cochlidiospermous. We considered specimens. Seeds of the following Veronica species seeds to be deep-cochlidiospermous, when L/T½ < 2.5, were examined: V. persica (130 seeds), V. agrestis whereas L/T½ ≥ 2.5 were shallow-cochlidiospermous. (92), V. polita (90), and V. filiformis (14) (Appendix We also estimated the seed shape in outline from ven- 1). The latter species, as an invasive kenophyte, has tral and dorsal surfaces (e.g.: Martinez-Ortega & Rico been spreading through Europe since 1930s (Müller & 2001; Stearn 2004). We defined three main types of Sukopp 1993; Pielech et al. 2012; Scalone & Albach shapes: obovoid, elliptical, suborbicular and two tran- 2012; Tokarska-Guzik et al. 2012). It is rare in Poland sitional types: broadly obovoid and broadly elliptical. and, at the moment, can be found only in the southern We defined elliptical seed shape when 0.9 < W1/4/W3/4 Biodiv. Res. Conserv. 50: 39-52, 2018 41 < 1.1 and obovoid – when 0.9 > W1/4/W3/4 > 1.1 value. was illustrated by the UPGMA dendrogram constructed Seed shapes were considered as broadly obovoid and on the Euclidean distances.
Recommended publications
  • An IPM Pocket Guide for Weed Identification in Nurseries and Landscapes Produced by Michigan State University Extension
    Back to table of contents Back to index 2020 PDF An IPM Pocket Guide for Weed Identification in Nurseries and Landscapes Produced by Michigan State University Extension Contents Index of weeds (clickable) ........................ 2-8 Weed identification ............................... 9-183 Using this scouting guide..........................184 Weed classification ...................................185 Grass and broadleaf characteristics . 186-189 Glossary ........................................... 190-192 Credits and acknowledgments ......... 193-194 Suggested reading ...................................195 1 Back to table of contents Back to index Index By common name Annual bluegrass ...........................................32-33 Annual sowthistle................................................73 Asiatic (common) dayflower ..........................18-19 Barnyardgrass ....................................................27 Bindweed, field ..........................................101-103 Bindweed, hedge .......................................102-103 Birdseye pearlwort ..............................................98 Birdsfoot trefoil...........................................109-110 Bittercress, hairy ............................................83-85 Bittercress, smallflowered...................................85 Black medic ............................................... 112-113 Blackseed plantain ...........................................150 Bluegrass, annual ..........................................32-33 Brambles ...................................................164-165
    [Show full text]
  • A Checklist of the Vascular Flora of the Mary K. Oxley Nature Center, Tulsa County, Oklahoma
    Oklahoma Native Plant Record 29 Volume 13, December 2013 A CHECKLIST OF THE VASCULAR FLORA OF THE MARY K. OXLEY NATURE CENTER, TULSA COUNTY, OKLAHOMA Amy K. Buthod Oklahoma Biological Survey Oklahoma Natural Heritage Inventory Robert Bebb Herbarium University of Oklahoma Norman, OK 73019-0575 (405) 325-4034 Email: [email protected] Keywords: flora, exotics, inventory ABSTRACT This paper reports the results of an inventory of the vascular flora of the Mary K. Oxley Nature Center in Tulsa, Oklahoma. A total of 342 taxa from 75 families and 237 genera were collected from four main vegetation types. The families Asteraceae and Poaceae were the largest, with 49 and 42 taxa, respectively. Fifty-eight exotic taxa were found, representing 17% of the total flora. Twelve taxa tracked by the Oklahoma Natural Heritage Inventory were present. INTRODUCTION clayey sediment (USDA Soil Conservation Service 1977). Climate is Subtropical The objective of this study was to Humid, and summers are humid and warm inventory the vascular plants of the Mary K. with a mean July temperature of 27.5° C Oxley Nature Center (ONC) and to prepare (81.5° F). Winters are mild and short with a a list and voucher specimens for Oxley mean January temperature of 1.5° C personnel to use in education and outreach. (34.7° F) (Trewartha 1968). Mean annual Located within the 1,165.0 ha (2878 ac) precipitation is 106.5 cm (41.929 in), with Mohawk Park in northwestern Tulsa most occurring in the spring and fall County (ONC headquarters located at (Oklahoma Climatological Survey 2013).
    [Show full text]
  • Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016
    Old Woman Creek National Estuarine Research Reserve Management Plan 2011-2016 April 1981 Revised, May 1982 2nd revision, April 1983 3rd revision, December 1999 4th revision, May 2011 Prepared for U.S. Department of Commerce Ohio Department of Natural Resources National Oceanic and Atmospheric Administration Division of Wildlife Office of Ocean and Coastal Resource Management 2045 Morse Road, Bldg. G Estuarine Reserves Division Columbus, Ohio 1305 East West Highway 43229-6693 Silver Spring, MD 20910 This management plan has been developed in accordance with NOAA regulations, including all provisions for public involvement. It is consistent with the congressional intent of Section 315 of the Coastal Zone Management Act of 1972, as amended, and the provisions of the Ohio Coastal Management Program. OWC NERR Management Plan, 2011 - 2016 Acknowledgements This management plan was prepared by the staff and Advisory Council of the Old Woman Creek National Estuarine Research Reserve (OWC NERR), in collaboration with the Ohio Department of Natural Resources-Division of Wildlife. Participants in the planning process included: Manager, Frank Lopez; Research Coordinator, Dr. David Klarer; Coastal Training Program Coordinator, Heather Elmer; Education Coordinator, Ann Keefe; Education Specialist Phoebe Van Zoest; and Office Assistant, Gloria Pasterak. Other Reserve staff including Dick Boyer and Marje Bernhardt contributed their expertise to numerous planning meetings. The Reserve is grateful for the input and recommendations provided by members of the Old Woman Creek NERR Advisory Council. The Reserve is appreciative of the review, guidance, and council of Division of Wildlife Executive Administrator Dave Scott and the mapping expertise of Keith Lott and the late Steve Barry.
    [Show full text]
  • Pollination Ecology Summary
    Pollination Ecology Summary Prof. em. Klaus Ammann, Neuchâtel [email protected] June 2013 Ohne den Pollenübertragungs-Service blütenbesuchender Tiere könnten sich viele Blütenpanzen nicht geschlechtlich fortpanzen. Die komplexen und faszinierenden Bestäubungsvorgänge bei Blütenpanzen sind Ausdruck von Jahrmillionen von Selektionsvorgängen, verbunden mit Selbstorganisation der Lebewesen; eine Sicht, die auch Darwin schon unterstützte. Bei vielen zwischenartlichen Beziehungen haben sich zwei oder auch mehrere Arten in ihrer Entwicklung gegenseitig beeinusst. Man spricht hier von sogenannter Coevolution. Deutlich ist die Coevolution auch bei verschiedenen Bestäubungssystemen und -mechanismen, die von symbiontischer bis parasitischer Natur sein können. Die Art-Entstehung, die Vegetationsökologie und die Entstehung von Kulturpanzen sind eng damit verbunden Veranstalter: Naturforschende Gesellschaft Schaffhausen 1. Pollination Ecology Darwin http://en.wikipedia.org/wiki/Pollination_syndrome http://www.cas.vanderbilt.edu/bioimages/pages/pollination.htm Fenster, C.B., Armbruster, W.S., Wilson, P., Dudash, M.R., & Thomson, J.D. (2004) Pollination syndromes and floral specialization. Annual Review of Ecology Evolution and Systematics, 35, pp 375-403 http://www.botanischergarten.ch/Pollination/Fenster-Pollination-Syndromes-2004.pdf invitation to browse in the website of the Friends of Charles Darwin http://darwin.gruts.com/weblog/archive/2008/02/ Working Place of Darwin in Downe Village http://www.focus.de/wissen/wissenschaft/wissenschaft-darwin-genoss-ein-suesses-studentenleben_aid_383172.html Darwin as a human being and as a scientist Darwin, C. (1862), On the various contrivances by which orchids are fertilized by insects and on the good effects of intercrossing The Complete Work of Charles Darwin online, Scanned, OCRed and corrected by John van Wyhe 2003; further corrections 8.2006.
    [Show full text]
  • Guide to Native Plants
    - AA GUIDEGUIDE TOTO THETHE NATIVENATIVE PLANTS,PLANTS, NATURALNATURAL PLANTPLANT COMMUNITIESCOMMUNITIES ANDAND THETHE EXOTICEXOTIC ANDAND INVASIVEINVASIVE SPECIESSPECIES OFOF EASTEAST HAMPTONHAMPTON TOWNTOWN EAST HAMPTON TOWN Natural Resources Department TableTable ofof Contents:Contents: Spotted Beebalm (Monarda punctata) Narrative: Pages 1-17 Quick Reference Max Clearing Table: Page 18 Map: East Hampton Native Plant Habitats Map TABS: East Hampton Plant Habitats (1-12); Wetlands flora (13-15): 1. Outer Dunes Plant Spacing 2. Bay Bluffs 3. Amagansett Inner Dunes (AID) 4. Tidal Marsh (TM) Table: A 5. Montauk Mesic Forest (MMF) 6. Montauk Moorland (MM) guideline for the 7. North of Moraine Coastal Deciduous (NMCD) 8. Morainal Deciduous (MD) 9. Pine Barrens or Pitch Pine Oak Forest (PB) (PPO) number of 10. Montauk Grasslands (MG) 11. Northwest Woods (NWW) plants needed 12. Old Fields 13. Freshwater Wetlands 14. Brackish Wetlands and Buffer for an area: 15. East Hampton Wetland Flora by Type Page 19 Native Plants-Resistance to Deer Damage: Pages 20-21 Local Native Plant Landscapers, Arborists, Native Plant Growers and Suppliers: Pages 22-23 Exotic and Invasive Species: Pages 24-33 Native Wildflower Pictures: Pages 34-45 Samdplain Gerardia (Agalinas acuta) Introduction to our native landscape What is a native plant? Native plants are plants that are indigenous to a particular area or region. In North America we are referring to the flora that existed in an area or region before European settlement. Native plants occur within specific plant communities that vary in species composition depending on the habitat in which they are found. A few examples of habitats are tidal wetlands, woodlands, meadows and dunelands.
    [Show full text]
  • Veronica Plants—Drifting from Farm to Traditional Healing, Food Application, and Phytopharmacology
    molecules Review Veronica Plants—Drifting from Farm to Traditional Healing, Food Application, and Phytopharmacology Bahare Salehi 1 , Mangalpady Shivaprasad Shetty 2, Nanjangud V. Anil Kumar 3 , Jelena Živkovi´c 4, Daniela Calina 5 , Anca Oana Docea 6, Simin Emamzadeh-Yazdi 7, Ceyda Sibel Kılıç 8, Tamar Goloshvili 9, Silvana Nicola 10 , Giuseppe Pignata 10, Farukh Sharopov 11,* , María del Mar Contreras 12,* , William C. Cho 13,* , Natália Martins 14,15,* and Javad Sharifi-Rad 16,* 1 Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran 2 Department of Chemistry, NMAM Institute of Technology, Karkala 574110, India 3 Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India 4 Institute for Medicinal Plants Research “Dr. Josif Panˇci´c”,Tadeuša Koš´cuška1, Belgrade 11000, Serbia 5 Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania 6 Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova 200349, Romania 7 Department of Plant and Soil Sciences, University of Pretoria, Gauteng 0002, South Africa 8 Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey 9 Department of Plant Physiology and Genetic Resources, Institute of Botany, Ilia State University, Tbilisi 0162, Georgia 10 Department of Agricultural, Forest and Food Sciences, University of Turin, I-10095 Grugliasco, Italy 11 Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan 12 Department of Chemical, Environmental and Materials Engineering, University of Jaén, 23071 Jaén, Spain 13 Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR 999077, China 14 Faculty of Medicine, University of Porto, Alameda Prof.
    [Show full text]
  • Towards an Updated Checklist of the Libyan Flora
    Towards an updated checklist of the Libyan flora Article Published Version Creative Commons: Attribution 3.0 (CC-BY) Open access Gawhari, A. M. H., Jury, S. L. and Culham, A. (2018) Towards an updated checklist of the Libyan flora. Phytotaxa, 338 (1). pp. 1-16. ISSN 1179-3155 doi: https://doi.org/10.11646/phytotaxa.338.1.1 Available at http://centaur.reading.ac.uk/76559/ It is advisable to refer to the publisher’s version if you intend to cite from the work. See Guidance on citing . Published version at: http://dx.doi.org/10.11646/phytotaxa.338.1.1 Identification Number/DOI: https://doi.org/10.11646/phytotaxa.338.1.1 <https://doi.org/10.11646/phytotaxa.338.1.1> Publisher: Magnolia Press All outputs in CentAUR are protected by Intellectual Property Rights law, including copyright law. Copyright and IPR is retained by the creators or other copyright holders. Terms and conditions for use of this material are defined in the End User Agreement . www.reading.ac.uk/centaur CentAUR Central Archive at the University of Reading Reading’s research outputs online Phytotaxa 338 (1): 001–016 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2018 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.338.1.1 Towards an updated checklist of the Libyan flora AHMED M. H. GAWHARI1, 2, STEPHEN L. JURY 2 & ALASTAIR CULHAM 2 1 Botany Department, Cyrenaica Herbarium, Faculty of Sciences, University of Benghazi, Benghazi, Libya E-mail: [email protected] 2 University of Reading Herbarium, The Harborne Building, School of Biological Sciences, University of Reading, Whiteknights, Read- ing, RG6 6AS, U.K.
    [Show full text]
  • BSBI News Index 121-130 ABC 8Pt FINAL
    BSBI News INDEX to Nos 121 – 130 September 2012 to September 2015 Compiled by GWYNN ELLIS ISSN 2397-8813 1 GUIDE TO THE INDEX ABBREVIATIONS AEM Annual Exhibition Meeting Illus. Illustration AGM Annual General Meeting Infl. Inflorescence ASM Annual Summer Meeting Lvs Leaves cf. confer (compare) photo © photo copyright holder congrats congratulations Rev. Review CS Colour Section Rpt Report del. delineavit (drawn) s.l. sensu lato (broad sense) Descr. Description s.s. sensu stricto (narrow sense) Diag. Diagram v.c. vice-county Exbn Exhibition v.cc. vice-counties Exbt Exhibit (♀) female parent Fld Mtg Rpt Field Meeting Report (♂) male parent Fls Flowers ACKNOWLEDGEMENTS: The compiler wishes to thank David Pearman for much helpful advice and for scrutinising the final text. However, responsibility for checking the index and its final form rests solely with the compiler. BOOKS et al. are italicised as are Periodicals and scientific names COLOUR PAGES: In the index all colour page numbers are distinguished by being underlined with the cover pages enclosed in square brackets [ ]. The front cover and inside front cover are numbered [i] and [ii] respectively while the inside back and back cover pages are numbered according to the number of pages, thus with an issue of 76 pages the inside back cover is [77] and the back cover [78]. Colour Section plates are numbered CS1, CS2, CS3, CS4. Photographers are now indexed by name with the qualification (photo ©) COMPILATION: Using the original text on computer, the entries for each issue were generated by deleting all unwanted text. After checking, the entries were then sorted into alphabetical order, condensed, and finally output as pdf files for the Printer.
    [Show full text]
  • Buchbesprechungen 247-296 ©Verein Zur Erforschung Der Flora Österreichs; Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Neilreichia - Zeitschrift für Pflanzensystematik und Floristik Österreichs Jahr/Year: 2006 Band/Volume: 4 Autor(en)/Author(s): Mrkvicka Alexander Ch., Fischer Manfred Adalbert, Schneeweiß Gerald M., Raabe Uwe Artikel/Article: Buchbesprechungen 247-296 ©Verein zur Erforschung der Flora Österreichs; download unter www.biologiezentrum.at Neilreichia 4: 247–297 (2006) Buchbesprechungen Arndt KÄSTNER, Eckehart J. JÄGER & Rudolf SCHUBERT, 2001: Handbuch der Se- getalpflanzen Mitteleuropas. Unter Mitarbeit von Uwe BRAUN, Günter FEYERABEND, Gerhard KARRER, Doris SEIDEL, Franz TIETZE, Klaus WERNER. – Wien & New York: Springer. – X + 609 pp.; 32 × 25 cm; fest gebunden. – ISBN 3-211-83562-8. – Preis: 177, – €. Dieses imposante Kompendium – wohl das umfangreichste Werk zu diesem Thema – behandelt praktisch alle Aspekte der reinen und angewandten Botanik rund um die Ackerbeikräuter. Es entstand in der Hauptsache aufgrund jahrzehntelanger Forschungs- arbeiten am Institut für Geobotanik der Universität Halle über Ökologie und Verbrei- tung der Segetalpflanzen. Im Zentrum des Werkes stehen 182 Arten, die ausführlich behandelt werden, wobei deren eindrucksvolle und umfassende „Porträt-Zeichnungen“ und genaue Verbreitungskarten am wichtigsten sind. Der „Allgemeine“ Teil („I.“) beginnt mit der Erläuterung einiger (vor allem morpholo- gischer, ökologischer, chorologischer und zoologischer) Fachausdrücke, darauf
    [Show full text]
  • Systematic Treatment of Veronica L
    eISSN: 2357-044X Taeckholmia 38 (2018): 168-183 Systematic treatment of Veronica L. Section Beccabunga (Hill) Dumort (Plantaginaceae) Faten Y. Ellmouni1, Mohamed A. Karam1, Refaat M. Ali1, Dirk C. Albach2 1Department of Botany, Faculty of Science, Fayoum University, 63514 Fayoum, Egypt. 2Institute of biology and environmental sciences, Carl von Ossietzky-University, 26111 Oldenburg, Germany. *Corresponding author: [email protected] Abstract Veronica species mostly occur in damp fresh water places and in the Mediterranean precipitation regime. Members of this genus grow at different altitudes from sea level to high alpine elevations. They show a high level of polymorphism and phenotypic plasticity in their responses to variations of the enviromental factors, a quality that allows them to occur over a wide range of conditions. A group with particular high levels of polymorphism is the group of aquatic Veronica L. species in V. sect. Beccabunga (Hill) Dumort. Here, we attempt to unravel some confusion in the taxonomic complexity in V. section Beccabunga. We recognize 20 taxa in V. sect. Beccabunga and explore the occurrence of V. section Beccabunga, mainly in the Mediterranean basin; especially in Egypt (Nile delta and Sinai), Turkey and Iran with each country containing 10 taxa, from a total of 20 taxa, and characterized by endemics, or near-endemic as Veronica anagalloides ssp. taeckholmiorum.The results confirmed that V. section Beccabunga is divided into three subsections Beccabunga, Anagallides and Peregrinae, which essentially can be differentiated by the absence or presence of apetiole. Keywords: Morphological key, systematic treatment, Veronica, V. section Beccabunga Introduction The tribe Veroniceae, formerly part of the genus include: life-form (subshrubby/perennial vs.
    [Show full text]
  • Flowering Plants of South Norwood Country Park
    Flowering Plants Of South Norwood Country Park Robert Spencer Introduction South Norwood Country Park relative to its size contains a wide range habitats and as a result a diverse range of plants can be found growing on site. Some of these plants are very conspicuous, growing in great abundance and filling the park with splashes of bright colour with a white period in early May largely as a result of the Cow Parsley, this is followed later in the year by a pink period consisting of mainly Willow herbs. Other plants to be observed are common easily recognisable flowers. However there are a great number of plants growing at South Norwood Country Park that are less well-known or harder to spot, and the casual observer would likely be surprised to learn that 363 species of flowering plants have so far been recorded growing in the park though this number includes invasive species and garden escapes. This report is an update of a report made in 2006, and though the site has changed in the intervening years the management and fundamental nature of the park remains the same. Some plants have diminished and some have flourished and the high level of diversity is still present. Many of these plants are important to other wildlife particularly in their relationship to invertebrate pollinators, and some of these important interactions are referenced in this report. With so many species on the plant list there is a restriction on how much information is given for each species, with some particularly rare or previously observed but now absent plants not included though they appear in the index at the back of the report including when they were last observed.
    [Show full text]
  • Plantaginaceae)
    TAXON 61 (4) • August 2012: 867–870 Sánchez Agudo & al. • Contribution to the nomenclature of Veronica A contribution toward clarifying the nomenclature of Veronica L. (Plantaginaceae) Jose Ángel Sánchez Agudo,1 M. Montserrat Martínez-Ortega,1 Steve Cafferty2 & Enrique Rico1 1 Departamento de Botánica, Universidad de Salamanca, 37007, Spain 2 Department of Botany, The Natural History Museum, Cromwell Road, London SWH 5BD, U.K. Author for correspondence: Jose Ángel Sánchez Agudo, [email protected] Abstract During a taxonomic revision of the genus Veronica L. for the Flora iberica project, an attempt was made to fix the correct status of the names cited in the study area. With this aim, here we have designated lectotypes, neotypes and epitypes for 18 previously untypified names, mainly belonging to annual species, some of them widely distributed such as V. persica and V. praecox. These newly proposed types support the current use of the names concerned and therefore contribute to estab- lishing the correct nomenclature of the genus. Keywords nomenclature; Plantaginaceae; Scrophulariaceae; Veronica; taxonomy; typification INTRODUCTION newly proposed types would support the current use of the valid names studied. We always chose to typify by the most The genus Veronica (Plantaginaceae sensu APG, 1998; complete specimen whenever a choice was possible between formerly Scrophulariaceae) is the largest genus within the tribe specimens and illustrations, except in cases where the extant Veroniceae. It includes 12 subgenera (Albach & al., 2009) with specimens might disrupt current use of the name. When this ca. 450 species (including the Hebe complex, Albach & al., was not possible owing to the ambiguity of the original ma- 2004a, 2009) worldwide, although most of them are only pres- terial or lack thereof, an epitype or neotype, as appropriate, ent in the floras of temperate regions of the Northern Hemi- was designated.
    [Show full text]