<<

Folia Morphol. Vol. 77, No. 1, pp. 44–56 DOI: 10.5603/FM.a2017.0064 O R I G I N A L A R T I C L E Copyright © 2018 Via Medica ISSN 0015–5659 www.fm.viamedica.pl

Variability and constraint of vertebral formulae and proportions in , tree shrews, and , with special reference to vertebral modification by aerodynamic adaptation T. Kawashima1, R.W. Thorington Jr.2, P.W. Bohaska2, F. Sato1

1Department of Anatomy, School of Medicine, Toho University, Tokyo, Japan 2Department of Vertebrae Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States

[Received: 4 April 2017; Accepted: 19 June 2017]

Background: The aim of the present study is to provide the first large data set on vertebral formulae and proportions, and examine their relationship with different locomotive modes in colugos (Dermoptera), tree shrews (Scandentia), and rodents (Rodentia), which have been considered less variable because they were thought to have a plesiomorphic number of 19 thoracolumbar vertebrae. Materials and methods: The data included 33 colugos and 112 tree shrews, which are phylogenetically sister taxa, and 288 additional skeletons from 29 other mammalian adapted to different locomotive modes, flying, gliding, arboreal, terrestrial, digging, and semi-aquatic habitats. Results: The following results were obtained: (1) intra-/interspecies variability and geographical variation in thoracic, lumbar, and thoracolumbar counts were pre- sent in two gliding species and 12 terrestrial/arboreal tree shrew species; (2) in our examined , some aerodynamic mammals, such as colugos, southern flying , scaly-tailed squirrels, and , showed exceptionally high amounts of intraspecific variation of thoracic, lumbar, and thoracolumbar counts, and sugar gliders and some semi-aquatic rodents also showed some variation; (3) longer thoracic and shorter lumbar vertebrae were typically shared traits among the examined mammals, except for flying squirrels (Pteromyini) and scaly-tailed squirrels (Anomaluridae). Conclusions: Our study reveals that aerodynamic adaptation could potentially lead to strong selection and modification of vertebral formulae and/or proportions based on locomotive mode despite evolutionary and developmental constraints. (Folia Morphol 2018; 77, 1: 44–56)

Key words: colugo, tree shrew, aerodynamic mammals, vertebral column, gliding adaptation

INTRODUCTION using classical descriptive data by Owen [38]; they Narita and Kuratani [33] provided developmental concluded that 19 thoracolumbar (TL) vertebrae in understanding of mammalian axial vertebral formulae many mammalian groups tend to be fixed because

Address for correspondence: Dr. T. Kawashima, Department of Anatomy, School of Medicine, Toho University. 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan, tel: +81-3-3762-4151, fax: +81-3-5493-5411, e-mail: [email protected]

44 T. Kawashima et al., Vertebral changes in aerodynamic mammals

of developmental constraints, as seen in a stable ships among axial vertebral counts and proportions, cervical count of 7; however, most have lineage-specific developmental constraints, and/or 20 TL vertebrae, which shows a lineage-specific pat- functional adaptation by different locomotive modes. tern. Because of the limited sample size in Owen’s catalogue [38], to obtain more accurate conclusions MATERIALS AND METHODS it is necessary to examine a larger sample size, as in Materials used some studies [1, 39, 41, 54, 55, 62]. In total, 433 postcranial skeletons were used for Asher et al. [2] conducted a statistical analysis on this study, as listed in Table 1. mammalian vertebral formulae using a larger sam- As the main materials, the vertebral formulae and ple size and concluded that xenarthrans and afroth- proportions of 33 colugos (or flying ; Dermop- erians have a high proportion of individuals with tera) and 112 tree shrews (Scandentia) were intensively meristic deviation from species’ median counts, and examined from dry skeletons to assess their morpho- , xenarthrans, afrotherians, and logical similarities and differences, because they are have relatively high variation in TL count [2]. The phylogenetically sister taxa. extreme vertebral formulae in some mammals, such Furthermore, an additional 288 postcranial skel- as afrotherians and xenarthrans, have recently been etons from 29 mammalian specimens of 16 , thoroughly re-examined [7, 23, 42]. , and (sub-) families that include all Alternatively, it is well known that rodents are other aerodynamic mammals were compared to the least variable mammals and are thought to have test the hypothesis that morphological changes of a fixed TL count of 19 without any deviations [2, 42]. vertebral formula and proportion differ based on However, they live in a wide variety of habitats, such locomotive mode. Any individuals with pathological as air, trees, land, water, and soil; additionally, they abnormalities were excluded from this study. represent 38% of species [10]. To identify the lineage-specific trend in TL counts of rodents, various Identification and measurement of vertebrae rodents should be examined, from frequently used For identification of each vertebra, the vertebral experimental rodents to uniquely specialised rodents, morphology was considered the most important cri- such as gliding scaly-tailed squirrels (Anomalidae) and terion, as in other studies [2, 40]. burrowing pocket gophers (Geomyodae), which have Thoracic vertebrae were principally identified as not been previously studied. those elements with rib facets on or near the verte- In our past research on colugos [27, 28], we found bral neural arch, or the presence of articulated ribs. that there was insufficient data regarding colugo In addition, anatomical characteristics were usually anatomy compared with other mammals. Colugos, present, such as species-dependent morphology of arboreal and nocturnal mammals with a specialised the shape, size, width, height, and angle of the ver- ability to glide, tend to evade capture [31]. There are tebral body, and transverse and spinous processes therefore limited specimens available for research. with lumbar vertebrae (Fig. 1A, B). We tested the hypothesis that axial vertebrae If there were difficulties with identification of short adapt to different locomotive modes, and are modi- unarticulated ribs or long lumbar transverse processes fied despite evolutionary and developmental con- (Fig. 1C), thoracic and lumbar vertebrae were identi- straints, using some of the perceived least variable fied based on the above anatomical characteristics; mammals with regard to thoracolumbar count (fixed the thoracic vertebrae were generally more slender at 19), including colugos, tree shrews, and rodents. and weaker than lumbar vertebrae [40], although The aims of the present study are to (1) provide these vertebral characteristics differ by species. the first large data set on vertebral formulae and Lumbar vertebrae were identified as those ele- proportions in colugos and tree shrews, which are ments cranial to the sacro-iliac articulation lacking sister taxa; (2) compare these data with those of ro- conspicuous rib facets and showing a transverse pro- dents adapted to different locomotive modes, such as cess (Fig. 1D). Some difficult cases, in which the most those that are gliding/arboreal, terrestrial, digging, or caudal lumbar vertebra partially fused into sacral semi-aquatic, and include all five aerodynamic mam- vertebrae as one sacral bone and articulated with mals: colugos, flying squirrels, scaly-tailed squirrels, the iliac bone, were defined based on anatomical sugar gliders, and bats; and (3) elucidate the relation- characteristics.

45 Folia Morphol., 2018, Vol. 77, No. 1

+12;5 G1<9=54<1C5A91;B +12;5 G1<9=54<1C5A91;B+12;5 G1<9=54<1C5A91;B Table 1. Examined materials *?5395B 129C1CB $>3><>C9E5<>45B *1= +12;5 G1<9=54<1C5A91;B *?5395B*?5395B 129C1CB $>3><>C9E5<>45B 129C1CB $>3><>C9E5<>45B*1=!=BC9CDC9>= +12;5 G1<9=54<1C5A91;B>;D7>B>A;H9=7;5?C5A1 +12;5 G1<9=54<1C5A91;B+12;5 G1<9=54<1C5A91;B>;D>7;>DB7>>BA>A;H9=;H79=;57<;5DC5?AC15A1 *?5395B 129C1CB $>3><>C9E5<>45B *1=!=BC9CDC9>= Species+12;5 G1<9=54<1C5A91;B+12;5 G1<9=54<1C5A91;B *?5395B 129C1CB $>3><>C9E5<>45BHabitats/Locomotive modes*1=Institution** +12;5 G1<9=54<1C5A91;B+12;5 G1<9=54<1C5A91;B>;D0 # "/ /$%&" 70 # "/ /$%&" >B>A;H9=7;5?C5A1 *?5395B 129C1CB $>3><>C9E5<>45B *1= >;;D7>0 # "/ /$%&" B>AA;;H99=7;;5?CC5AA1 *?5395B*?5395B 129C1CB $>3><>C9E5<>45B129C1CB $>3><>C9E5<>45B *1=!=BC9CDC9>= +12;5 G1<9=54<1C5A91;B>;D7>B>A;H9=7;5;D7>AB'A45A5A<>? /$%&"+),%"$)C5A1 *?5395B*?5395B  ;949=7 129C1CB $>3><>C9E5<>45B129C1CB $>3><>C9E5<>45B 1=79=7 A2>A51; *1=!=BC9CDC9>= &  +12;5 G1<9=54<1C5A91;B>;D70 # "/ /$%&" >B>A;H9=7;5<(89;9??9=53>;D7>DA(89;9??9=53>;D7>B'A45A5A<>? /$%&"+),%"$)C5 /$%&"+),%"$)A1 *?5395B   ;949=7  129C1CB $>3><>C9E5<>45B ;949=7  1=79=7 A2>A51; 1=79=7 A2>A51; *1= &  &  +12;5 G1<9=54<1C5A91;B>>;D;D77>0 # "/ /$%&" >BB>>AA;H;H9=9=77;5;5<>??CC55AA11 Colugos>>;D;D77>>B orB>> AFlyingA;H;H9=9=7 7lemurs;5;5<;D7>AABB (''AA4455AA Dermoptera55AA<< "%&*(+),( *+)>>??CC55AA11) *?5395B ;949=7 129C1CB $>3><>C9E5<>45B 1=79=7 A2>A51; *1=  ,%0 %'  >;D70 # "/ /$%&" >B>A;H9=7;5<*D=413>;D7>D(89;9??9=53>;D7>AB*D=413>;D7>'A45A5A "%&*(+),( *+)<> "%&*(+),( *+)?C /$%&"+),%"$)5A1 *?5395B  ;949=7  ;949=7 129C1CB $>3><>C9E5<>45B ;949=7  1=79=7 A2>A51; 1=79=7 A2>A51;1=79=7 A2>A51; *1=  ,%0 %'   ,%0 %'  &  0 # "/ /$%&" 0 # "/ /$%&" (89;9??9=53>;D7> /$%&"+),%"$)*?5395B  ;949=7 129C1CB $>3><>C9E5<>45B 1=79=7 A2>A51; *1= &  >;D70 # "/ /$%&" Family>0 # "/ /$%&" B>A Cynocephalidae;H9=7;5?C5A1  ,&$$ $)+" ,,( *+) ,%($$+) >;D70 # "/ /$%&" >B>A;H9=7;5;D7>*D=413>;D7>AB'A45A5A< "%&*(+),( *+)>? /$%&"+),%"$)C5A1   ;949=7  1=79=7 A2>A51;   ,*&% %&,*&% %& ,&$$ $)+" ,&$$ $)+" %% %' ,%0  % %& %& ,,( *+) ,,( *+)  ,%0 %'  ,%($$+) ,%($$+) &  >;D7>B>A;H9=7;5<(89;9??9=53>;D7>D(89;9??9=53>;D7>*D=413>;D7>AB'A45A5A< "%&*(+),( *+)> /$%&"+),%"$)? /$%&"+),%"$)C5A1  ;949=7  ;949=7  ;949=7  1=79=7 A2>A51;1=79=7 A2>A51;1=79=7 A2>A51;    ,*&% %&,*&% %&,*&% %& %% %' ,%0  % %& %% %' ,%0  % %& %&  ,%0 %'  & &  0 # "/ /$%&" (89;9??9=53>;D7>Philippine(89;9??9=53>;D7> colugo ( /$%&"+),%"$)Cynocephalus /$%&"+),%"$) volans) ;949=7  ;949=7 Gliding/Hanging/Arboreal 1=79=7 A2>A51;1=79=7 A2>A51; BD2C>C1;   ,*&% %&%" */+$!$%-$,*&% %&14 %% %' ,%0  % %&%% %' ,%0  % %&USNM (2); FMNH (7); MM (1); & &  MO (1); UMZ(1), GM(1); MNHN(1) 0 # "/ /$%&" (89;9??9=53>;D7>*D=413>;D7> "%&*(+),( *+) /$%&"+),%"$)  ;949=7  1=79=7 A2>A51; BD2C>C1;BD2C>C1;   %" */+$!$%-$,*&% %&,*&% %& ,&$$ $)+"%" */+$!$%-$ %% %' ,%0  % %& %& ,,( *+)  ,%0 %'  ,%($$+) &  0 # "/ /$%&" *D=413>;D7>*D=413>;D7>Sunda colugo "%&*(+),( *+) ( "%&*(+),( *+)Galeopterus variegatus) ;949=7  ;949=7 Gliding/Hanging/Arboreal 1=79=7 A2>A51;1=79=7 A2>A51;   ,*&% %&,*&% %& ,&$$ $)+"19  %& %& ,,( *+)  ,%0 %'  ,%0 %' USNM(13); AMNH ,%($$+) (2); FMNH (1); UMZ(1); MO (2) +A55B8A5FB'A45A*3*D=413>;D7>(89;9??9=53>;D7>1*D=413>;D7>=45=C91 "%&*(+),( *+) "%&*(+),( *+) /$%&"+),%"$) ;949=7  ;949=7  ;949=7  1=79=7 A2>A51;1=79=7 A2>A51;1=79=7 A2>A51;    ,*&% %&,*&% %&,*&% %& %% %' ,%0  % %& %& %&  ,%0 %'  ,%0 %'  &  +A5+5A5B85AB58FA5BFB'A'45A4A5*A3*1(89;9??9=53>;D7>*D=413>;D7>=341=54=5C9=1C91 "%&*(+),( *+) /$%&"+),%"$)  ;949=7  1=79=7 A2>A51; BD2C>C1;   ,*&% %&,*&% %&%" */+$!$%-$ ,&$$ $)+" %% %' ,%0  % %& %& ,,( *+)  ,%0 %'  ,%($$+) &  (89;9??9=53>;D7> /$%&"+),%"$) ;949=7  1=79=7 A2>A51; BD2C>C1;  ,*&% %&%" */+$!$%-$ ,&$$ $)+"%" */+$!$%-$ ,&$$ $)+" %% %' ,%0  % %& ,,( *+) ,,( *+);D7> "%&*(+),( *+) ;949=7  1=79=7 A2>A51;  ,*&% %& ,&$$ $)+" ,&$$ $)+"  %& ,,( *+) ,,( *+)  ,%0 %'  ,%($$+) ,%($$+) +A55 # "/+& B8 # "/+& A5FB'A45A*3*D=413>;D7>1=45=C91 "%&*(+),( *+) ;949=7  1=79=7 A2>A51; BD2C>C1;  ,*&% %&%" */+$!$%-$ ,&$$ $)+"  %& ,,( *+)  ,%0 %'  ,%($$+) +AA55B8AA5FB'AA45AA*3*D=413>;D7>1=45=CC991 "%&*(+),( *+) ;949=7  1=79=7 A2>A51; BD2C>C1;BD2C>C1;  %" */+$!$%-$%" */+$!$%-$,*&% %&  %&  ,%0 %' ; Locality unknown (3)> &>AC85A=CA55B8A5F+& "$  +5AA5BCA91;A2>A51; BD2C>C1;BD2C>C1; %" */+$!$%-$,*&%*&%" */+$!$%-$ ,&$$ $)+" %  ,,( *+) ,%($$+) +A55B # "/+& 8A5FB'A45A*&>AC85A=CA55B8A5F31=&>AC85A=CA55B8A5F45=C91 +& "$ +& "$   +5AA5BCA91;A2>A51; +5AA5BCA91;A2>A51; BD2C>C1;  ,*&%*&%" */+$!$%-$ ,&$$ $)+",*&%*& %  %  ,,( *+) ,%($$+) ++AA5555BB8 # "/+&  # "/+& 8AA55FFBB''AA4455AA**3311==4455==CC9191  ,&$$ $)+" ,,( *+) ,%($$+) Treeshrews++AA5555BB88AA55FFB B(Order''AA4455A AScandentia**331><<>=CA55B8A5F1==4455==CC9191) +& " ) +5AA5BCA91;A2>A51;  BD2C>C1; %" */+$!$%-$,*&% %0 %&  %& #(%&   +A55B # "/+& 8A5FB'A45A*3><<>=CA55B8A5F&>AC85A=CA55B8A5F1=><<>=CA55B8A5F45=C91 +& " )+& "$ +& " )   +5AA5BCA91;A2>A51;  +5AA5BCA91;A2>A51; +5AA5BCA91;A2>A51;  BD2C>C1; ,*&% %0 %&%" */+$!$%-$,*&%*&,*&% %0 %& %   %&  %&  #(%&#(%&      # "/+&  # "/+& Family &>AC85A=CA55B8A5F+& "$  +5AA5BCA91;A2>A51; BD2C>C1; %" */+$!$%-$,*&%*& %  +A55B # "/+&  # "/+& 8A5FB'A45A*3&93>21ACA55B8A5F1=45=C91 +& $ %(  A2>A51;+5AA5BCA91; ,*&%  +A55B # "/+& 8A5FB'A45A*3&93>21ACA55B8A5F&>AC85A=CA55B8A5F><<>=CA55B8A5F1=&93>21ACA55B8A5F45=C91 +& $ %( +& " )+& "$ +& $ %(    A2>A51;+5AA5BCA91;+5AA5BCA91;A2>A51;  +5AA5BCA91;A2>A51; A2>A51;+5AA5BCA91;  ,*&% ,*&%*&,*&% %0 %&,*&%  %   %& #(%&   +A55B8A5FB'A45A*&>AC85A=CA55B8A5F3&>AC85A=CA55B8A5F><<>=CA55B8A5F1Northern=45=C91 treeshrew +& "$ (+& "$ +& " ) belangei ) +5AA5BCA91;A2>A51;  +5AA5BCA91;A2>A51; +5AA5BCA91;A2>A51; Terrestrial/Arboreal *1  ,*&%*&,*&%*&,*&% %0 %&8 % %   %&USNM (7); SDNHM#(%& (1)    # "/+& &>AC85A=CA55B8A5F$>=76>>C54CA55B8A5F&>AC85A=CA55B8A5F+& "$ +& "$ +& "%$ &)  +5AA5BCA91;A2>A51; +5AA5BCA91;A2>A51; +5AA5BCA91;A2>A51;  ,*&%*&,*&%,*&%*& % %   # "/+& $>=76>>C54CA55B8A5F&>AC85A=CA55B8A5F><<>=CA55B8A5F&93>21ACA55B8A5F$>=76>>C54CA55B8A5F+& $ %( +& "$ +& " )+& "%$ &)+& "%$ &)     +5AA5BCA91;A2>A51;  +5AA5BCA91;A2>A51; A2>A51;+5AA5BCA91;+5AA5BCA91;A2>A51; +5AA5BCA91;A2>A51;   ,*&%,*&%*&,*&% %0 %&,*&% ,*&% %   %& #(%&    # "/+& ><<>=CA55B8A5F><<>=CA55B8A5F&93>21ACA55B8A5F+& $ %( +& " ) +& " )(Tupaia glis)  +5AA5BCA91;A2>A51;  +5AA5BCA91;A2>A51;  A2>A51;+5AA5BCA91;Terrestrial/Arboreal *1, 2  ,*&% %0 %&,*&% %0 %&,*&% 46  %& %&USNM (11);  MCZ#(%&#(%& (28);    AMNH (2); ><<>=CA55B8A5F&>AC85A=CA55B8A5F ><<>=CA55B8A5F>AB695;4BCA55B8A5F+& " )+& "$ +& " )+&  ,$    +5AA5BCA91;A2>A51;  +5AA5BCA91;A2>A51;  +5AA5BCA91;A2>A51;  ,*&% %0 %&,*&% %&,*&%*&,*&% %0 %& %   %& %& #(%&#(%&    &>AC85A=CA55B8A5F><<>=CA55B8A5F&93>21ACA55B8A5F$>=76>>C54CA55B8A5F>AB695;4BCA55B8A5F >AB695;4BCA55B8A5F+& $ %( +& " )+& "$ +& +& +& "%$ &) ,$  ,$   +5AA5BCA91;A2>A51;  +5AA5BCA91;A2>A51; A2>A51;+5AA5BCA91;+5AA5BCA91;A2>A51; +5AA5BCA91;A2>A51;   ,*&% %&,*&%*&,*&% %0 %&,*&% ,*&%,*&% %& %    %& #(%&   &93>21ACA55B8A5F&93>21ACA55B8A5F&>AC85A=CA55B8A5F$>=76>>C54CA55B8A5F+& $ %( +& $ %( +& "$ +& "%$ &)  A2>A51;+5AA5BCA91;A2>A51;+5AA5BCA91;+5AA5BCA91;A2>A51;  ,*&% ,*&% ,*&%,*&%*& %  FMNH (4); KPMNH (1) &93>21ACA55B8A5F><<>=CA55B8A5F(H721ACA55B8A5F+& # $%(+& $ %( +& $ %( +& " )  +5AA5BCA91;A2>A51;  A2>A51;+5AA5BCA91;A2>A51;+5AA5BCA91;A2>A51;+5AA5BCA91;   ,*&% ,*&%,*&% %0 %&,*&%   %& #(%&   (H7<<>=CA55B8A5F&93>21ACA55B8A5F$>=76>>C54CA55B8A5F (H7AB695;4BCA55B8A5F+& # $%(+& $ %( +& # $%(+& " )+& +& "%$ &) ,$     +5AA5BCA91;A2>A51;  A2>A51;+5AA5BCA91;A2>A51;+5AA5BCA91;+5AA5BCA91;A2>A51; A2>A51;+5AA5BCA91;   ,*&%,*&% ,*&% %0 %&,*&%,*&% %&,*&%   %& #(%&   $>=76>>C54CA55B8A5F$>=76>>C54CA55B8A5F><<>=CA55B8A5F >AB695;4BCA55B8A5F+& " )+& +& "%$ &)+& "%$ &) ,$   +5AA5BCA91;A2>A51;  +5AA5BCA91;A2>A51; +5AA5BCA91;A2>A51; +5AA5BCA91;A2>A51;  ,*&%,*&%,*&% %&,*&% %0 %&   %& #(%&   $>=76>>C54CA55B8A5F&93>21ACA55B8A5F%1D=C19=CA55B8A5FNicobar$>=76>>C54CA55B8A5F treeshrew (+& $ %( Tupaia+& #%$*$+& "%$ &)+& "%$ &) nicobarica)  +5AA5BCA91;A2>A51; A2>A51;+5AA5BCA91;+5AA5BCA91;A2>A51; A2>A51; +5AA5BCA91;Arboreal/Terrestrial *3   ,*&%,*&% ,*&%1 USNM (1) %1D=C19=CA55B8A5F&93>21ACA55B8A5F$>=76>>C54CA55B8A5F (H7AB695;4BCA55B8A5F+& # $%(+& $ %( +& #%$*$+& +& #%$*$+& "%$ &) ,$    A2>A51;+5AA5BCA91;A2>A51;+5AA5BCA91;+5AA5BCA91;A2>A51; A2>A51; +5AA5BCA91;A2>A51; +5AA5BCA91;  ,*&% ,*&% ,*&%,*&% %&,*&%,*&%   &93>21ACA55B8A5F(H7AB695;4BCA55B8A5F>AB695;4BCA55B8A5F treeshrew+& # $%(+& $ %( +& +&  (Tupaia ,$  ,$  longipes  ) +5AA5BCA91;A2>A51; A2>A51;+5AA5BCA91;A2>A51;+5AA5BCA91;+5AA5BCA91;A2>A51; Terrestrial/Arboreal *1   ,*&% %&,*&% %&,*&% ,*&%3  USNM (3) $>=76>>C54CA55B8A5F$1A75CA55B8A5F >AB695;4BCA55B8A5F>AB695;4BCA55B8A5F+& *$+& +& +& "%$ &) ,$  ,$   +5AA5BCA91;A2>A51; +5AA5BCA91;A2>A51; +5AA5BCA91;A2>A51;  ,*&% %&,*&%,*&% %&,*&% %&  %&  $1A75CA55B8A5F$>=76>>C54CA55B8A5F (H7AB695;4BCA55B8A5F$1A75CA55B8A5F+& *$+& # $%(+& *$+& #%$*$+& +& "%$ &) ,$    +5AA5BCA91;A2>A51; A2>A51;+5AA5BCA91;+5AA5BCA91;A2>A51; +5AA5BCA91;A2>A51; A2>A51; +5AA5BCA91;   ,*&% %&,*&%,*&% %&,*&%,*&% ,*&% %&  %&  %&   (H7=76>>C54CA55B8A5F%1D=C19=CA55B8A5FHorsfield’s treeshrew+& # $%(+& # $%(+& #%$*$ (Tupaia+& "%$ &) javanica )  A2>A51;+5AA5BCA91;A2>A51;+5AA5BCA91;+5AA5BCA91;A2>A51; A2>A51; +5AA5BCA91;Terrestrial/Arboreal *1   ,*&%,*&%,*&% ,*&%4 USNM (1); AMNH (3) (H7AB695;4BCA55B8A5F+& # $%(+& # $%(+& ( " )+&  ,$    A2>A51;+5AA5BCA91;+5AA5BCA91;A2>A51; A2>A51;+5AA5BCA91;A2>A51; +5AA5BCA91;   ,*&%,*&% ,*&% %&,*&%  *;5=45ACA55B8A5F (H7AB695;4BCA55B8A5F*;5=45ACA55B8A5F+& *$+& # $%(+& ( " )+& ( " )+& #%$*$+&  ,$     A2>A51;+5AA5BCA91;+5AA5BCA91;A2>A51; A2>A51; +5AA5BCA91;A2>A51; +5AA5BCA91;A2>A51; +5AA5BCA91;  ,*&% ,*&%,*&% %&,*&% ,*&% %&,*&%   %&  %1D=C19=CA55B8A5F%1D=C19=CA55B8A5F $1A75CA55B8A5FPygmy>AB695;4BCA55B8A5F treeshrew+& *$ (Tupaia+& #%$*$+& #%$*$+&  minor ,$ )   +5AA5BCA91;A2>A51; A2>A51; +5AA5BCA91;A2>A51; +5AA5BCA91;Arboreal/Terrestrial *4   ,*&% ,*&% ,*&% %&,*&% %&7  %& USNM (7) %1D=C19=CA55B8A5F(H7A=51=B<>>C8C19;54CA55B8A5F%1D=C19=CA55B8A5F+& # $%(+& #%$*$+& #%$*$ $(%"#"$+(  A2>A51;+5AA5BCA91;(A54><9=1=C;H1A2>A51;A2>A51; +5AA5BCA91;A2>A51; +5AA5BCA91;  ,*&% ,*&%%0 ,*&%  >A=51=B<>>C8C19;54CA55B8A5F(H7A=51=B<>>C8C19;54CA55B8A5F treeshrew+& *$+& # $%(+& ( " ) (+& #%$*$Tupaia montana   $(%"#"$+( $(%"#"$+()   A2>A51;+5AA5BCA91;(A54><9=1=C;H1A2>A51;+5AA5BCA91;A2>A51; A2>A51; +5AA5BCA91;(A54><9=1=C;H1A2>A51;Arboreal/Terrestrial   %0 ,*&% ,*&%,*&% %&,*&% %0 1  %& USNM (1) $1A75CA55B8A5F$1A75CA55B8A5F(H7A51; A2>A51;+5AA5BCA91;+5AA5BCA91;A2>A51; A2>A51; +5AA5BCA91;    ,*&% %&,*&% %&,*&% ,*&%  %& %&  $1A75CA55B8A5F%1D=C19=CA55B8A5F%9=41=1>CA55B8A5F$1A75CA55B8A5F+& *$+& *$+& #%$*$(%",(**   +5AA5BCA91;A2>A51; +5AA5BCA91;A2>A51; +5AA5BCA91;A2>A51; A2>A51; +5AA5BCA91;   ,*&% %&,*&% %&,*&% %&    %& %&  %9=41=1>CA55B8A5F%1D=C19=CA55B8A5F$1A75CA55B8A5F*;5=45ACA55B8A5F>A=51=B<>>C8C19;54CA55B8A5FLarge%9=41=1>CA55B8A5F treeshrew (+& *$Tupaia+& ( " )(%",(** +& #%$*$(%",(** tana)  $(%"#"$+(   +5AA5BCA91;A2>A51; +5AA5BCA91;A2>A51; (A54><9=1=C;H1A2>A51;+5AA5BCA91;A2>A51; A2>A51; +5AA5BCA91;Terrestrial/Arboreal *1  %&,*&% ,*&% %&,*&% %0 %&    27  %& USNM(21); AMNH (2); FMNH (4) *;5=45ACA55B8A5F*;5=45ACA55B8A5F%1D=C19=CA55B8A5F>A=51=B<>>C8C19;54CA55B8A5F+& ( " )+& ( " )+& #%$*$ $(%"#"$+(  (A54><9=1=C;H1A2>A51;A2>A51; +5AA5BCA91;A2>A51; +5AA5BCA91; ,*&% ,*&% ,*&% %0  0 # "/* "%( *;5=45ACA55B8A5F$1A75CA55B8A5F*;5=45ACA55B8A5F+& *$+& ( " )+& ( " )  +5AA5BCA91;A2>A51; A2>A51; +5AA5BCA91;A2>A51; +5AA5BCA91;  ,*&% ,*&% %&,*&%   %&  0 # "/* "%( 0 # "/* "%( $1A75CA55B8A5F*;5=45ACA55B8A5F>A=51=B<>>C8C19;54CA55B8A5F%9=41=1>CA55B8A5F+& *$ (+& ( " )Tupaia(%",(** gracilis ) $(%"#"$+(  +5AA5BCA91;A2>A51; (A54><9=1=C;H1A2>A51;A2>A51; +5AA5BCA91;Arboreal/Terrestrial  ,*&% ,*&% %&%0 %&  2  %& USNM(2) >A=51=B<>>C8C19;54CA55B8A5F>A=51=B<>>C8C19;54CA55B8A5F$1A75CA55B8A5F%9=41=1>CA55B8A5F+& *$(%",(**  $(%"#"$+( $(%"#"$+(  (A54><9=1=C;H1A2>A51;+5AA5BCA91;A2>A51; (A54><9=1=C;H1A2>A51;  %0 %0 ,*&% %&%&    %&  >A=51=B<>>C8C19;54CA55B8A5F*;5=45ACA55B8A5F(5=C19;54+A55B8A5FBornean>A=51=B<>>C8C19;54CA55B8A5F smooth-tailed+& ( " ) * "%(+)"%- treeshrew  $(%"#"$+( $(%"#"$+(  (A54><9=1=C;H1A2>A51;(A54><9=1=C;H1A2>A51;A2>A51; +5AA5BCA91;PredominantlyA2>A51; arboreal %0 %0 %&,*&% %0  1   MCZ (1) 0 # "/* "%( (5=C19;54+A55B8A5F*;5=45ACA55B8A5F>A=51=B<>>C8C19;54CA55B8A5F%9=41=1>CA55B8A5F(5=C19;54+A55B8A5F+& ( " )(%",(** * "%(+)"%- * "%(+)"%-  $(%"#"$+(   +5AA5BCA91;A2>A51; (A54><9=1=C;H1A2>A51;A2>A51; +5AA5BCA91;A2>A51;A2>A51; %0 %&,*&% %0 %&%0 %&       0 # "/* "%( 0 # "/* "%( %9=41=1>CA55B8A5F%9=41=1>CA55B8A5F*;5=45ACA55B8A5F+& ( " )(%",(** (%",(**   +5AA5BCA91;A2>A51; +5AA5BCA91;A2>A51; A2>A51; +5AA5BCA91; %&%&,*&%     %9=41=1>CA55B8A5F>A=51=B<>>C8C19;54CA55B8A5F(%9=41=1>CA55B8A5F melanura(%",(** (%",(** ) $(%"#"$+(  +5AA5BCA91;A2>A51; +5AA5BCA91;A2>A51; (A54><9=1=C;H1A2>A51; BD2C>C1;  %&%0 %&    0 # "/* "%( >A=51=B<>>C8C19;54CA55B8A5F%9=41=1>CA55B8A5F(5=C19;54+A55B8A5F(%",(** * "%(+)"%- $(%"#"$+(   +5AA5BCA91;A2>A51; (A54><9=1=C;H1A2>A51;A2>A51; BD2C>C1;BD2C>C1;  %0 %&%0 %&     0 # "/* "%( 0 # "/* "%( >A=51=B<>>C8C19;54CA55B8A5F(5=C19;54+A55B8A5F* "%(+)"%- $(%"#"$+(  (A54><9=1=C;H1A2>A51;A2>A51; %0 %&%0    )>450 # "/* "%( =0 # "/* "%( CB'A45A)>45=%9=41=1>CA55B8A5FMindanaoC91 treeshrew (%",(** (Urogale everetti) +5AA5BCA91;A2>A51; Terrestrial/Arboreal *1 %&  10 FMNH (10) )>)4>54=0 # "/* "%( 5CB=CB'A'45A4A5)A>)4>54=5C%9=41=1>CA55B8A5F(5=C19;54+A55B8A5F9=1C91 (%",(** * "%(+)"%-   +5AA5BCA91;A2>A51; A2>A51; BD2C>C1;  %&%0 %&     (5=C19;54+A55B8A5F(5=C19;54+A55B8A5F%9=41=1>CA55B8A5F(%",(** * "%(+)"%- * "%(+)"%-  +5AA5BCA91;A2>A51; A2>A51;A2>A51; BD2C>C1; %0 %&%0 %&%&      0 # "/* "%( '+ ((")+%(5=C19;54+A55B8A5F(5=C19;54+A55B8A5F(( +(%#%(& * "%(+)"%- * "%(+)"%-  A2>A51;A2>A51; %0 %&%0 %&    )>450 # "/* "%( =FamilyCB'+' (+(A Ptilocercidae4 ("5()A")>+45+%=((5=C19;54+A55B8A5FC%9(1(( +( %+#(%%#(&%(& * "%(+)"%-  A2>A51; BD2C>C1;  %0 %&   )>45=0 # "/* "%( CCB'AA45AA)>45=CC991 BD2C>C1;BD2C>C1;  +# "/*(%#/$(5=C19;54+A55B8A5F ;949=7B@D9AA5;B* "%(+)"%-  A2>A51; BD2C>C1;BD2C>C1;  %0 %&   )>45=+# "/*(%#/$CB+# "/*(%#/$''+ A(4(5"A))>4+5=%(5=C19;54+A55B8A5FPen-tailedC(91( ;949=7B@D9AA5;B + ;949=7B@D9AA5;B( Treeshrew%#%(& (Ptilocercus* "%(+)"%- lowii) A2>A51;Arboreal*5 BD2C>C1;  %0 %&2   MCZ (1); AMNH (1) ))>>4455==CCBB''+A A 4((4(5(5A"A")))>>44+55==%C(5=C19;54+A55B8A5FC9((191(( +((%#%((& * "%(+)"%-  A2>A51; %0 %&   ))>>4455==CCBB''AA4455AA))>>4455==)54791=C6;H9=7B@D9AA5;CC9191 *+( )*&*+( )* ;949=7 A2>A51; BD2C>C1;   ,*&% &+, )>45=C+# "/*(%#/$B''+ A(4(5"A))>4+5)54791=C6;H9=7B@D9AA5;=%C(9)54791=C6;H9=7B@D9AA5;1( ;949=7B@D9AA5;B +(%#%(& *+( )*&*+( )**+( )*&*+( )*  ;949=7 A2>A51; ;949=7 A2>A51; BD2C>C1;   ,*&% &+,,*&% &+, +# "/*(%#/$''++ ( ((")")++%%((((  ;949=7B@D9AA5;B ;949=7B@D9AA5;B+ +((%%##%%((&& BD2C>C1;  )>45=CB''+'+ ( A(4(5")A"))>+4+5%=%"1?1=5B5791=C6;H9=7B@D9AA5;(C(91(( + +((%%##%%((&& *+( )*"+%$/) ;949=7 A2>A51; ,*&% %, #(%&  )>45=C+# "/*(%#/$B''+ A(4(5"A))>+45"1?1=5B5791=C6;H9=7B@D9AA5;%=)54791=C6;H9=7B@D9AA5;(C9"1?1=5B5791=C6;H9=7B@D9AA5;1( ;949=7B@D9AA5;B +(%#%(& *+( )*&*+( )**+( )*"+%$/)*+( )*"+%$/)   ;949=7 A2>A51; ;949=7 A2>A51; ;949=7 A2>A51;  ,*&% %, #(%&,*&% &+,,*&% %, #(%&   Rodents)>45=+# "/*(%#/$C+# "/*(%#/$ B(Order'A45 ARodentia)>45=)54791=C6;H9=7B@D9AA5;C91)  ;949=7B@D9AA5;B ;949=7B@D9AA5;B*+( )*&*+( )* ;949=7 A2>A51;  ,*&% &+, +# "/*(%#/$+# "/*(%#/$'+ ((")+%.89C5613546;H9=7B@D9AA5;(( ;949=7B@D9AA5;B ;949=7B@D9AA5;B +(%#%(& *+( )*"%(++)"$ ;949=7 A2>A51; ,*&%+&%&*  +# "/*(%#/$'+ ((")+.89C5613546;H9=7B@D9AA5;%)54791=C6;H9=7B@D9AA5;"1?1=5B5791=C6;H9=7B@D9AA5;(.89C5613546;H9=7B@D9AA5;( ;949=7B@D9AA5;B +(%#%(& *+( )*&*+( )**+( )*"%(++)"$*+( )*"%(++)"$*+( )*"+%$/)   ;949=7 A2>A51; ;949=7 A2>A51; ;949=7 A2>A51;  ,*&%,*&% &+,,*&% %, #(%&,*&%+&%&* +&%&*   — 'Squirrels+ ((") +(Suborder)54791=C6;H9=7B@D9AA5;%)54791=C6;H9=7B@D9AA5;"1?1=5B5791=C6;H9=7B@D9AA5;(( )+(%#%(& *+( )*&*+( )**+( )*&*+( )**+( )*"+%$/)  ;949=7 A2>A51; ;949=7 A2>A51; ;949=7 A2>A51;   ,*&% &+,,*&% &+,,*&% %, #(%&  +# "/*(%#/$)54791=C6;H9=7B@D9AA5;*>DC85A=6;H9=7B@D9AA5;)54791=C6;H9=7B@D9AA5; ;949=7B@D9AA5;B*+( )*&*+( )* "+%#/),%"$)*+( )*&*+( )*  ;949=7 A2>A51; ;949=7 A2>A51; ;949=7 A2>A51;    ,*&% &+,,*&% +,*&% &+,   +# "/*(%#/$*>DC85A=6;H9=7B@D9AA5;)54791=C6;H9=7B@D9AA5;"1?1=5B5791=C6;H9=7B@D9AA5;.89C5613546;H9=7B@D9AA5;*>DC85A=6;H9=7B@D9AA5; ;949=7B@D9AA5;B "+%#/),%"$)*+( )*&*+( )* "+%#/),%"$)*+( )*"%(++)"$*+( )*"+%$/)    ;949=7 A2>A51; ;949=7 A2>A51; ;949=7 A2>A51;    ,*&% +,*&% &+,,*&% %, #(%&,*&%,*&% ++&%&*       Subfamily+# "/*(%#/$ Pteromynae"1?1=5B5791=C6;H9=7B@D9AA5;"1?1=5B5791=C6;H9=7B@D9AA5;.89C5613546;H9=7B@D9AA5; (Gliding ;949=7B@D9AA5;B squirrels) *+( )*"%(++)"$*+( )*"+%$/)*+( )*"+%$/) ;949=7 A2>A51; ;949=7 A2>A51; ;949=7 A2>A51; ,*&% %, #(%&,*&% %, #(%&,*&%+&%&*   +# "/ +( $"1?1=5B5791=C6;H9=7B@D9AA5;)54791=C6;H9=7B@D9AA5;"1?1=5B5791=C6;H9=7B@D9AA5;+A55B@D9AA5;B *+( )*&*+( )**+( )*"+%$/)*+( )*"+%$/)  ;949=7 A2>A51; ;949=7 A2>A51; ;949=7 A2>A51;  ,*&% %, #(%&,*&% &+,,*&% %, #(%&  +# "/ +( $+# "/ +( $)54791=C6;H9=7B@D9AA5;"1?1=5B5791=C6;H9=7B@D9AA5;.89C5613546;H9=7B@D9AA5;*>DC85A=6;H9=7B@D9AA5;Red+A55B@D9AA5;B giant+A55B@D9AA5;B flying (Petaurista "+%#/),%"$)*+( )*&*+( )**+( )*"%(++)"$*+( )*"+%$/) petaurista )  ;949=7 A2>A51;Gliding/Arboreal   ,*&% &+,,*&% %, #(%&,*&%,*&% +13+&%&*    USNM (10); NTU (3) .89C5613546;H9=7B@D9AA5;.89C5613546;H9=7B@D9AA5;)54791=C6;H9=7B@D9AA5;*>DC85A=6;H9=7B@D9AA5; "+%#/),%"$)*+( )*&*+( )**+( )*"%(++)"$*+( )*"%(++)"$   ;949=7 A2>A51; ;949=7 A2>A51; ;949=7 A2>A51;   ,*&%,*&%,*&% +,*&% &+,+&%&* +&%&*    .89C5613546;H9=7B@D9AA5;"1?1=5B5791=C6;H9=7B@D9AA5;"1?1=5B5B@D9AA5;.89C5613546;H9=7B@D9AA5; +(+)" )*+( )*"%(++)"$*+( )*"%(++)"$ *+( )*"+%$/) A2>A51; +5AA5BCA91; ;949=7 A2>A51; ;949=7 A2>A51; ;949=7 A2>A51;  ,*&%%,#(%&,*&% %, #(%&,*&%+&%&* +&%&*     +# "/ +( $"1?1=5B5B@D9AA5;"1?1=5B5791=C6;H9=7B@D9AA5;.89C5613546;H9=7B@D9AA5;*>DC85A=6;H9=7B@D9AA5;Japanese"1?1=5B5B@D9AA5;+A55B@D9AA5;B giant flying +(+)" ) +(+)" ) squirrel "+%#/),%"$)*+( )*"%(++)"$ *+( )*"+%$/)(Petaurista leucogenys ) A2>A51; +5AA5BCA91; ;949=7 A2>A51;A2>A51; +5AA5BCA91;Gliding/Arboreal   %,#(%&,*&%,*&% %, #(%&,*&% +%,#(%&12+&%&*        USNM (1); DMU (2); KPMNH (9) +# "/ +( $*>DC85A=6;H9=7B@D9AA5;*>DC85A=6;H9=7B@D9AA5;"1?1=5B5791=C6;H9=7B@D9AA5;+A55B@D9AA5;B+A55B@D9AA5;B "+%#/),%"$) "+%#/),%"$)*+( )*"+%$/)  ;949=7 A2>A51; ;949=7 A2>A51;   ,*&% +,*&% +,*&% %, #(%&     *>DC85A=6;H9=7B@D9AA5;.89C5613546;H9=7B@D9AA5;1BC5A=7A1HB@D9AA5;*>DC85A=6;H9=7B@D9AA5; +(+)(%" $$) ) "+%#/),%"$) "+%#/),%"$)*+( )*"%(++)"$  A2>A51; +5AA5BCA91; ;949=7 A2>A51; ;949=7 A2>A51; ;949=7 A2>A51;    ,*&% +,*&% ,*&%,*&% ++&%&*     +# "/ +( $1BC5A=7A1HB@D9AA5;.89C5613546;H9=7B@D9AA5;*>DC85A=6;H9=7B@D9AA5;"1?1=5B5B@D9AA5;White-faced1BC5A=7A1HB@D9AA5;+A55B@D9AA5;B flying  +(+)" )squirrel +(+)(%" $$) ) +(+)(%" $$) ) "+%#/),%"$) *+( )*"%(++)"$(Petaurista alborufus   lena) A2>A51; +5AA5BCA91;A2>A51; +5AA5BCA91; ;949=7 A2>A51;A2>A51; +5AA5BCA91;Gliding/Arboreal     ,*&% ,*&% +,*&%%,#(%&,*&% 22+&%&*      USNM (3); TNMNS (19) +# "/ +( $+# "/ +( $.89C5613546;H9=7B@D9AA5;"1?1=5B5B@D9AA5;+A55B@D9AA5;B+A55B@D9AA5;B +(+)" )*+( )*"%(++)"$  A2>A51; +5AA5BCA91; ;949=7 A2>A51;  %,#(%&,*&%+&%&*    +# "/ +( $+# "/ +( $*>DC85A=6;H9=7B@D9AA5;(1;;1BBB@D9AA5;Southern+A55B@D9AA5;B+A55B@D9AA5;B ""%) +(+)(/*(+) (Glaucomys "+%#/),%"$) volans ) ;949=7 A2>A51;Gliding/Arboreal   +%&* ,*&% +18   USNM(16); TH (2) +# "/ +( $(1;;1BBB@D9AA5;*>DC85A=6;H9=7B@D9AA5;"1?1=5B5B@D9AA5;1BC5A=7A1HB@D9AA5;(1;;1BBB@D9AA5;+A55B@D9AA5;B ""%) +(+)(/*(+) ""%) +(+)(/*(+) +(+)" ) +(+)(%" $$) ) "+%#/),%"$)   A2>A51; +5AA5BCA91; ;949=7 A2>A51;     +%&* ,*&% +%,#(%&,*&% +%&*      "1?1=5B5B@D9AA5;"1?1=5B5B@D9AA5;*>DC85A=6;H9=7B@D9AA5;1BC5A=7A1HB@D9AA5; +(+)" ) +(+)" ) +(+)(%" $$) ) "+%#/),%"$)  A2>A51; +5AA5BCA91;A2>A51; +5AA5BCA91;A2>A51; +5AA5BCA91; ;949=7 A2>A51;    %,#(%&%,#(%&,*&% +,*&%       Subfamily+# "/ +( $+# "/( $ "1?1=5B5B@D9AA5;"1?1=5B5B@D9AA5;  A>D=4B@D9AA5;B(Tree+A55B@D9AA5;B squirrels)  +(+)" ) +(+)" ) A2>A51; +5AA5BCA91;A2>A51; +5AA5BCA91;  %,#(%&%,#(%&    +# "/( $+# "/ +( $+# "/( $"1?1=5B5B@D9AA5;1BC5A=7A1HB@D9AA5;(1;;1BBB@D9AA5; A>D=4B@D9AA5;B+A55B@D9AA5;B A>D=4B@D9AA5;B ""%) +(+)(/*(+) +(+)" ) +(+)(%" $$) )   A2>A51; +5AA5BCA91;   %,#(%&,*&% +%&*    +# "/ +( $1BC5A=7A1HB@D9AA5;1BC5A=7A1HB@D9AA5;(1;;1BBB@D9AA5;+A55B@D9AA5;B ""%) +(+)(/*(+) +(+)(%" $$) ) +(+)(%" $$) ) A2>A51; +5AA5BCA91;A2>A51; +5AA5BCA91;    ,*&% ,*&% +%&*  1BC5A=7A1HB@D9AA5;"1?1=5B5B@D9AA5;;13:C19;54?A19A954>71BC5A=7A1HB@D9AA5; +(+)" ) +(+)(%" $$) ) +(+)(%" $$) ) /$%#/)"+%,  $+)   A2>A51; +5AA5BCA91;A2>A51; +5AA5BCA91;A2>A51; +5AA5BCA91;+5AA5BCA91; 9779=7   ,*&% %,#(%&,*&%,*&%    +# "/( $;13:C19;54?A19A954>7"1?1=5B5B@D9AA5;1BC5A=7A1HB@D9AA5;(1;;1BBB@D9AA5;Japanese;13:C19;54?A19A954>7 A>D=4B@D9AA5;B squirrel ""%) +(+)(/*(+) ( +(+)" ) +(+)(%" $$) ) /$%#/)"+%,  $+) /$%#/)"+%,  $+) lis)     +5AA5BCA91; 9779=7A2>A51; +5AA5BCA91;+5AA5BCA91; 9779=7Arboreal/Terrestrial     ,*&%%,#(%&,*&% +%&* ,*&%6   DMU (4); KPMNH (2) +# "/( $+# "/( $(1;;1BBB@D9AA5;(1;;1BBB@D9AA5;"1?1=5B5B@D9AA5; A>D=4B@D9AA5;B A>D=4B@D9AA5;B ""%) +(+)(/*(+) ""%) +(+)(/*(+) +(+)" )  A2>A51; +5AA5BCA91;   +%&* +%&* %,#(%&   (1;;1BBB@D9AA5;1BC5A=7A1HB@D9AA5;(A19A954>7(1;;1BBB@D9AA5; /$%#/))& ""%) +(+)(/*(+) ""%) +(+)(/*(+) +(+)(%" $$) )   A2>A51; +5AA5BCA91;+5AA5BCA91; 9779=7    +%&* ,*&% %,+%&*  +# "/( $(A19A954>71BC5A=7A1HB@D9AA5;(1;;1BBB@D9AA5;;13:C19;54?A19A954>7Eastern(A19A954>7 A>D=4B@D9AA5;B gray /$%#/))& squirrel /$%#/))& ""%) +(+)(/*(+) (Sciurus +(+)(%" $$) ) /$%#/)"+%,  $+) carolinensis)  +5AA5BCA91; 9779=7A2>A51; +5AA5BCA91;+5AA5BCA91; 9779=7+5AA5BCA91; 9779=7Arboreal/Terrestrial    %,+%&* ,*&% ,*&%%,16 USNM (16) +# "/( $+# "/( $1BC5A=7A1HB@D9AA5;;13:C19;54?A19A954>7 A>D=4B@D9AA5;B A>D=4B@D9AA5;B  +(+)(%" $$) ) /$%#/)"+%,  $+)  A2>A51; +5AA5BCA91;+5AA5BCA91; 9779=7  ,*&% ,*&% +# "/( $+# "/( $(1;;1BBB@D9AA5; A>D=48>7Pallas’s A>D=4B@D9AA5;B A>D=4B@D9AA5;B squirrel(#%*#%$. (Callosciurus ""%) +(+)(/*(+) erythraeus) +5AA5BCA91; 9779=7  +%&* ,*&%%, 14 TMNS (14) +# "/( $ A>D=48>7(1;;1BBB@D9AA5;;13:C19;54?A19A954>7(A19A954>7 A>D=48>7 A>D=4B@D9AA5;B(#%*#%$. /$%#/))&(#%*#%$. ""%) +(+)(/*(+) /$%#/)"+%,  $+)     +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7+5AA5BCA91; 9779=7  ,*&%%, +%&* ,*&%%,,*&%%,  ;13:C19;54?A19A954>7;13:C19;54?A19A954>7(1;;1BBB@D9AA5;(A19A954>7 /$%#/))& ""%) +(+)(/*(+) /$%#/)"+%,  $+) /$%#/)"+%,  $+)   +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7+5AA5BCA91; 9779=7   ,*&%,*&%+%&* %, +# "/( $;13:C19;54?A19A954>7;13:C19;54?A19A954>7 A>D=4B@D9AA5;B /$%#/)"+%,  $+) /$%#/)"+%,  $+) +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7   ,*&%,*&% Subfamily+# "/( $ Xerinae;13:C19;54?A19A954>7(A19A954>7 A>D=48>7 (Ground A>D=4B@D9AA5;B squirrels) /$%#/))&(#%*#%$. /$%#/)"+%,  $+)   +5AA5BCA91; 9779=7     ,*&%%,,*&%%,  +# "/( $(A19A954>7(A19A954>7 A>D=48>7 A>D=4B@D9AA5;B /$%#/))& /$%#/))&(#%*#%$.  +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7+5AA5BCA91; 9779=7   %,%,,*&%%,  +%((/)*(A19A954>7(;13:C19;54?A19A954>7(A19A954>7 %#%(& /$%#/))& /$%#/))& /$%#/)"+%,  $+)  +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7+5AA5BCA91; 9779=7  %,,*&%%, ++%(%(((/)*/() ;13:C19;54?A19A954>7(A19A954>7 A>D=48>7*Black-tailed(% #%%#(&%(& /$%#/))&prairie(#%*#%$. dog (Cynomys /$%#/)"+%,  $+)  ludovicianus) +5AA5BCA91; 9779=7Terrestrial/Digging    ,*&%%,,*&%%, 7 USNM (7) A>D=48>7 A>D=48>7;13:C19;54?A19A954>7(#%*#%$.(#%*#%$. /$%#/)"+%,  $+)  +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7    ,*&%%, ,*&%%, ,*&%  # "/ ,  A>D=48>7(A19A954>7Prairie A>D=48>7 dog ((#%*#%$.Cynomys /$%#/))&(#%*#%$. sp.)  +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7+5AA5BCA91; 9779=7Terrestrial/Digging  ,*&%%, %,,*&%%, 4 DMU (4)  # "/ ,  # "/ , +%((/)*((A19A954>7 A>D=48>7 %#%(& /$%#/))&(#%*#%$.  +5AA5BCA91; 9779=7    ,*&%%, %, +%((((/)**(((A19A954>7 %#%((& /$%#/))& +5AA5BCA91; 9779=7    %, A>D=48>7 D9=51?97Groundhog , &%(""+)((#%*#%$.Marmota monax ) +5AA5BCA91; 9779=7Terrestrial/Digging    ,*&%%, ,*&%11+ +&%&* '%&USNM (9);  DMU (2)  # "/ ,  # "/ , ++%%((((//))** D9=51?97(( A>D=48>7  D9=51?97%%##%%((&& , &%(""+)(#%*#%$. , &%(""+)  +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7+5AA5BCA91; 9779=7   ,*&%,*&%%, ,*&%++ +&%&* '%& +&%&* '%&    # "/ , ++%%((((//))**(( A>D=48>7 %%##%%((&& (#%*#%$. +5AA5BCA91; 9779=7 ,*&%%, <123>  # "/ , +%((/)*( D9=51?97 %#%(& , &%(""+) +5AA5BCA91; 9779=7   ,*&%+ +&%&* '%&   # "/ , +%((/)*( D9=51?97 %#%(& , &%(""+) +5AA5BCA91; 9779=7   ,*&%++ +&%&* '%&+&%&* '%&   # "/ ,  # "/ ,  # "//%)*%(  — Suborder Hystricomorpha D9=51?97 , &%(""+) +5AA5BCA91; 9779=7 ,*&%+ +&%&* '%&   # "//%)*%(  # "/ ,  # "/ , +%((/)*( D9=51?97 %#%(& , &%(""+) +5AA5BCA91; 9779=7 ,*&%+ +&%&* '%&  Family # "//%)*%( +% (Caviidae(/)* D9=51?97( D9=51?97 %#%(& , &%(""+) , &%(""+) +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7 ,*&%,*&%++ +&%&* '%&+&%&* '%&   # "/ ,  D9=51?97&DCA91 D9=51?97/%)*%(%/&+) , &%(""+) , &%(""+) +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7*5<91@D1C93  ,*&%,*&%%, ,*&%++ +&%&* '%&+&%&* '%&#(%&  '%&    # "/ ,  # "//%)*%( &DCA91 D9=51?97&DCA91/%)*%(%/&+)/%)*%(%/&+) , &%(""+)  +5AA5BCA91; 9779=7*5<91@D1C93*5<91@D1C93   ,*&%%, ,*&%,*&%%, + +&%&* '%&#(%&#(%&  '%&  '%&    # "/ ,  # "//%)*%(  # "//%)*%( Guinea pig (Cavia porcellus) Terrestrial/Digging 11 USNM (4); TH(3): TNMNS (1); OCMNH (3)  # "//%)*%(  D9=51?97&DCA91/%)*%(%/&+) , &%(""+)  +5AA5BCA91; 9779=7*5<91@D1C93  ,*&%,*&%%, + +&%&* '%&#(%&  '%&    # "//%)*%(  D9=51?97&DCA91/%)*%(%/&+) , &%(""+)  +5AA5BCA91; 9779=7*5<91@D1C93  ,*&%%, ,*&%+ +&%&* '%&#(%&  '%&    # "//%)*%(  # "//%)*%(  # "//)(  &DCA91/%)*%(%/&+) *5<91@D1C93  ,*&%%, #(%&  '%&   # "//)(   # "//%)*%( Family # "//%)*%(  Myocastoridae&DCA91/%)*%(%/&+) *5<91@D1C93  ,*&%%, #(%&  '%&   # "//)(  &DCA91&DCA91/%)*%(%/&+)/%)*%(%/&+) *5<91@D1C93*5<91@D1C93   ,*&%%, ,*&%%, #(%&#(%&  '%& '%&   # "//%)*%( &DCA91B91C932ADB8C19;54?>A3D?9=5&DCA91/%)*%(%/&+)/%)*%(%/&+) *(+(#(+( +5AA5BCA91; 9779=7*5<91@D1C93*5<91@D1C93   ,*&%%, ,*&%,*&%%, %& #(%&#(%&  '%& '%&   # "//%)*%(  # "//)(  B91C932ADB8C19;54?>A3D?9=5&DCA91NutriaB91C932ADB8C19;54?>A3D?9=5 (/%)*%(%/&+)Myocastor coypus) *(+(#(+( *(+(#(+(  +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7*5<91@D1C93Semi-aquatic   ,*&%,*&%%, ,*&%13%&%&  #(%&  '%&USNM (6); DMU(2); KPMNH (1); OCMNH (4)  # "//%)*%(  # "//)(   # "//)(    # "//)(  6A931=3A5BC54?>A3D?9=5&DCA916A931=3A5BC54?>A3D?9=5B91C932ADB8C19;54?>A3D?9=5/%)*%(%/&+)/)*( .( )**"*/)*( .( )**"* *(+(#(+( +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7*5<91@D1C93   ,*&% ,*&%%, ,*&% ,*&%%&%& %, &+,0% '%&%, &+,0% '%&#(%&  '%&      # "//)(   # "//)(  &DCA91B91C932ADB8C19;54?>A3D?9=56A931=3A5BC54?>A3D?9=5/%)*%(%/&+) /)*( .( )**"* *(+(#(+(  +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7*5<91@D1C93   ,*&%%, ,*&%,*&% %&%&  %, &+,0% '%&#(%&  '%&     # "//)(  Family # "//)(   Hysricidae B91C932ADB8C19;54?>A3D?9=5HBCA9G?>A3D?9=5B/)*( .)&& *(+(#(+(  +5AA5BCA91; 9779=7  ,*&% &+,0% ,*&%%&   # "//)(   B91C932ADB8C19;54?>A3D?9=56A931=3A5BC54?>A3D?9=5HBCA9G?>A3D?9=5B HBCA9G?>A3D?9=5B/)*( .)&&/)*( .)&&/)*( .( )**"* *(+(#(+(   +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7+5AA5BCA91; 9779=7  ,*&% &+,0% ,*&%,*&% ,*&% &+,0% %& %, &+,0% '%&   B91C932ADB8C19;54?>A3D?9=5B91C932ADB8C19;54?>A3D?9=56A931=3A5BC54?>A3D?9=5/)*( .( )**"* *(+(#(+( *(+(#(+(  +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7+5AA5BCA91; 9779=7  ,*&%,*&%,*&% %&%&%& %, &+,0% '%&    # "//)(   # "//(%%( B91C932ADB8C19;54?>A3D?9=5AsiaticB91C932ADB8C19;54?>A3D?9=5 brush-tailed porcupine (Atherura *(+(#(+( *(+(#(+( macrura) +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7Terrestrial/Digging  ,*&%,*&%7%&%&  USNM (3); AMNH (4) # "//(%%(  # "//)(   # "//(%%( B91C932ADB8C19;54?>A3D?9=56A931=3A5BC54?>A3D?9=5 HBCA9G?>A3D?9=5B/)*( .)&&/)*( .( )**"* *(+(#(+(   +5AA5BCA91; 9779=7  ,*&%,*&% ,*&% &+,0% %& %, &+,0% '%&    # "//)(  6A931=3A5BC54?>A3D?9=56A931=3A5BC54?>A3D?9=5 AfricanHBCA9G?>A3D?9=5B crested porcupine/)*( .)&& /)*( .( )**"*(/)*( .( )**"*Hystrix cristata galeata) +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7+5AA5BCA91; 9779=7Terrestrial/Digging  ,*&% ,*&% ,*&% &+,0% 8%&%& %, &+,0% '%&%, &+,0% '%&USNM (1); AMNH (4);    DMU (1); NTUZM (1); OCMNH (1) 6A931=3A5BC54?>A3D?9=5B91C932ADB8C19;54?>A3D?9=51?H21A16A931=3A5BC54?>A3D?9=5/(%%(+)/(%( )/)*( .( )**"*/)*( .( )**"* *(+(#(+(  +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7+5AA5BCA91; 9779=7*5<91@D1C93  ,*&% ,*&%%,#(%&,*&%,*&% %&%&%& %, &+,0% '%&%, &+,0% '%&     # "//(%%( 1?H21A1 B91C932ADB8C19;54?>A3D?9=56A931=3A5BC54?>A3D?9=5 HBCA9G?>A3D?9=5B1?H21A1HBCA9G?>A3D?9=5B/(%%(+)/(%( )/(%%(+)/(%( )/)*( .)&&/)*( .)&&/)*( .( )**"* *(+(#(+(     +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7*5<91@D1C93*5<91@D1C93  ,*&%%,#(%&,*&% &+,0% ,*&%,*&% ,*&% &+,0% ,*&%%,#(%&%& %, &+,0% '%&     # "//(%%(  B91C932ADB8C19;54?>A3D?9=5HystrixHBCA9G?>A3D?9=5BHBCA9G?>A3D?9=5B porcupines /)*( .)&&(/)*( .)&&Hystrix spp. *(+(#(+()  +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7+5AA5BCA91; 9779=7Terrestrial/Digging  ,*&% &+,0% ,*&% &+,0% ,*&%4%&  USNM (2); NTUZM (2) # "//(%%( 6A931=3A5BC54?>A3D?9=51?H21A1 HBCA9G?>A3D?9=5B/(%%(+)/(%( )/)*( .)&&/)*( .( )**"*   +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7*5<91@D1C93  ,*&% ,*&%%,#(%&,*&% &+,0% %& %, &+,0% '%&    # "//(%%( Family Hydrochoeridae6A931=3A5BC54?>A3D?9=51?H21A1 HBCA9G?>A3D?9=5B/(%%(+)/(%( )/)*( .)&&/)*( .( )**"*   +5AA5BCA91; 9779=7*5<91@D1C93  ,*&%%,#(%&,*&% ,*&% &+,0% %& %, &+,0% '%&    # "//(%%(  # "//(%%( 1?H21A1/(%%(+)/(%( ) *5<91@D1C93  ,*&%%,#(%&  # "//(%%(  # "//(%%(  1?H21A1CapybaraHBCA9G?>A3D?9=5B (/(%%(+)/(%( )Hydrochoerus/)*( .)&& hydrochaeris ) +5AA5BCA91; 9779=7*5<91@D1C93Semi-aquatic   ,*&% &+,0% ,*&%%,#(%&10 USNM (4); DMU (3); KPMNH (3) 1?H21A11?H21A1 HBCA9G?>A3D?9=5B/(%%(+)/(%( )/(%%(+)/(%( )/)*( .)&&  +5AA5BCA91; 9779=7*5<91@D1C93*5<91@D1C93  ,*&%%,#(%&,*&%%,#(%&,*&% &+,0%   # "//(%%( +%((/%#1?H21A11?H21A1%(& /(%%(+)/(%( )/(%%(+)/(%( ) *5<91@D1C93*5<91@D1C93 ,*&%%,#(%&,*&%%,#(%&   # "//(%%( ++%(%(((/%#/%1?H21A1%#(&%(& /(%%(+)/(%( ) *5<91@D1C93  ,*&%%,#(%&<53>  # "//(%%(    # "/+(  # "/+( +%((/%#1?H21A1%(& /(%%(+)/(%( ) *5<91@D1C93  ,*&%%,#(%&   # "/+( +%((((/%#1?H21A1%((& /(%%(+)/(%( ) *5<91@D1C93  ,*&%%,#(%&  +%((/%#A>F=A1C%(& **+)$%(, +) +5AA5BCA91;   ,*&% +.%, +  %,   # "/+( — # "/+(  +Suborder+%%((((/ /Myomorpha%%#A>F=A1C#%%A>F=A1C((&& **+)$%(, +)**+)$%(, +)  +5AA5BCA91;+5AA5BCA91;    ,*&% +.%, ,*&% +.%, + +   %, %,   # "/+( ++%%((((//%%##%%((&&  # "/+( +%((/%#A>F=A1C%(& **+)$%(, +) +5AA5BCA91;   ,*&% +.%, +  %,   # "/+( Family+% (Muridae(/%#A>F=A1C%(& **+)$%(, +) +5AA5BCA91;   ,*&% +.%, +  %, %,   # "/+(  # "/+(  # "/ %#/%A>F=A1C**+)$%(, +) +5AA5BCA91;  ,*&% +.%, +  %,   # "/ %#/% # "/+(  # "/+( +%((/%#A>F=A1CBrown%(& rat (**+)$%(, +)Rattus norvegicus) +5AA5BCA91;Terrestrial  ,*&% +.%, 14 +  USNM%,  (10); TWMU (2); TH (1); DMU(1)  # "/ %#/%+%((/%A>F=A1C#A>F=A1C%(& **+)$%(, +)**+)$%(, +) +5AA5BCA91;+5AA5BCA91;   ,*&% +.%, ,*&% +.%, ++   %, %,   # "/+(  A>F=A1C5B5AC?>3:5C7>?85AA>F=A1C**+)$%(, +)**+)$%(, +) %#/)($( +)  +5AA5BCA91; 9779=7+5AA5BCA91;+5AA5BCA91;   ,*&% +.%, ,*&%,*&% +.%, ++   %, %,   # "/+(  # "/ %#/%5B5AC?>3:5C7>?85AA>F=A1C5B5AC?>3:5C7>?85A**+)$%(, +) %#/)($( +) %#/)($( +)   +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7+5AA5BCA91;   ,*&%,*&% +.%, ,*&% +  %,   # "/+(  # "/ %#/% # "/ %#/%  # "/ %#/%Family Geomyodae(;19=B?>3:5C7>?85AA>F=A1C(;19=B?>3:5C7>?85A5B5AC?>3:5C7>?85A**+)$%(, +) %#/)+()( +) %#/)+()( +) %#/)($( +)   +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7+5AA5BCA91;   ,*&%,*&% +.%, ,*&%,*&% +  %,   # "/ %#/% # "/ %#/%A>F=A1C5B5AC?>3:5C7>?85A(;19=B?>3:5C7>?85A**+)$%(, +) %#/)($( +) %#/)+()( +)  +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7+5AA5BCA91;   ,*&% +.%, ,*&%,*&% +  %,   # "/ %#/% # "/ )*%(  # "/ %#/%5B5AC?>3:5C7>?85ADesert pocket gopher (Geomys %#/)($( +) arenarius) +5AA5BCA91; 9779=7Terrestrial/Digging  ,*&%3 USNM (3)  # "/ )*%(  # "/ %#/% # "/ )*%( 5B5AC?>3:5C7>?85A(;19=B?>3:5C7>?85A %#/)+()( +) %#/)($( +) +5AA5BCA91; 9779=7  ,*&%,*&% 5B5AC?>3:5C7>?85A5B5AC?>3:5C7>?85A(;19=B?>3:5C7>?85A %#/)($( +) %#/)+()( +) %#/)($( +) +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7+5AA5BCA91; 9779=7  ,*&%,*&%,*&%  # "/ %#/%5B5AC?>3:5C7>?85A&>AC8<5A931=251E5APlains5B5AC?>3:5C7>?85A pocket gopher (Geomys %#/)($( +) %#/)($( +) )*%($$) ) bursarius)  +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7*5<91@D1C93Terrestrial/Digging  ,*&%,*&% %, ,*&%9 USNM (9)  # "/ %#/% # "/ )*%( &>AC8<5A931=251E5A5B5AC?>3:5C7>?85A(;19=B?>3:5C7>?85A&>AC8<5A931=251E5A %#/)+()( +) %#/)($( +) )*%($$) ) )*%($$) )   +5AA5BCA91; 9779=7*5<91@D1C93*5<91@D1C93   ,*&% %, ,*&%,*&%,*&% %,   # "/ %#/% # "/ )*%( Family # "/ )*%(  Castoridae(;19=B?>3:5C7>?85A(;19=B?>3:5C7>?85A %#/)+()( +) %#/)+()( +) +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7  ,*&%,*&% (;19=B?>3:5C7>?85A5B5AC?>3:5C7>?85ADA1B91=251E5A(;19=B?>3:5C7>?85A )*%( ( %#/)+()( +) %#/)+()( +) %#/)($( +)  +5AA5BCA91; 9779=7+5AA5BCA91; 9779=7+5AA5BCA91; 9779=7*5<91@D1C93   ,*&%,*&%,*&% ,*&%  # "/ )*%( DA1B91=251E5A5B5AC?>3:5C7>?85A(;19=B?>3:5C7>?85A&>AC8<5A931=251E5ADA1B91=251E5A )*%( ( )*%( ( %#/)+()( +) %#/)($( +) )*%($$) )    +5AA5BCA91; 9779=7*5<91@D1C93*5<91@D1C93*5<91@D1C93  ,*&% ,*&%,*&%,*&% %, ,*&%   # "/ )*%(  # "/ )*%( 5B5AC?>3:5C7>?85A&>AC8<5A931=251E5ANorth American beaver %#/)($( +) ( )*%($$) )Castor canadensis)  +5AA5BCA91; 9779=7*5<91@D1C93Semi-aquatic  ,*&% %, ,*&%13 USNM (12); DMU (1)  # "/ )*%(  # "/ $%#"+(  # "/ )*%( (;19=B?>3:5C7>?85A %#/)+()( +) +5AA5BCA91; 9779=7  ,*&%  # "/ $%#"+(  # "/ )*%(  # "/ $%#"+( (;19=B?>3:5C7>?85A&>AC8<5A931=251E5ADA1B91=251E5A )*%( ( %#/)+()( +) )*%($$) )   +5AA5BCA91; 9779=7*5<91@D1C93  ,*&%,*&% %, ,*&%  &>AC8<5A931=251E5A&>AC8<5A931=251E5A(;19=B?>3:5C7>?85ADA1B91=251E5AEurasian beaver ( )*%( (Castor %#/)+()( +) )*%($$) ) )*%($$) )fiber)   +5AA5BCA91; 9779=7*5<91@D1C93*5<91@D1C93*5<91@D1C93Semi-aquatic   ,*&% %, ,*&% %, ,*&%,*&% 2 USNM (2)  # "/ )*%( &>AC8<5A931=251E5A$>A45A2HBB31;HC19;54B@D9AA5;&>AC8<5A931=251E5A )*%($$) ) )*%($$) ) $%#"+(+)( $+)  ;949=7 A2>A51;*5<91@D1C93*5<91@D1C93    ,*&% %, ,*&%,*&% %, %&   # "/ $%#"+(  # "/ )*%(  # "/ $%#"+( $>A45A2HBB31;HC19;54B@D9AA5;DA1B91=251E5A&>AC8<5A931=251E5ADA1B91=251E5A$>A45A2HBB31;HC19;54B@D9AA5; )*%( ( )*%( ( )*%($$) ) $%#"+(+)( $+) $%#"+(+)( $+)   ;949=7 A2>A51; ;949=7 A2>A51;*5<91@D1C93*5<91@D1C93    ,*&%,*&% ,*&% %, ,*&% ,*&%%&%&    # "/ )*%( Family # "/ $%#"+(  AnomaluridaeDA1B91=251E5ADA1B91=251E5A )*%( ( )*%( ( *5<91@D1C93*5<91@D1C93 ,*&% ,*&%   # "/ $%#"+( (5;B6;H9=7B@D9AA5;DA1B91=251E5A&>AC8<5A931=251E5A(5;B6;H9=7B@D9AA5;$>A45A2HBB31;HC19;54B@D9AA5;DA1B91=251E5A )*%( ( )*%( ( $%#"+(+)&" $%#"+(+)&" )*%($$) ) $%#"+(+)( $+)   ;949=7 A2>A51; ;949=7 A2>A51;*5<91@D1C93*5<91@D1C93  ,*&% ,*&% %, ,*&% ,*&%,*&%  %&   # "/ $%#"+(  # "/ $%#"+( &>AC8<5A931=251E5A$>A45A2HBB31;HC19;54B@D9AA5;Lord(5;B6;H9=7B@D9AA5; Derby’s scaly-tailed $%#"+(+)&" )*%($$) ) squirrel (Anomalurus $%#"+(+)( $+)  derbianus)  ;949=7 A2>A51; ;949=7 A2>A51;*5<91@D1C93Gliding/Arboreal  ,*&% %, ,*&%,*&% 13%&  USNM (5); AMNH (8)  # "/ $%#"+(  # "/ $%#"+( DA1B91=251E5A$>A45A2HBB31;HC19;54B@D9AA5; )*%( ( $%#"+(+)( $+) ;949=7 A2>A51;*5<91@D1C93  ,*&% ,*&%%&   # "/ $%#"+( 553A>6CBB31;HC19;546;H9=7B@D9AA5;$>A45A2HBB31;HC19;54B@D9AA5;DA1B91=251E5A553A>6CBB31;HC19;546;H9=7B@D9AA5;$>A45A2HBB31;HC19;54B@D9AA5;(5;B6;H9=7B@D9AA5;Pel’s flying squirrel )*%( ( (Anomalurus $%#"+(+)&"  peli) $%#"+(+)( $+) $%#"+(+)( $+) $%#"+(+)(%*  $%#"+(+)(%*   ;949=7 A2>A51; ;949=7 A2>A51; ;949=7 A2>A51;*5<91@D1C93Gliding/Arboreal   ,*&% ,*&%,*&% ,*&% ,*&%2%&%&%&    USNM (2) $>A45A2HBB31;HC19;54B@D9AA5;$>A45A2HBB31;HC19;54B@D9AA5;DA1B91=251E5A(5;B6;H9=7B@D9AA5;553A>6CBB31;HC19;546;H9=7B@D9AA5; )*%( ( $%#"+(+)&"  $%#"+(+)( $+) $%#"+(+)( $+) $%#"+(+)(%*   ;949=7 A2>A51; ;949=7 A2>A51; ;949=7 A2>A51; ;949=7 A2>A51;*5<91@D1C93   ,*&%,*&%,*&% ,*&% %&%&%&     # "/ $%#"+( F1A6B31;HC19;546;H9=7B@D9AA5BBeecroft’s$>A45A2HBB31;HC19;54B@D9AA5; scaly-tailed flying squirrel $%#"+(+)&+) ""+)(Anomalurus $%#"+(+)( $+) beecrofti)  ;949=7 A2>A51; ;949=7 A2>A51;Gliding Arboreal  %&,*&%  2 %&  USNM (1); AMNH (1)  # "/ $%#"+( F1A6B31;HC19;546;H9=7B@D9AA5B(5;B6;H9=7B@D9AA5;$>A45A2HBB31;HC19;54B@D9AA5;(5;B6;H9=7B@D9AA5;553A>6CBB31;HC19;546;H9=7B@D9AA5; $%#"+(+)&" $%#"+(+)&" $%#"+(+)&+) ""+) $%#"+(+)( $+) $%#"+(+)(%*    ;949=7 A2>A51; ;949=7 A2>A51; ;949=7 A2>A51;  %&,*&% ,*&% ,*&%,*&%    %&    # "/ $%#"+( (5;B6;H9=7B@D9AA5;(5;B6;H9=7B@D9AA5;553A>6CBB31;HC19;546;H9=7B@D9AA5;F1A6B31;HC19;546;H9=7B@D9AA5B $%#"+(+)&" $%#"+(+)&"  $%#"+(+)&+) ""+) $%#"+(+)(%*   ;949=7 A2>A51; ;949=7 A2>A51; ;949=7 A2>A51; ;949=7 A2>A51; ,*&% ,*&% ,*&% %&  %&   $>A45A2HBB31;HC19;54B@D9AA5;Dwarf(5;B6;H9=7B@D9AA5; scaly-tailed flying $%#"+(+)&" squirres (Anomalurus $%#"+(+)( $+) pusillus)  ;949=7 A2>A51; ;949=7 A2>A51;Gliding/Arboreal    ,*&%,*&% 2%&  AMNH (2) 553A>6CBB31;HC19;546;H9=7B@D9AA5;$>A45A2HBB31;HC19;54B@D9AA5;(5;B6;H9=7B@D9AA5;553A>6CBB31;HC19;546;H9=7B@D9AA5;F1A6B31;HC19;546;H9=7B@D9AA5B $%#"+(+)&" $%#"+(+)&+) ""+) $%#"+(+)( $+) $%#"+(+)(%*  $%#"+(+)(%*    ;949=7 A2>A51; ;949=7 A2>A51;    ,*&% ,*&%,*&% ,*&% %&   %&%&    553A>6CBB31;HC19;546;H9=7B@D9AA5;553A>6CBB31;HC19;546;H9=7B@D9AA5;$>A45A2HBB31;HC19;54B@D9AA5;F1A6B31;HC19;546;H9=7B@D9AA5B $%#"+(+)&+) ""+) $%#"+(+)( $+) $%#"+(+)(%*  $%#"+(+)(%*    ;949=7 A2>A51; ;949=7 A2>A51; ;949=7 A2>A51;    ,*&% ,*&% ,*&%%&  <60>%&%&%&    (5;B6;H9=7B@D9AA5;F1A6B31;HC19;546;H9=7B@D9AA5B553A>6CBB31;HC19;546;H9=7B@D9AA5; $%#"+(+)&" $%#"+(+)&+) ""+) $%#"+(+)(%*   ;949=7 A2>A51; ;949=7 A2>A51; BD2C>C1; BD2C>C1;  ,*&% %&,*&%    %&   F1A6B31;HC19;546;H9=7B@D9AA5B(5;B6;H9=7B@D9AA5;553A>6CBB31;HC19;546;H9=7B@D9AA5; $%#"+(+)&" $%#"+(+)&+) ""+) $%#"+(+)(%*   ;949=7 A2>A51; BD2C>C1;   %&,*&% ,*&%    F1A6B31;HC19;546;H9=7B@D9AA5BF1A6B31;HC19;546;H9=7B@D9AA5B553A>6CBB31;HC19;546;H9=7B@D9AA5; $%#"+(+)&+) ""+) $%#"+(+)&+) ""+) $%#"+(+)(%*   ;949=7 A2>A51; ;949=7 A2>A51; ;949=7 A2>A51;   %&%&,*&%     %&   11CCBB''AA4455AA88AA>>??CC55AA11553A>6CBB31;HC19;546;H9=7B@D9AA5;F1A6B31;HC19;546;H9=7B@D9AA5BF1A6B31;HC19;546;H9=7B@D9AA5B $%#"+(+)&+) ""+) $%#"+(+)&+) ""+) $%#"+(+)(%*   ;949=7 A2>A51; ;949=7 A2>A51; BD2C>C1;   ,*&% %&%&    %&   1CB'A45A8A>?C5553A>6CBB31;HC19;546;H9=7B@D9AA5;A1 $%#"+(+)(%*  ;949=7 A2>A51; BD2C>C1;    ,*&% %&   Bats (Order # "/*(%&%  Chroptera)F1A6B31;HC19;546;H9=7B@D9AA5B%57121CB $%#"+(+)&+) ""+) ;949=7 A2>A51; BD2C>C1;    %&   1CB # "/*(%&% ' # "/*(%&% A45A8A>?C5A1F1A6B31;HC19;546;H9=7B@D9AA5B %57121CB%57121CB $%#"+(+)&+) ""+) ;949=7 A2>A51; BD2C>C1;   %&   1CCB'AA45AA8AA>?CC5AA1F1A6B31;HC19;546;H9=7B@D9AA5B $%#"+(+)&+) ""+) ;949=7 A2>A51; BD2C>C1; BD2C>C1;  %&   Family Pteropodidae;H9=76>GB??  (Megabats)*(%&+))& ;H9=7 1=79=7 A2>A51; BD2C>C1; BD2C>C1;   ,*&%%, 1CB # "/*(%&% 'A45A8A>?C5A;H9=76>GB?? 1;H9=76>GB?? %57121CB*(%&+))&*(%&+))&  ;H9=7 ;H9=7 1=79=7 A2>A51; 1=79=7 A2>A51; BD2C>C1;   ,*&%%,,*&%%, 11CCBB' # "/*(%&%  # "/*(%&% 'AA4455AA88AA>>??CC55AA11 %57121CB%57121CB   11CCBB''AA4455AA88AA>>??CC55AA11$1A756;H9=76>GFlying fox spp. (Pteropus*(%&+),#&/(+) sp.)  ;H9=7 Flying/Hanging/Arboreal 1=79=7 A2>A51; BD2C>C1;  ,*&%11 USNM (6); DMU (5) 1CB # "/*(%&% 'A45A8A>?C5A$1A756;H9=76>G1;H9=76>GB?? $1A756;H9=76>G%57121CB*(%&+))&*(%&+),#&/(+)*(%&+),#&/(+)   ;H9=7 ;H9=7 ;H9=7 1=79=7 A2>A51; 1=79=7 A2>A51;1=79=7 A2>A51; BD2C>C1;   ,*&%,*&%%,,*&%  # "/*(%&%  # "/*(%&% ;H9=76>GB?? Large%57121CB%57121CB flying fox*(%&+))& (Pteropus vampyrus ) ;H9=7 Flying/Hanging/Arboreal 1=79=7 A2>A51; BD2C>C1;  ,*&%%,4 USNM (4) 1CB # "/*(%&%  # "/*(%&% 'A45A8A>?C5A1 1<<5A85145421C%57121CB%57121CB /&) $*+)#%$)*(%)+) ;H9=7 1=79=7 A2>A51;  ,*&% 1CB # "/*(%&% 'A45A8A>?C5A 1;H9=76>GB?? $1A756;H9=76>G1<<5A85145421C 1<<5A85145421C%57121CB*(%&+))&*(%&+),#&/(+)/&) $*+)#%$)*(%)+)/&) $*+)#%$)*(%)+)    ;H9=7 ;H9=7 ;H9=7 1=79=7 A2>A51; 1=79=7 A2>A51;1=79=7 A2>A51;   ,*&%,*&%%,,*&%,*&% 1CB'A45A8A>?C5A;H9=76>GB?? 1;H9=76>GB?? $1A756;H9=76>GHammer-headed *(%&+))&*(%&+))&*(%&+),#&/(+) bat (Hypsignathus monstrosus) ;H9=7 ;H9=7 ;H9=7 Flying/Hanging/Arboreal 1=79=7 A2>A51;1=79=7 A2>A51;1=79=7 A2>A51;  ,*&%%,,*&%%,,*&%6 USNM (6)  # "/*(%&%  # "//""%)*%# ;H9=76>GB?? ;H9=76>GB?? %57121CB&5F.>A;4;516=>B5421CB*(%&+))&*(%&+))& ;H9=7 ;H9=7 1=79=7 A2>A51;1=79=7 A2>A51; ,*&%%,,*&%%,  # "//""%)*%#  # "/*(%&%  # "//""%)*%# ;H9=76>GB?? $1A756;H9=76>G 1<<5A85145421C%57121CB&5F.>A;4;516=>B5421CB&5F.>A;4;516=>B5421CB*(%&+))&*(%&+),#&/(+)/&) $*+)#%$)*(%)+)   ;H9=7 1=79=7 A2>A51;  ,*&%%,,*&%,*&%  # "/*(%&% Family Phyllostomidae$1A756;H9=76>G$1A756;H9=76>G 1<<5A85145421C%57121CB (New World*(%&+),#&/(+)*(%&+),#&/(+) leaf-nosed/&) $*+)#%$)*(%)+) bats)   ;H9=7 ;H9=7 ;H9=7 1=79=7 A2>A51;1=79=7 A2>A51;1=79=7 A2>A51;  ,*&%,*&%,*&% $1A756;H9=76>G;H9=76>GB?? "1<1931=6AD9C21C$1A756;H9=76>G*(%&+))&*(%&+),#&/(+)*(%&+),#&/(+) (* +) # $) )  ;H9=7 ;H9=7 ;H9=7 1=79=7 A2>A51;1=79=7 A2>A51;1=79=7 A2>A51;  ,*&%,*&%%,,*&%'%&,*&%    # "//""%)*%# "1<1931=6AD9C21C;H9=76>GB?? $1A756;H9=76>G Jamaican"1<1931=6AD9C21C1<<5A85145421C&5F.>A;4;516=>B5421CB fruit bat*(%&+))&*(%&+),#&/(+) (* +)(Artibeus (* +)/&) $*+)#%$)*(%)+) jamaicensis# $) ) # $) ) )   ;H9=7 ;H9=7 ;H9=7 Flying/Hanging/Arboreal 1=79=7 A2>A51;1=79=7 A2>A51; 1=79=7 A2>A51;  ,*&%'%&,*&%%,,*&%,*&%,*&%'%&11     USNM (9); OMNH (2;  # "//""%)*%#  # "//""%)*%#  ;H9=76>GB?? 1<<5A85145421C1<<5A85145421C&5F.>A;4;516=>B5421CB&5F.>A;4;516=>B5421CB*(%&+))&/&) $*+)#%$)*(%)+)/&) $*+)#%$)*(%)+)  ;H9=7 ;H9=7 1=79=7 A2>A51;1=79=7 A2>A51;   ,*&%,*&%,*&%%, $1A756;H9=76>G 1<<5A85145421C1<<5A85145421C*(%&+),#&/(+)/&) $*+)#%$)*(%)+)/&) $*+)#%$)*(%)+)  ;H9=7 ;H9=7 ;H9=7 1=79=7 A2>A51;1=79=7 A2>A51;1=79=7 A2>A51;   ,*&%,*&%,*&%  # "//""%)*%# $1A756;H9=76>G "1<1931=6AD9C21C1<<5A85145421C&5F.>A;4;516=>B5421CB*(%&+),#&/(+) (* +)/&) $*+)#%$)*(%)+) # $) )   ;H9=7 1=79=7 A2>A51;     ,*&%,*&%,*&%'%&<32>    # "//""%)*%#  # "//""%)*%# $1A756;H9=76>G"1<1931=6AD9C21C&5F.>A;4;516=>B5421CB&5F.>A;4;516=>B5421CB*(%&+),#&/(+) (* +) # $) )  ;H9=7 1=79=7 A2>A51;  ,*&%,*&%'%&   %1ABD?91;B!=6A13;1BB%1ABD?91;91 # "//""%)*%#  # "//""%)*%#  1<<5A85145421C&5F.>A;4;516=>B5421CB&5F.>A;4;516=>B5421CB/&) $*+)#%$)*(%)+) ;H9=7 1=79=7 A2>A51;  ,*&% %1ABD?91;B!=6A13;1BB%1ABD?91;91%1ABD?91;B!=6A13;1BB%1ABD?91;91 # "//""%)*%#  "1<1931=6AD9C21C1<<5A85145421C&5F.>A;4;516=>B5421CB (* +)/&) $*+)#%$)*(%)+) # $) )  ;H9=7 1=79=7 A2>A51;    ,*&%,*&%'%&   "1<1931=6AD9C21C"1<1931=6AD9C21C 1<<5A85145421C (* +) (* +)/&) $*+)#%$)*(%)+) # $) ) # $) )  ;H9=7 ;H9=7 1=79=7 A2>A51;1=79=7 A2>A51;    ,*&%'%&,*&%'%&,*&%    MarsupialsDBCA # "//""%)*%# 1;91= (Infraclass<1ABD?91; BMarsupialia)"1<1931=6AD9C21C"1<1931=6AD9C21CDBCA&5F.>A;4;516=>B5421CB1;945;?891'A4 (* +) (* +)5A9?A>C # $) ) ># $) )4>=C91  ;H9=7 ;H9=7 1=79=7 A2>A51;1=79=7 A2>A51; ,*&%'%&,*&%'%&    %1ABD?91;B!=6A13;1BB%1ABD?91;91DBCDAB1 # "//""%)*%# C;A91=;91<=1A;4;516=>B5421CBC;A9415;94;?58;?9189'1A'45 (* +)A4A5A9?A9>?CA>> # $) )4C>4=>C9=1C91  ;H9=7 1=79=7 A2>A51;    ,*&%'%&   Australian%1ABD?91;B!=6A13;1BB%1ABD?91;91 # "//""%)*%#  marsupials (:&5F.>A;4;516=>B5421CB Order )     # "/*+(  # "/*+( "1<1931=6AD9C21C (* +) # $) ) ;H9=7 1=79=7 A2>A51;   ,*&%'%&   %1ABD?91;B!=6A13;1BB%1ABD?91;91%1ABD?91;B!=6A13;1BB%1ABD?91;91DBCCAA1; # "/*+( ;991=<1AABD?991;;B"1<1931=6AD9C21CDBCCAA1;;9945;;?8991'AA4 (* +)5AA99?AA>CC ># $) )4>=CC991  ;H9=7 1=79=7 A2>A51;   ,*&%'%&   %1ABD?91;B!=6A13;1BB%1ABD?91;91%1ABD?91;B!=6A13;1BB%1ABD?91;91DBCAFamily1;91=< Petauridae1ABD?91;B"1<1931=6AD9C21CDBCA1;945;?891'A4 (* +)5A9?A>C # $) )>4>=C91  ;H9=7 1=79=7 A2>A51; ,*&%'%&   %1ABD?91;B!=6A13;1BB%1ABD?91;91*D71A7;945A*D71A7;945A*+(+)(, &)*+(+)(, &) ;949=7 A2>A51; ;949=7 A2>A51;     ,*&% %,,*&% %, %1ABD?91;B!=6A13;1BB%1ABD?91;91DDBBCCAA # "/*+( 1 # "/*+( 1;;9911==<<11AABBDD??9911;;BBSugar*D71A7;945ADDBBCCAA1 1glider;;994455;;?? 88(9Petaurus911*+(+)(, &)''AA4455AA breviceps99??AA>>CC>>44>>)==CC9911 ;949=7 A2>A51;Gliding / Arboreal    ,*&% %,13 USNM (10); DMU (3) DDBBCCAA11 # "/*+( ;9;191==<<11AABBDD??9191;B;BDDBBCCAA11;9;49455;?;?889191''AA4455AA9?9?AA>>CC>>44>>==CC9191   %1ABD?91;B!=6A13;1BB%1ABD?91;91DBCA # "/*+( 1;91=<1ABD?91;B*D71A7;945ADBCA1;945;?8*+(+)(, &)91'A45A9?A>C>4>=C91 ;949=7 A2>A51;  ,*&% %, %1ABD?91;B!=6A13;1BB%1ABD?91;91DBCA # "/*+( 1;91=<1ABD?91;B*D71A7;945ADBCA1;945;?8*+(+)(, &)91'A45A9?A>C>4>=C91 ;949=7 A2>A51;  ,*&% %,  # "/*+(  # "/*+(  # "/%*%( *D71A7;945A*+(+)(, &) ;949=7 A2>A51;  ,*&% %, DBC # "/%*%( A # "/*+(  1 # "/*+(  Family;91=<1 PotoridaeABD?91;B*D71A7;945ADBCA1;945;?8*+(+)(, &)91'A45A9?A>C>4>=C91 ;949=7 A2>A51;  ,*&% %, DBCA1; # "/%*%( 91=<1ABD?91;B*D71A7;945A*D71A7;945ADBCA1;945;?*+(+)(, &)8*+(+)(, &)91'A45A9?A>C>4>=C91 ;949=7 A2>A51; ;949=7 A2>A51;   ,*&% %,,*&% %,  # "/*+( *D71A7;945A(1A<1F1;;12H*D71A7;945A*+(+)(, &)*+(+)(, &)(%&+)&(# ;949=7 A2>A51; ;949=7 A2>A51;+5AA5BCA91;   ,*&% %,%,,*&% %,  # "/*+(  # "/%*%( (1A<1F1;;12H*D71A7;945AParma(1A<1F1;;12H wallaby*+(+)(, &)(%&+)&(# (Macropus(%&+)&(# parma ) ;949=7 A2>A51;+5AA5BCA91;+5AA5BCA91;Terrestrial   %,,*&% %,%,4 DMU (4)  # "/*+(  # "/%*%(  # "/%*%(   # "/%*%( *D71A7;945A(1A<1F1;;12H*+(+)(, &)(%&+)&(# ;949=7 A2>A51;+5AA5BCA91;  ,*&% %,%,  # "/%*%( *D71A7;945A(1A<1F1;;12H*+(+)(, &)(%&+)&(# ;949=7 A2>A51;+5AA5BCA91;  %,,*&% %, <5 # "/%*%( A # "/%*%( 931=<1ABD?91;B(1A<1F1;;12H<5A945;?891'A(%&+)&(#45A945;?89<>A?81 +5AA5BCA91;  %, <5A93 # "/%*%(  # "/%*%( 1=<1ABD?91;B(1A<1F1;;12H<5A945;?891'A4(%&+)&(#5A945;?89<>A?81 +5AA5BCA91;  %, <5A931=<1ABD?91;(1A<1F1;;12HB(1A<1F1;;12H<5A945;?891(%&+)&(#(%&+)&(#'A45A945;?89<>A?81 +5AA5BCA91;+5AA5BCA91;  %,%,  # "/%*%(  # "/ "& (1A<1F1;;12H(1A<1F1;;12H(%&+)&(#(%&+)&(# +5AA5BCA91;+5AA5BCA91;  %,%, American<5 # "/ "& A # "/%*%( 93 # "/ "& 1 =marsupials<1ABD?91;B (Ameridelphia:(1A<1F1;;12H<5A945;?891' Order(%&+)&(#A45A Didelphimorpha)945;?89<>A?81 +5AA5BCA91;  %, <5AA # "/%*%( 9931=<1AABD?991;;B<5AA9945;;?8991'AA45AA9945;;?899<>AA?81 <5AFamily # "/ "& 931=< 1DidelphidaeABD?91;B><<>=>??>BD<(1A<1F1;;12H><<>=>??>BD<<5A945;?891'(%&+)&(#A45 "& )#()+& " )A "& )#()+& " )945;?89<>A?81  +5AA5BCA91;+5AA5BCA91;  ,*&% %, ,*&% %, %, <<55AA939 # "/ "&  # "/ "& 311==<<11AABBDD??9191;B;B(1A<1F1;;12H<<><<>=>??>BD<55AA949455;?;?889191''AA4(%&+)&(#455AA9 "& )#()+& " )49455;?;?889<9<>>AA??8811  +5AA5BCA91;+5AA5BCA91;   %,,*&% %,  <<55AA9 # "/ "& 39311==<<11AABBDD??9191;B;B<<55AA949455;?;?889191''AA4455AA949455;?;?889<9<>>AA??8811   <5A9 # "/ "& 31=<1ABD?91;B><<>=>??>BD<Common<5A945;? 8opposum91'A45A ( "& )#()+& " )Didelphis945;?89< >marsupialisA?81 ) +5AA5BCA91;Terrestrial    ,*&% %, 3 USNM (1); DMU (2)  # "/ "&  # "/ "& ><<>=>??>BD< "& )#()+& " ) +5AA5BCA91;  ,*&% %,  <5A # "/ "& 9 # "/ "& 31=<1ABD?91;B<5A945;?891'A45A945;?89<>A?81 +>C1;  <5A # "/ "& 931=<1ABD?91;B><<>=>??>BD<<5A945;?891'A45A "& )#()+& " )945;?89<>A?81  +5AA5BCA91;+>C1;   ,*&% %,  <5A931=<1ABD?91;B><<>=>??>BD<><<>=>??>BD<<5A945;?891'A45 "& )#()+& " )A "& )#()+& " )945;?89<>A?81  +5AA5BCA91;+5AA5BCA91;+>C1;   ,*&% %, ,*&% %, <20>  # "/ "&  <>BCCD?1995B<>A5C5AA5BCA91;.81AC>=  ><<>=>??>BD<><<>=>??>BD< "& )#()+& " ) "& )#()+& " ) +5AA5BCA91;+5AA5BCA91;  ,*&% %, ,*&% %,   <>BCCD?1995B<>A5C5AA5BCA91;.81AC>=   # "/ "& ><<>=>??>BD< "& )#()+& " ) +5AA5BCA91;+>C1;    ,*&% %,   # "/ "&  <>BCCD?1995B<>A5C5AA5BCA91;.81AC>=   +>C1;     <>A5C5AA5BCA91;&>F1:)   .1;:5AKB%1<<1;B>6C85.>A;4C84 ->; 1;C9<>A51=4$>=4>=+85">8=B <>A5C5AA5BCA91;&>F1:)   .1;:5AKB%1<<1;B>6C85.>A;4C84 ->; 1;C9<>A51=4$>=4>=+85">8=B><<>=>??>BD< "& )#()+& " ) +5AA5BCA91;+>C1;Total >?:9=B,=9E5AB9CH(A5BB ??    >?:9=B,=9E5AB9CH(A5BB ??    ,*&% %, 433  <>BCCD?1995B<>A5C5AA5BCA91;.81AC>=   <>A5C5AA5BCA91;&>F1:)   .1;:5AKB%1<<1;B>6C85.>A;4C84 ->; 1;C9<>A51=4$>=4>=+85">8=B><<>=>??>BD< "& )#()+& " ) +5AA5BCA91;+>C1;   >?:9=B,=9E5AB9CH(A5BB ??   ,*&% %,   <>BCCD?1995B<>A5C5AA5BCA91;.81AC>=   +>C1;+>C1;    <>BCCD?1995B<>A5C5AA5BCA91;.81AC>=   <>A5C5AA5BCA91;&>F1:)   .1;:5AKB%1<<1;B>6C85.>A;4C84 ->; 1;C9<>A51=4$>=4>=+85">8=B$ %( $ %( 1A2>A51;#;>BB  (A1B81=C8-55=18D<1A9 1A2>A51;#;>BB  (A1B81=C8-55=18D<1A9  +>C1;+>C1;  >?:9=B,=9E5AB9CH(A5BB ??   *1 most tupaiies, <>BCCD?1995B<>A5C5AA5BCA91;.81AC>=   <>BCCD?1995B<>A5C5AA5BCA91;.81AC>=   <>A5C5AA5BCA91;&>F1:)   .1;:5AKB%1<<1;B>6C85.>A;4C84 ->; 1;C9<>A51=4$>=4>=+85">8=B$ %(  more terrestrial1A2>A51;#;>BB  (A1B81=C8-55=18D<1A9  (Wharton, 1950)  >?:9=B,=9E5AB9CH(A5BB ??    <>BCCD?1995B<>A5C5AA5BCA91;.81AC>=   <>A5C5AA5BCA91;&>F1:)   .1;:5AKB%1<<1;B>6C85.>A;4C84 ->; 1;C9<>A51=4$>=4>=+85">8=B <>BCCD?1995B<>A5C5AA5BCA91;.81AC>=  # $%(1A2>A51;$9< *>DI1  +>C1; >?:9=B,=9E5AB9CH(A5BB ??    <>BCCD?1995B<>A5C5AA5BCA91;.81AC>=   <>A5C5AA5BCA91;&>F1:)   .1;:5AKB%1<<1;B>6C85.>A;4C84 ->; 1;C9<>A51=4$>=4>=+85">8=B# $%($ %( # $%(1A2>A51;$9< *>DI1 1A2>A51;$9< *>DI1 1A2>A51;#;>BB  (A1B81=C8-55=18D<1A9  +>C1; >?:9=B,=9E5AB9CH(A5BB ??   *2 more terrestrial, <>A5C5AA5BCA91;&>F1:)   .1;:5AKB%1<<1;B>6C85.>A;4C84 ->; 1;C9<>A51=4$>=4>=+85">8=B <>A5C5AA5BCA91;&>F1:)   .1;:5AKB%1<<1;B>6C85.>A;4C84 ->; 1;C9<>A51=4$>=4>=+85">8=B$ %(  Nowak, R. 1A2>A51;#;>BB  (A1B81=C8-55=18D<1A9 1A2>A51;#;>BB  (A1B81=C8-55=18D<1A9 (1999). Walker’s Mammals of the World (6th Ed.) Vol 1. Baltimore and London: The JohnsHopkins+>C1; University Press. pp.245-246. >?:9=B,=9E5AB9CH(A5BB ??   >?:9=B,=9E5AB9CH(A5BB ??    <>A5C5AA5BCA91;&>F1:)   .1;:5AKB%1<<1;B>6C85.>A;4C84 ->; 1;C9<>A51=4$>=4>=+85">8=B <>BCCD?1995B<>A5C5AA5BCA91;.81AC>=   <>A5C5AA5BCA91;&>F1:)   .1;:5AKB%1<<1;B>6C85.>A;4C84 ->; 1;C9<>A51=4$>=4>=+85">8=B* "%(+)1A2>A51;$9<  %DD;$9<   >D;4  >?:9=B,=9E5AB9CH(A5BB ??   >?:9=B,=9E5AB9CH(A5BB ??   *3 T. nicobarica <>BCCD?1995B<>A5C5AA5BCA91;.81AC>=   <>A5C5AA5BCA91;&>F1:)   .1;:5AKB%1<<1;B>6C85.>A;4C84 ->; 1;C9<>A51=4$>=4>=+85">8=B* "%(+)$ %( # $%(,* "%(+) arboreal 1A2>A51;$9< *>DI1 (Kloss,1A2>A51;$9<  %DD;$9<   >D;4 1A2>A51;$9<  %DD;$9<   >D;4 1A2>A51;#;>BB  (A1B81=C8-55=18D<1A9  1903; Prashanth & Veenahumari, 1996) >?:9=B,=9E5AB9CH(A5BB ??    <>BCCD?1995B<>A5C5AA5BCA91;.81AC>=  $ %( $ %( # $%(1A2>A51;$9< *>DI1 1A2>A51;$9< *>DI1 1A2>A51;#;>BB  (A1B81=C8-55=18D<1A9 1A2>A51;#;>BB  (A1B81=C8-55=18D<1A9   <>A5C5AA5BCA91;&>F1:)   .1;:5AKB%1<<1;B>6C85.>A;4C84 ->; 1;C9<>A51=4$>=4>=+85">8=B!$ %( =$ %( BC9CDC9>=B1A2>A51;#;>BB  (A1B81=C8-55=18D<1A9 1A2>A51;#;>BB  (A1B81=C8-55=18D<1A9 %& <5A931=%DB5D<>6&1CDA1; 9BC>AH&5F/>A:&/,*%,>::H>%54931;,=9E5AB9CH%92D"1?1= >?:9=B,=9E5AB9CH(A5BB ??   %& 95;4%DB5D<>6&1CDA1; 9BC>AH89317>!$,* % *4 T. minor, <>A5C5AA5BCA91;&>F1:)   .1;:5AKB%1<<1;B>6C85.>A;4C84 ->; 1;C9<>A51=4$>=4>=+85">8=B arboreal!=* "%(+)* "%(+)# $%($ %( # $%(B!C=9BCDC 9C(Lim,C9D>C=1A2>A51;$9< *>DI1 91A2>A51;$9< *>DI1 >B 1969;=1A2>A51;$9<  %DD;$9<   >D;4 1A2>A51;$9<  %DD;$9<   >D;4 B1A2>A51;#;>BB  (A1B81=C8-55=18D<1A9 % D’Souza,&% &<5A931=%DB5D<>6&1CDA1; <5A931=%DB5D<>6&1CDA1; 1974) 9BC>AH&5F/>A:&/,* 9BC>AH&5F/>A:&/,*%,%>::H>%54931;,=9E5AB9CH%92D"1?1=,>::H>%54931;,=9E5AB9CH%92D"1?1= >?:9=B,=9E5AB9CH(A5BB ??   %&% &95;4%DB5D<>6&1CDA1; 95;4%DB5D<>6&1CDA1; 9BC>AH89317>!$,* 9BC>AH89317>!$,* % %  A1=C%DB5D<>60>>;>7H1=4>;;575>6$>=4>=$>=4>=,# <>A5C5AA5BCA91;&>F1:)   .1;:5AKB%1<<1;B>6C85.>A;4C84 ->; 1;C9<>A51=4$>=4>=+85">8=B A1=C%DB5D<>60>>;>7H1=4>;;575>6$>=4>=$>=4>=,## $%(* "%(+)# $%(1A2>A51;$9< *>DI1 1A2>A51;$9< *>DI1 1A2>A51;$9<  %DD;$9<   >D;4  ##((%%&& #1=171F1(A5653CDA1;%DB5D<>6&1CDA1;#1=171F1(A5653CDA1;%DB5D<>6&1CDA1; >?:9=B,=9E5AB9CH(A5BB ??   9BC>AH'41F1A1"1?1=9BC>AH'41F1A1"1?1=%%00%DB5D<>6%DB5D<>6 *5 Ptilocerus, A1=C%DB5D<>60>>;>7H1=4>;;575>6$>=4>=$>=4>=,# arboreal!$ %( =# $%(BC9CDC (Lim,9>=1A2>A51;$9< *>DI1 B 1967,1A2>A51;#;>BB  (A1B81=C8-55=18D<1A9 %& 1969; <5A931=%DB5D<>6&1CDA1; Muul & Lim, 1971; Gould, 1978)”„**Institutions: 9BC>AH&5F/>A:&/,* AMNH, American Museum%,>::H>%54931;,=9E5AB9CH%92D"1?1= of Natural History#( (New%& York,#1=171F1(A5653CDA1;%DB5D<>6&1CDA1; NY, USA); DMU, Dokkyo%& Medical 95;4%DB5D<>6&1CDA1; University (Mibu, 9BC>AH'41F1A1"1?1= Japan); FMNH 9BC>AH89317>!$,*, Field Museum% of0 %DB5D<>6Natural History% (Chicago, IL, USA); GM, Grant Museum of Zoology and >>;>7H1C>>;>7H1C* "%(+)!* "%(+)!=$ %( # $%(BCC99CCDCC99>=1A2>A51;$9< *>DI1 B1A2>A51;$9<  %DD;$9<   >D;4 1A2>A51;$9<  %DD;$9<   >D;4 1A2>A51;#;>BB  (A1B81=C8-55=18D<1A9 %& <5A931=%DB5D<>6&1CDA1;<5A931=%DB5D<>6&1CDA1; 1AE1A4,=9E5AB9CH>BC>=%,*1AE1A4,=9E5AB9CH>BC>=%,* 9BC>AH&5F/>A:&/,*9BC>AH&5F/>A:&/,*%%%%%5;2>DA=5%DB5D<%5;2>DA=5DBCA1;91%5;2>DA=5%DB5D<%5;2>DA=5DBCA1;91%,>::H>%54931;,=9E5AB9CH%92D"1?1=>::H>%54931;,=9E5AB9CH%92D"1?1=%%&& &&%DBJD<&1C9>=1;4%DBJD<&1C9>=1;4%& 95;4%DB5D<>6&1CDA1;95;4%DB5D<>6&1CDA1; 9BC>9A5&1CDA5;;5(1A9BA1=359BC>9A5&1CDA5;;5(1A9BA1=35 9BC>AH89317>!$,*9BC>AH89317>!$,*%%''%DB5D<>6%DB5D<>6 % Comparative A1=C%DB5D<>60>>;>7H1=4>;;575>6$>=4>=$>=4>=,# * "%(+)>>;>7H1CAnatomy* "%(+)!$ %( =BC9CDC 9at> =University1A2>A51;$9<  %DD;$9<   >D;4 B1A2>A51;$9<  %DD;$9<   >D;4 1A2>A51;#;>BB  (A1B81=C8-55=18D<1A9 %& College<5A931=%DB5D<>6&1CDA1; of1AE1A4,=9E5AB9CH>BC>=%,* London (London, UK); KPMNH 9BC>AH&5F/>A:&/,*, Kanagawa Prefectural%%%5;2>DA=5%DB5D<%5;2>DA=5DBCA1;91 Museum of Natural%,>::H>%54931;,=9E5AB9CH%92D"1?1= History (Odawara,#(%& Japan);#1=171F1(A5653CDA1;%DB5D<>6&1CDA1; %MCZ& , &Museum%DBJD<&1C9>=1;4 of Comparative%& 95;4%DB5D<>6&1CDA1; Zoology 9BC>9A5&1CDA5;;5(1A9BA1=35 at Harvard 9BC>AH'41F1A1"1?1= University (Boston,9BC>AH89317>!$,* MA,% 'USA);%DB5D<>6%0 MM%DB5D<>6, Melbourne % Museum (Melbourne, Australia; MNHN, Muséum National 'BC5>;>7H':;18><19CH'#,* A1=C%DB5D<>60>>;>7H1=4>;;575>6$>=4>=$>=4>=,#'BC5>;>7H':;18><19CH'#,*!* "%(+)# $%(=BC9CDC9>1A2>A51;$9< *>DI1 =B1A2>A51;$9<  %DD;$9<   >D;4 %& <5A931=%DB5D<>6&1CDA1;&&%%&&**+19F1=&1C9>=1;%DB5D<>6&1CDA1;*395=35+1938D=7+19F1=+19F1=&1C9>=1;%DB5D<>6&1CDA1;*395=35+1938D=7+19F1= 9BC>AH&5F/>A:&/,*%,>::H>%54931;,=9E5AB9CH%92D"1?1=#(%& #1=171F1(A5653CDA1;%DB5D<>6&1CDA1;#1=171F1(A5653CDA1;%DB5D<>6&1CDA1;&&++,,+19F1=&1C9>=1;,=9E5AB9CH%DB5D<+19?59+19F1=+19F1=&1C9>=1;,=9E5AB9CH%DB5D<+19?59+19F1=%& 95;4%DB5D<>6&1CDA1; 9BC>AH'41F1A1"1?1=9BC>AH'41F1A1"1?1= 9BC>AH89317>!$,*''%%&& 'B1:19CH'B1:19CH%0%DB5D<>6%DB5D<>6 % d’Histoire Naturelle>>;>7H1C A1=C%DB5D<>60>>;>7H1=4>;;575>6$>=4>=$>=4>=,#'BC5>;>7H':;18><19CH'#,*!* "%(+)=# $%(BC9 C(Paris,DC9>=1A2>A51;$9< *>DI1  BFrance);1A2>A51;$9<  %DD;$9<   >D;4 %& MO <5A931=%DB5D<>6&1CDA1;, Museum 1AE1A4,=9E5AB9CH>BC>=%,* of Osteology&% (Oklahoma&*+19F1=&1C9>=1;%DB5D<>6&1CDA1;*395=35+1938D=7+19F1= City, 9BC>AH&5F/>A:&/,* OK, USA);% NMNS%%5;2>DA=5%DB5D<%5;2>DA=5DBCA1;91, Taiwan National% ,Museum>::H>%54931;,=9E5AB9CH%92D"1?1= of Natural#( Science%& #1=171F1(A5653CDA1;%DB5D<>6&1CDA1; (Taichung,&%+&, +19F1=&1C9>=1;,=9E5AB9CH%DB5D<+19?59+19F1=&%DBJD<&1C9>=1;4 Taiwan); NTU, Taiwan%& 95;4%DB5D<>6&1CDA1; National 9BC>9A5&1CDA5;;5(1A9BA1=35 University 9BC>AH'41F1A1"1?1= Museum (Taipei, 9BC>AH89317>!$,* Taiwan);'%%' &OCMNH%DB5D<>6 %'B1:19CH0%DB5D<>6, Osaka City % Museum of Natural History (Osaka, Japan); OMNH, Sam %DB5D<>6&1CDA1;>>;>7H1C%DB5D<>6&1CDA1; A1=C%DB5D<>60>>;>7H1=4>;;575>6$>=4>=$>=4>=,#!=!=# $%(BBCC9C9CDDCC9>9>==1A2>A51;$9< *>DI1 BB%%&& 9BC>AH'B1:1"1?1=<5A931=%DB5D<>6&1CDA1;9BC>AH'B1:1"1?1=<5A931=%DB5D<>6&1CDA1; 1AE1A4,=9E5AB9CH>BC>=%,*''%%&& *1<&>2;5%DB5D<>6&1CDA1;*1<&>2;5%DB5D<>6&1CDA1; 9BC>AH&5F/>A:&/,*9BC>AH&5F/>A:&/,*%%%5;2>DA=5%DB5D<%5;2>DA=5DBCA1;91%5;2>DA=5%DB5D<%5;2>DA=5DBCA1;91  %9BC>AH1C,=9E5AB9CH>6':;18><1&>A<1='#,*%9BC>AH1C,=9E5AB9CH>6':;18><1&>A<1='#,*,,>::H>%54931;,=9E5AB9CH%92D"1?1=>::H>%54931;,=9E5AB9CH%92D"1?1=#(%& #1=171F1(A5653CDA1;%DB5D<>6&1CDA1;%& &%DBJD<&1C9>=1;4%DBJD<&1C9>=1;4%%&& 95;4%DB5D<>6&1CDA1;95;4%DB5D<>6&1CDA1;* * 9BC>9A5&1CDA5;;5(1A9BA1=359BC>9A5&1CDA5;;5(1A9BA1=35&& %%*1=957>%DB5D<>6&1CDA1;*1=957>%DB5D<>6&1CDA1; 9BC>AH'41F1A1"1?1= 9BC>AH89317>!$,*9BC>AH89317>!$,*%'%DB5D<>6%DB5D<>6 % 9BC>AH*1=9BC>AH*1=0%DB5D<>6 %% A1=C%DB5D<>60>>;>7H1=4>;;575>6$>=4>=$>=4>=,#>>;>7H1C'BC5>;>7H':;18><19CH'#,*%DB5D<>6&1CDA1;!* "%(+)!==BBCC99CCDDCC99>>==BB1A2>A51;$9<  %DD;$9<   >D;4 %%&& <5A931=%DB5D<>6&1CDA1;<5A931=%DB5D<>6&1CDA1;9BC>AH'B1:1"1?1= 1AE1A4,=9E5AB9CH>BC>=%,*&%&*+19F1=&1C9>=1;%DB5D<>6&1CDA1;*395=35+1938D=7+19F1='%& *1<&>2;5%DB5D<>6&1CDA1; 9BC>AH&5F/>A:&/,*9BC>AH&5F/>A:&/,*%%%5;2>DA=5%DB5D<%5;2>DA=5DBCA1;91% %,9BC>AH1C,=9E5AB9CH>6':;18><1&>A<1='#,*,>::H>%54931;,=9E5AB9CH%92D"1?1=>::H>%54931;,=9E5AB9CH%92D"1?1=#(%& #1=171F1(A5653CDA1;%DB5D<>6&1CDA1;&%+,&+19F1=&1C9>=1;,=9E5AB9CH%DB5D<+19?59+19F1= &%DBJD<&1C9>=1;4%%&& 95;4%DB5D<>6&1CDA1;95;4%DB5D<>6&1CDA1; *9BC>9A5&1CDA5;;5(1A9BA1=35& %*1=957>%DB5D<>6&1CDA1; 9BC>AH'41F1A1"1?1= 9BC>AH89317>!$,*9BC>AH89317>!$,*'%%&' %DB5D<>6'B1:19CH% 09BC>AH*1=%DB5D<>6 %% Noble Museum A1=C%DB5D<>60>>;>7H1=4>;;575>6$>=4>=$>=4>=,#957>,* A1=C%DB5D<>60>>;>7H1=4>;;575>6$>=4>=$>=4>=,#957>,*'BC5>;>7H':;18><19CH'#,*>>;>7H1C* "%(+) of Natural History1A2>A51;$9<  %DD;$9<   >D;4 ++ at +>8>,=9E5AB9CH+>:H>"1?1=+>8>,=9E5AB9CH+>:H>"1?1= University 1AE1A4,=9E5AB9CH>BC>=%,* of Oklahoma&% (Norman,&*+19F1=&1C9>=1;%DB5D<>6&1CDA1;*395=35+1938D=7+19F1=+19F1=&1C9>=1;%DB5D<>6&1CDA1;*395=35+1938D=7+19F1= OK, USA);++..%% ,SDNHM,+>:H>.><5=KB%54931;,=9E5AB9CH+>:H>"1?1=+>:H>.><5=KB%54931;,=9E5AB9CH+>:H>"1?1=%, %San%5;2>DA=5%DB5D<%5;2>DA=5DBCA1;91 Diego Museum of Natural History (San##((% %Diego,&& #1=171F1(A5653CDA1;%DB5D<>6&1CDA1;#1=171F1(A5653CDA1;%DB5D<>6&1CDA1; CA,&+% USA);,&,,+19F1=&1C9>=1;,=9E5AB9CH%DB5D<+19?59+19F1=+19F1=&1C9>=1;,=9E5AB9CH%DB5D<+19?59+19F1= %%&0 TH0%DBJD<&1C9>=1;4,=9E5AB9CH%DB5D<>60>>;>7H1C,=9E5AB9CH>61<2A94751<2A9475,=9E5AB9CH%DB5D<>60>>;>7H1C,=9E5AB9CH>61<2A94751<2A9475, Toho University (Tokyo, 9BC>9A5&1CDA5;;5(1A9BA1=35 Japan); TWMU 9BC>AH'41F1A1"1?1=9BC>AH'41F1A1"1?1=, Tokyo Women’s 'Medical%%&' University%DB5D<>6%'B1:19CH%'B1:19CH00%DB5D<>6%DB5D<>6 (Tokyo, Japan); UMZ, University Museum of Zoology at University of >>;>7H1C A1=C%DB5D<>60>>;>7H1=4>;;575>6$>=4>=$>=4>=,#%DB5D<>6&1CDA1;'BC5>;>7H':;18><19CH'#,* A1=C%DB5D<>60>>;>7H1=4>;;575>6$>=4>=$>=4>=,#957>,*!=BC9CDC9>=B%&+ 9BC>AH'B1:1"1?1=<5A931=%DB5D<>6&1CDA1;+>8>,=9E5AB9CH+>:H>"1?1= 1AE1A4,=9E5AB9CH>BC>=%,*&%&*'+19F1=&1C9>=1;%DB5D<>6&1CDA1;*395=35+1938D=7+19F1=%& *1<&>2;5%DB5D<>6&1CDA1; 9BC>AH&5F/>A:&/,*+.%,+>:H>.><5=KB%54931;,=9E5AB9CH+>:H>"1?1=%%%5;2>DA=5%DB5D<%5;2>DA=5DBCA1;91 %9BC>AH1C,=9E5AB9CH>6':;18><1&>A<1='#,*,>::H>%54931;,=9E5AB9CH%92D"1?1=##((%%&& #1=171F1(A5653CDA1;%DB5D<>6&1CDA1;#1=171F1(A5653CDA1;%DB5D<>6&1CDA1;&%+&, +19F1=&1C9>=1;,=9E5AB9CH%DB5D<+19?59+19F1=&,%DBJD<&1C9>=1;4%0,=9E5AB9CH%DB5D<>60>>;>7H1C,=9E5AB9CH>61<2A94751<2A9475%& 95;4%DB5D<>6&1CDA1; *9BC>9A5&1CDA5;;5(1A9BA1=35& %*1=957>%DB5D<>6&1CDA1; 9BC>AH'41F1A1"1?1=9BC>AH'41F1A1"1?1= 9BC>AH89317>!$,*'%&' %DB5D<>6'B1:19CH%% 9BC>AH*1=00%DB5D<>6%DB5D<>6 % Cambridge>>;>7H1C,#>>;>7H1C ,#%DB5D<>6&1CDA1;(Cambridge,'BC5>;>7H':;18><19CH'#,*!=,,B*C*9%C%D&C&9*<9C8B>=91=&1C9>=1;%DB5D<>6&1CDA1;> *<9C8B>=91=&1C9>=1;%DB5D<>6&1CDA1;UK);=B USMN%& ,9BC>AH'B1:1"1?1= Smithsonian<5A931=%DB5D<>6&1CDA1; 1AE1A4,=9E5AB9CH>BC>=%,*1AE1A4,=9E5AB9CH>BC>=%,* National& %Museum&*'+19F1=&1C9>=1;%DB5D<>6&1CDA1;*395=35+1938D=7+19F1=% &of Natural*1<&>2;5%DB5D<>6&1CDA1;*1<&>2;5%DB5D<>6&1CDA1; 9BC>AH.1B89=7C>=,*9BC>AH&5F/>A:&/,*9BC>AH.1B89=7C>=,* History (Washington%%%%%5;2>DA=5%DB5D<%5;2>DA=5DBCA1;91%5;2>DA=5%DB5D<%5;2>DA=5DBCA1;91 DC, USA)  %9BC>AH1C,=9E5AB9CH>6':;18><1&>A<1='#,*9BC>AH1C,=9E5AB9CH>6':;18><1&>A<1='#,*,>::H>%54931;,=9E5AB9CH%92D"1?1=&%%+&&, +19F1=&1C9>=1;,=9E5AB9CH%DB5D<+19?59+19F1=&&%DBJD<&1C9>=1;4%DBJD<&1C9>=1;4%& 95;4%DB5D<>6&1CDA1; *9BC>9A5&1CDA5;;5(1A9BA1=359BC>9A5&1CDA5;;5(1A9BA1=35& %*1=957>%DB5D<>6&1CDA1;*1=957>%DB5D<>6&1CDA1; 9BC>AH89317>!$,*'%%'&'%DB5D<>6 %DB5D<>6'B1:19CH 9BC>AH*1=9BC>AH*1= % 'BC5>;>7H':;18><19CH'#,*>>;>7H1C A1=C%DB5D<>60>>;>7H1=4>;;575>6$>=4>=$>=4>=,#957>,*%DB5D<>6&1CDA1;>>;>7H1C,#!=BC,9C*DC%9>&=*<9C8B>=91=&1C9>=1;%DB5D<>6&1CDA1;B%+& +>8>,=9E5AB9CH+>:H>"1?1=9BC>AH'B1:1"1?1=<5A931=%DB5D<>6&1CDA1; 1AE1A4,=9E5AB9CH>BC>=%,*1AE1A4,=9E5AB9CH>BC>=%,*&%&*+19F1=&1C9>=1;%DB5D<>6&1CDA1;*395=35+1938D=7+19F1='%& *1<&>2;5%DB5D<>6&1CDA1; 9BC>AH&5F/>A:&/,*+ .9BC>AH.1B89=7C>=,*%,+>:H>.><5=KB%54931;,=9E5AB9CH+>:H>"1?1=%%%%%5;2>DA=5%DB5D<%5;2>DA=5DBCA1;91%5;2>DA=5%DB5D<%5;2>DA=5DBCA1;91 %9BC>AH1C,=9E5AB9CH>6':;18><1&>A<1='#,*,>::H>%54931;,=9E5AB9CH%92D"1?1=#(%& #1=171F1(A5653CDA1;%DB5D<>6&1CDA1;&+%%,&&+19F1=&1C9>=1;,=9E5AB9CH%DB5D<+19?59+19F1=, %&&%DBJD<&1C9>=1;40%DBJD<&1C9>=1;4,=9E5AB9CH%DB5D<>60>>;>7H1C,=9E5AB9CH>61<2A94751<2A9475%& 95;4%DB5D<>6&1CDA1; * 9BC>9A5&1CDA5;;5(1A9BA1=359BC>9A5&1CDA5;;5(1A9BA1=35& %*1=957>%DB5D<>6&1CDA1; 9BC>AH'41F1A1"1?1= 9BC>AH89317>!$,*'%%%&'' %DB5D<>6%DB5D<>6'B1:19CH% 9BC>AH*1=0%DB5D<>6 % 'BC5>;>7H':;18><19CH'#,*'BC5>;>7H':;18><19CH'#,*957>,* A1=C%DB5D<>60>>;>7H1=4>;;575>6$>=4>=$>=4>=,#%DB5D<>6&1CDA1;+ +>8>,=9E5AB9CH+>:H>"1?1=+>8>,=9E5AB9CH+>:H>"1?1=9BC>AH'B1:1"1?1=&&%%&&**+19F1=&1C9>=1;%DB5D<>6&1CDA1;*395=35+1938D=7+19F1=+19F1=&1C9>=1;%DB5D<>6&1CDA1;*395=35+1938D=7+19F1='%& *1<&>2;5%DB5D<>6&1CDA1;+.%,+>:H>.><5=KB%54931;,=9E5AB9CH+>:H>"1?1=+>:H>.><5=KB%54931;,=9E5AB9CH+>:H>"1?1= 9BC>AH1C,=9E5AB9CH>6':;18><1&>A<1='#,*#(%& #1=171F1(A5653CDA1;%DB5D<>6&1CDA1;&&++,,+19F1=&1C9>=1;,=9E5AB9CH%DB5D<+19?59+19F1=+19F1=&1C9>=1;,=9E5AB9CH%DB5D<+19?59+19F1=,%0,=9E5AB9CH%DB5D<>60>>;>7H1C,=9E5AB9CH>61<2A94751<2A9475,=9E5AB9CH%DB5D<>60>>;>7H1C,=9E5AB9CH>61<2A94751<2A9475*& %*1=957>%DB5D<>6&1CDA1; 9BC>AH'41F1A1"1?1=''%%&& 'B1:19CH'B1:19CH% 9BC>AH*1=0%DB5D<>6 %DB5D<>6&1CDA1;>>;>7H1C A1=C%DB5D<>60>>;>7H1=4>;;575>6$>=4>=$>=4>=,#'BC5>;>7H':;18><19CH'#,*957>,*,#'BC5>;>7H':;18><19CH'#,*,*%&*<9C8B>=91=&1C9>=1;%DB5D<>6&1CDA1;+ +>8>,=9E5AB9CH+>:H>"1?1=9BC>AH'B1:1"1?1= 1AE1A4,=9E5AB9CH>BC>=%,*&&%%&&**'+19F1=&1C9>=1;%DB5D<>6&1CDA1;*395=35+1938D=7+19F1=+19F1=&1C9>=1;%DB5D<>6&1CDA1;*395=35+1938D=7+19F1=%& *1<&>2;5%DB5D<>6&1CDA1; +9BC>AH.1B89=7C>=,*.%,+>:H>.><5=KB%54931;,=9E5AB9CH+>:H>"1?1=%%%5;2>DA=5%DB5D<%5;2>DA=5DBCA1;91 9BC>AH1C,=9E5AB9CH>6':;18><1&>A<1='#,*#(%& #1=171F1(A5653CDA1;%DB5D<>6&1CDA1;&&%++,&,+19F1=&1C9>=1;,=9E5AB9CH%DB5D<+19?59+19F1=, +19F1=&1C9>=1;,=9E5AB9CH%DB5D<+19?59+19F1=%&%DBJD<&1C9>=1;40,=9E5AB9CH%DB5D<>60>>;>7H1C,=9E5AB9CH>61<2A94751<2A9475* 9BC>9A5&1CDA5;;5(1A9BA1=35& %*1=957>%DB5D<>6&1CDA1; 9BC>AH'41F1A1"1?1=''%%&&' %DB5D<>6'B1:19CH'B1:19CH% 9BC>AH*1=0%DB5D<>6 %DB5D<>6&1CDA1;%DB5D<>6&1CDA1;,#>>;>7H1C957>,*,*%&*<9C8B>=91=&1C9>=1;%DB5D<>6&1CDA1;*<9C8B>=91=&1C9>=1;%DB5D<>6&1CDA1;+ 9BC>AH'B1:1"1?1=+>8>,=9E5AB9CH+>:H>"1?1=9BC>AH'B1:1"1?1= 1AE1A4,=9E5AB9CH>BC>=%,*''%%&& *1<&>2;5%DB5D<>6&1CDA1;*1<&>2;5%DB5D<>6&1CDA1; +9BC>AH.1B89=7C>=,*9BC>AH.1B89=7C>=,*.%,+>:H>.><5=KB%54931;,=9E5AB9CH+>:H>"1?1=%%%5;2>DA=5%DB5D<%5;2>DA=5DBCA1;91 9BC>AH1C,=9E5AB9CH>6':;18><1&>A<1='#,*9BC>AH1C,=9E5AB9CH>6':;18><1&>A<1='#,*%&, %&%DBJD<&1C9>=1;40,=9E5AB9CH%DB5D<>60>>;>7H1C,=9E5AB9CH>61<2A94751<2A9475** 9BC>9A5&1CDA5;;5(1A9BA1=35&& %%*1=957>%DB5D<>6&1CDA1;*1=957>%DB5D<>6&1CDA1;%'%DB5D<>6 9BC>AH*1=9BC>AH*1= 957>,*>>;>7H1C%DB5D<>6&1CDA1;'BC5>;>7H':;18><19CH'#,*,#%DB5D<>6&1CDA1;,*%&*<9C8B>=91=&1C9>=1;%DB5D<>6&1CDA1;+ +>8>,=9E5AB9CH+>:H>"1?1=9BC>AH'B1:1"1?1=9BC>AH'B1:1"1?1= 1AE1A4,=9E5AB9CH>BC>=%,*&%&*'+19F1=&1C9>=1;%DB5D<>6&1CDA1;*395=35+1938D=7+19F1='%%&& *1<&>2;5%DB5D<>6&1CDA1;*1<&>2;5%DB5D<>6&1CDA1; +9BC>AH.1B89=7C>=,*.%,+>:H>.><5=KB%54931;,=9E5AB9CH+>:H>"1?1=%%%5;2>DA=5%DB5D<%5;2>DA=5DBCA1;91 9BC>AH1C,=9E5AB9CH>6':;18><1&>A<1='#,*9BC>AH1C,=9E5AB9CH>6':;18><1&>A<1='#,*&%+,&,+19F1=&1C9>=1;,=9E5AB9CH%DB5D<+19?59+19F1= %&0%DBJD<&1C9>=1;4,=9E5AB9CH%DB5D<>60>>;>7H1C,=9E5AB9CH>61<2A94751<2A9475 **9BC>9A5&1CDA5;;5(1A9BA1=35&& %%*1=957>%DB5D<>6&1CDA1;*1=957>%DB5D<>6&1CDA1;'%%&' %DB5D<>6'B1:19CH 9BC>AH*1=9BC>AH*1= 957>,*957>,*'BC5>;>7H':;18><19CH'#,*,#,*%&*<9C8B>=91=&1C9>=1;%DB5D<>6&1CDA1;++ +>8>,=9E5AB9CH+>:H>"1?1=+>8>,=9E5AB9CH+>:H>"1?1=&%&*+19F1=&1C9>=1;%DB5D<>6&1CDA1;*395=35+1938D=7+19F1= ++9BC>AH.1B89=7C>=,*..%%,,+>:H>.><5=KB%54931;,=9E5AB9CH+>:H>"1?1=+>:H>.><5=KB%54931;,=9E5AB9CH+>:H>"1?1=&+,,,+19F1=&1C9>=1;,=9E5AB9CH%DB5D<+19?59+19F1=%%00,=9E5AB9CH%DB5D<>60>>;>7H1C,=9E5AB9CH>61<2A94751<2A9475,=9E5AB9CH%DB5D<>60>>;>7H1C,=9E5AB9CH>61<2A94751<2A9475'%& 'B1:19CH ,#957>,*%DB5D<>6&1CDA1;'BC5>;>7H':;18><19CH'#,*957>,*,*%&*<9C8B>=91=&1C9>=1;%DB5D<>6&1CDA1;++ +>8>,=9E5AB9CH+>:H>"1?1=+>8>,=9E5AB9CH+>:H>"1?1=9BC>AH'B1:1"1?1=&%&*'+19F1=&1C9>=1;%DB5D<>6&1CDA1;*395=35+1938D=7+19F1=%& *1<&>2;5%DB5D<>6&1CDA1; +9BC>AH.1B89=7C>=,*+..%%,,+>:H>.><5=KB%54931;,=9E5AB9CH+>:H>"1?1=+>:H>.><5=KB%54931;,=9E5AB9CH+>:H>"1?1= 9BC>AH1C,=9E5AB9CH>6':;18><1&>A<1='#,*&+,,+19F1=&1C9>=1;,=9E5AB9CH%DB5D<+19?59+19F1=,%%00,=9E5AB9CH%DB5D<>60>>;>7H1C,=9E5AB9CH>61<2A94751<2A9475,=9E5AB9CH%DB5D<>60>>;>7H1C,=9E5AB9CH>61<2A94751<2A9475*& %*1=957>%DB5D<>6&1CDA1;'%& 'B1:19CH 9BC>AH*1= ,#,#%DB5D<>6&1CDA1;,,**%%&&*<9C8B>=91=&1C9>=1;%DB5D<>6&1CDA1;*<9C8B>=91=&1C9>=1;%DB5D<>6&1CDA1; 9BC>AH'B1:1"1?1='%& *1<&>2;5%DB5D<>6&1CDA1; 9BC>AH.1B89=7C>=,*9BC>AH.1B89=7C>=,* 9BC>AH1C,=9E5AB9CH>6':;18><1&>A<1='#,**& %*1=957>%DB5D<>6&1CDA1; 9BC>AH*1= 957>,*,#%DB5D<>6&1CDA1;,#,,**%%&&*<9C8B>=91=&1C9>=1;%DB5D<>6&1CDA1;*<9C8B>=91=&1C9>=1;%DB5D<>6&1CDA1;+ +>8>,=9E5AB9CH+>:H>"1?1=9BC>AH'B1:1"1?1='%& *1<&>2;5%DB5D<>6&1CDA1; +9BC>AH.1B89=7C>=,*9BC>AH.1B89=7C>=,*.%,+>:H>.><5=KB%54931;,=9E5AB9CH+>:H>"1?1= 9BC>AH1C,=9E5AB9CH>6':;18><1&>A<1='#,*,%0,=9E5AB9CH%DB5D<>60>>;>7H1C,=9E5AB9CH>61<2A94751<2A9475*& %*1=957>%DB5D<>6&1CDA1; 9BC>AH*1= 957>,*+ +>8>,=9E5AB9CH+>:H>"1?1=+.%,+>:H>.><5=KB%54931;,=9E5AB9CH+>:H>"1?1=,%0,=9E5AB9CH%DB5D<>60>>;>7H1C,=9E5AB9CH>61<2A94751<2A9475 957>,*,#,*%&*<9C8B>=91=&1C9>=1;%DB5D<>6&1CDA1;+ +>8>,=9E5AB9CH+>:H>"1?1= +9BC>AH.1B89=7C>=,*.%,+>:H>.><5=KB%54931;,=9E5AB9CH+>:H>"1?1=,46%0,=9E5AB9CH%DB5D<>60>>;>7H1C,=9E5AB9CH>61<2A94751<2A9475 ,#,*%&*<9C8B>=91=&1C9>=1;%DB5D<>6&1CDA1; 9BC>AH.1B89=7C>=,* T. Kawashima et al., Vertebral changes in aerodynamic mammals

All vertebral measurements were taken based on the ventral height of each vertebral body using a digital calliper.

RESULTS Vertebral formula The vertebral formulae and TL counts are shown in Tables 2 and 3, respectively. Our findings showed that the range in vertebral formulae were 7C (cervical vertebrae), 13–14T (thoracic vertebrae), 5–8L (lumbar vertebrae), 4–5S (sacral vertebrae), and 18–22TL (thora- columbar vertebrae) in colugos and 7C, 12–15T, 5–7L, 3S, and 18–21TL in tree shrews. Although the most frequent formula of presacral vertebrae was shared as 7C, 13T, 6L, and 19TL in both species (Tables 2, 3), our data showed that the most frequent TL count of 19 was found in only 48.5% of colugos (16/33) and 72.3% of tree shrews (81/112). Furthermore, geographical vari- ation was also observed: the most frequent TL counts were 21 or 22 (each 35.7%, 5/14) in Philippine colugos and 19 (68.4%: 13/19) in Sunda colugos (Fig. 2). In examined rodents, all tree and most ground squirrels, Guinea pigs, porcupines, rats, and pock- et gophers, had consistently fixed TL counts of 19 (100.0%; Fig. 3A). Some rodents showed variation from 19 TL counts: black-tailed prairie dog, 6/7 cas- es (85.7%); nutria, 11/13 (84.6%); capybara, 8/10 (80.0%); North American beavers, 11/13 (84.6%); red giant flying squirrel, 9/13 (75.0%); Japanese giant flying squirrel, 10/12 (83.3%); and southern flying squirrel, 14/18 (77.8%). In addition, scaly-tailed squir- rels exhibited extreme TL counts of 24 (1/19, 5.3%), 25 (17/19, 89.5%), and 26 (1/19, 5.3%). In bats, TL variability was also observed: Ptero- pus megabats, 17TL (2/21, 9.5%) and 18TL (19/21, 90.5%); and Jamaican fruit bats, 16TL (1/11, 9.1%), 17TL (9/11, 81.6%), and 18TL (1/11, 9.1%). In examined marsupials, all Parma wallabies and common had fixed TL counts of 19 (100.0%), but the sugar gliders had some variation: 18TL (2/13, 15.4%) and 19TL (11/13, 84.6%). These results showed that variability of TL counts in range and frequency predominated in most aero- dynamic mammals and there was variation from 19TL in some semi-aquatic mammals. Figure 1. Vertebral identification. Circles ˜( ), triangles (), and Relative lengths of axial skeletons squares (¢) show the thoracic, lumbar, and sacral vertebrae, re- spectively; A–C. Thoracic and lumbar differences. A difficult case To eliminate a bias caused by different vertebral formu- such as an unarticulated lumbar rib, as shown with arrows, is clas- lae, only axial skeletons with the most frequent vertebral sified based on morphology and size of vertebra; D–E. Lumbar and formula for each species were selected; then, lengths of sacral differences. Arrowheads show the sacroiliac articulation.

47 Folia Morphol., 2018, Vol. 77, No. 1

Table 2. Variation of thoracic (T), lumbar (L), and sacral (S) vertebral counts T L S Vertebral counts 11 12 13 14 15 16 3 4 5 6 7 8 9 10 2 3 4 5 Colugos (Order Dermoptera) 17/33 16/33 8/33 13/33 6/33 2/33 11/26 15/26 <51.5%> <48.5%> <24.2%> <39.4%> <18.2%> <6.1%> <42.3%> <57.7%> Phillipine Colugo 5/14 9/14 3/14 5/14 6/14 8/12 4/12 (Cynocephalus volans) <35.7%> <64.3%> <21.4%> <35.7%> <42.9%> <66.7%> <33.3%> Sunda Colugo 12/19 7/19 8/19 10/19 1/19 4/16 12/16 (Galeopterus variegatus) <63.2%> <36.8%> <42.1%> <52.6%> <5.3%> <25.0%> <75.0%> (1) G. v. penninsulae (4/6) (2/6) (2/6) (4/6) (3/6) (3/6) (2) G. v. variegatus (2/3) (1/3) (2/3) (1/3) (2/2) (3) G. v. borneanus (5/7) (2/7) (1/7) (5/7) (1/7) (1/5) (4/5) (4) Locality unknown (1/3) (2/3) (3/3) (3/3) Treeshrews (Order Scandentia) 1/112 69/112 38/112 4/112 24/112 85/112 3/112 84/84 <0.9%> <61.6%> <33.9%> <3.6%> <21.4%> <75.9%> <2.7%> <100.0%> Tupaia treeshrews 1/98 68/99 30/99 15/99 81/99 3/99 71/71 (Tupaia spp.) <1.0%> <68.7%> <30.3%> <15.2%> <81.8%> <3.0%> <100.0%> Dendrogale treeshrew 1/1 1/1 1/1 (Dendrogale melanura) <100.0%> <100.0%> <100.0%> Urogale treeshrew 1/10 6/10 3/10 7/10 3/10 10/10 (Urogale everetti) <10.0%> <60.0%> <30.0%> <70.0%> <30.0%> <100.0%> Pitliocecus treeshrew 2/2 1/2 1/2 2/2 (Ptilocercus lowii) <100.0%> <50.0%> <50.0%> <100.0%> Rodents (Order Rodentia) — Suborder Sciuridae Gliding squirrel (Pteromyinae) Red giant flying squirrel 3/13 9/13 1/13 13/13 13/13 (Petaurista p. grandis) <23.1%> <75.0%> <7.7%> <100.0%> <100.0%> White-faced flying squirrel 22/22 22/22 22/22 (Petaurista alborufus lena) <100.0%> <100.0%> <100.0%> Japanese giant flying squirrel 9/12 3/12 1/12 1/12 10/12 12/12 (Petaurista leucogenys) <75.0%> <25.0%> <8.3%> <8.3%> <83.3%> <100.0%> Southern flying squirrel 15/18 3/18 1/18 13/18 2/18 2/18 18/18 (Glaucomys volans) <83.3%> <16.7%> <5.6%> <72.2%> <11.1%> <11.1%> <100.0%> (Sciurinae) Japanese squirrel 2/6 4/6 4/6 2/6 6/6 (Sciurus lis) <33.3%> <66.6%> <66.6%> <33.3%> <100.0%> Eastern gray squirrel 8/16 8/16 8/16 8/16 16/16 (Sciurus carolinensis) <50.0%> <50.0%> <50.0%> <50.0%> <100.0%> Pallas’s squirrel 9/14 5/14 5/14 9/14 14/14 (Callosciurus erythraeus) <64.3%> <35.7%> <35.7%> <64.3%> <100.0%> Ground squirrel (Xerinae) Black-tailed prairie dog 6/7 1/7 1/7 5/7 1/7 1/7 6/7 (Cynomys ludovicianus) <85.7%> <14.3%> <14.3%> <71.4%> <14.3%> <14.3%> <85.7%> Prairie dog 4/4 4/4 3/4 1/4 (Cynomys sp.) <100.0%> <100.0%> <75.0%> <25.0%> Groundhog 11/11 11/11 11/11 (Marmota monax) <100.0%> <100.0%> <100.0%> — Suborder Hystricomorpha Guinea Pig 11/11 11/11 5/11 6/11 (Cavia porcellus) <100.0%> <100.0%> <45.5%> <54.5%> Nutria 10/13 3/13 1/13 12/13 13/13 (Myocastor coypus) <76.9%> <23.1%> <7.7%> <92.3%> <100.0%> Asiatic brush-tailed porcupine 2/7 5/7 5/7 2/7 7/7 (Atherura macrura) <28.6%> <71.4%> <71.4%> <28.6%> <100.0%> African crested porcupine 5/8 3/8 3/8 5/8 8/8 (Hystrix cristata galeata) <62.5%> <37.5%> <37.5%> <62.5%> <100.0%> Hystrix porcupines 3/4 1/4 1/4 3/4 1/4 3/4 (Hystrix spp.) <75.0%> <25.0%> <75.0%> <25.0%> <25.0%> <75.0%> Capybara 9/10 1/10 1/10 9/10 8/10 2/10 (Hydrochoerus hydrochaeris) <90.0%> <10.0%> <10.0%> <90.0%> <80.0%> <20.0%> — Suborder Myomorpha Brown rat 14/14 14/14 11/14 3/14 (Rattus norvegicus) <100.0%> <100.0%> <78.6%> <21.4%> Dessert pocket gopher 1/3 2/3 2/3 1/3 3/3 (Geomys arenarius arenarius) <33.3%> <66.7%> <66.7%> <33.3%> <100.0%> Plains pocket gopher 8/9 1/9 1/9 8/9 9/9 (Geomys bursarius) <88.9%> <11.1%> <11.1%> <88.9%> <100.0%> North American beaver 1/13 11/13 1/13 13/13 1/13 12/13 (Castor canadensis) <7.7%> <84.6%> <7.7%> <100.0%> <7/7%> <92.3%> Eurasian beaver 2/2 2/2 2/2 (Castor fiber) <100.0%> <100.0%> <100.0%> Lord Derby’s scaly- tailed squirrel 13/13 12/13 1/13 13/13 (Anomalurus derbianus) <100.0%> <92.3%> <7.7%> <100.0%> Pel’s scaly-tailed squirrel 2/2 2/2 2/2 (Anomalurus peli) <100.0%> <100.0%> <100.0%> Beecroft’s scaly-tailed squirrel 2/2 2/2 2/2 (Anomalurus beecrofti) <100/0%> <100/0%> <100/0%> Dwarf scaly-tailed squirrel 1/2 1/2 2/2 2/2 (Anomalurus pusillus) <50.0%> <50.0%> <100.0%> <100.0%> Bats (Order Chroptera) Flying fox 10/11 1/11 11/11 7/10 (Pteropus sp.) <90/9%> <9.1%> <100.0%> 6S, 1; 7S, <70.0%> 2, uk, 1 Large flying fox 4/4 1/4 3/3 4/4 (Pteropus vampyrus) <100.0%> <25.0%> <75.0%> <100.0%> Hammer-headed bat 1/6 5/6 6/6 6/6 (Hypsignathus monstrosus) <16.7%> <83.3%> <100.0%> <100.0%> Jamaican fruit bat 2/11 9/11 2/11 9/11 2/11 8/11 1/11 (Artibeus jamaicensis) <18.2%> <81.8%> <18.2%> <81.8%> <18.2%> <72.7%> <9.1%> Marsupials 1/13 12/13 1/13 12/13 12/13 1/13 (Petaurus breviceps) <7.7%> <92.3%> <7.7%> <92.3%> <92.3%> <7.7%> Parma wallaby 4/4 4/4 4/4 (Macropus parma) <100.0%> <100.0%> <100.0%> Common opposum 3/3 3/3 3/3 (Didelphis marsupialis) <100.0%> <100.0%> <100.0%>

48 T. Kawashima et al., Vertebral changes in aerodynamic mammals

Table 3. Variation of thoracolumbar (TL) vertebral counts Number of Vertebrae 16 17 18 19 20 21 22 24 25 26 Colugos (Order Dermoptera) 3/33 (9.1%) 16/33 (48.5%) 4/33 (12.1%) 5/33 (15.2%) 5/33 (15.2%) 100% Phillipine Colugo (Cynocephalus volans) 3/14 (21.4%) 1/14 (7.1%) 5/14 (35.7%) 5/14 (35.7%) 50-99% 10-49% Sunda Colugo (Galeopterus variegatus) 3/19 (15.8%) 13/19 (68.4%) 3/19 (15.8%) < 10% (1) G. v. penninsulae (1/5) (4/6) (1/5) (2) G. v. variegatus (1/3) (2/3) (3) G. v. borneanus (5/7) (2/7) (4) Locality unknown (1/3) (2/3) Treeshrews (Order Scandentia) 3/112 (2.7%) 81/112 (72.3%) 26/112 (23.2%) 2/112 (1.8%)

Tupaia tree shrews (Tupaia spp.) 3/99 (3.0%) 75/99 (75.8%) 21/99 (21.2%) Bornean smooth-tailed tree shrew (Dendrogale melanura) 1/1 (100%) Mindanao tree shrew (Urogale everetti) 5/10 (50.0%) 3/10 (30.0%) 2/10 (20.0%) Pen-tailed tree shrew (Ptilocercus lowii) 1/2 (50.0%) 1/2 (50.0%) Squirrels (Suborder Sciuridae) Gliding squirrel (Pteromyinae) Red giant flying squirrel (Petaurista p. grandis) 3/13 (23.1%) 9/13 (75.0%) White-faced flying squirrel (Petaurista alborufus lena) 22/22 (100.0%) Japanese giant flying squirrel (Petaurista leucogenys) 1/12 (8.3%) 10/12 (83.3%) 1/12 (8.3%) Southern flying squirrel (Glaucomys volans) 14/18 (77.8%) 2/18 (11.1%) 2/18 (11.1%)

Tree squirrel (Sciurinae) Japanese squirrel (Sciurus lis) 6/6 (100.0%) Eastern gray squirrel (Sciurus carolinensis) 16/16 (100.0%) Pallas’s squirrel (Callosciurus erythraeus) 14/14 (100.0%)

Ground squirrel (Xerinae) Black-tailed prairie dog (Cynomys ludovicianus) 6/7 (85.7%) 1/7 (14.3%) Prairie dog (Cynomys sp.) 4/4 (100.0%) Groundhog (Marmota monax) 11/11 (100.0%) Suborder Hystricomorpha Guinea Pig (Cavia porcellus) 11/11 (100.0%) Nutria (Myocastor coypus) 11/13(84.6%) 2/13 (15.4%) Asiatic brush-tailed porcupine (Atherura macrura) 7/7 (100.0%) African crested porcupine (Hystrix cristata galeata) 8/8 (100.0%) Hystrix porcupines (Hystrix sp.) 4/4 (100.0%) Capybara (Hydrochoerus hydrochaeris) 1/10 (10.0%) 8/10 (80.0%) 1/10 (10.0%) Suborder Myomorpha Brown rat (Rattus norvegicus) 14/14 (100.0%) Desert pocket gopher (Geomys arenarius arenarius) 3/3 (100.0%) Plains pocket gopher (Geomys bursarius) 9/9 (100.0%) North American beaver (Castor canadensis) 1/13 (7.7%) 11/13 (84.6%) 1/13 (7.7%) Eurasian beaver (Castor fiber) 2/2 (100.0%) Lord Derby’s scaly-tailed squirrel (Anomalurus derbianus) 12/13 (92.3%) 1/13 (7.7%) Pel’s scaly-tailed squirrel (Anomalurus peli) 2/2 (100.0%) Beecroft’s scaly-tailed squirrel (Anomalurus beecrofti) 2/2 (100.0%) Dwarf scaly-tailed squirrel (Anomalurus pusillus) 1/2 (50.0%) 1/2 (50.0%) Bats (Order Chroptera) Megabat (Pteropodidae) Flying fox (Pteropus sp.) 10/11 (90.9%) 1/11(9.1%) Large flying fox (Pteropus vampyrus) 1/4 (25.0%) 3/4 (75.0%) Hammer-headed bat (Hypsignathus monstrosus) 1/6 (16.7%) 5/6 (83.3%) New World leaf-nosed bat (Phyllostomidae) Jamaican fruit bat (Artibeus jamaicensis) 1/11 (9.1%) 9/11(81.6%) 1/11 (9.1%) Marsupials Sugar glider (Petaurus breviceps) 2/13 (15.4%) 11/13 (84.6%) Parma wallaby (Macropus parma) 4/4 (100.0%) Common opposum (Didelphis marsupialis) 3/3 (100.0%)

cervical, thoracic, lumbar, and sacral vertebrae relative to Consequently, unique elongations in relative axial body length (TL length) were calculated as summarised in length (thoracic and lumbar vertebrae) were recog- Table 4. Most examined mammals except flying squirrels nised as aerodynamic mammalian characteristics. [Pteromynae: giant (Fig. 3B) and southern (Fig. 3C) flying squirrels] and scaly-tailed squirrels (Anomalidae: DISCUSSION Fig. 3E, F) had longer thoracic and shorter lumbar vertebrae. Functional adaptation and developmental Remarkably, two aerodynamic mammals, colugos constraints of vertebral formulae and bats, had elongated cervical vertebrae (colugo: To date, developmental studies clarified that speci- Fig. 1A, C, E; bat, Fig. 3G). fication of the vertebral column is regulated by the

49 Folia Morphol., 2018, Vol. 77, No. 1

Table 4. Relative lengths of each vertebrae to body length (thoracolumbar length) in most frequent vertebral formula

Common name (scientific name) Selected vertebral Sample Stage C T L S formula size

Gliding / Flying Sunda colugo (Geleopterus variegatus) 7C13T6L5S (19TL) 9 Total: 9 39.3±6.1% 61.8±1.4% 38.2±1.4% 25.3±3.6% (Adult: 7) 36.9±4.3% 61.7±1.0% 38.3±1.0% 26.4±3.4% (Juvenile: 2) 47.7±2.2% 62.3±2.9% 37.7±2.9% 21.6± 1.3% Red giant flying squirrel (Petaurista petaurista) 7C12T7L3S (19TL) 9 Adult: 9 15.6±1.8% 44.5±0.8% 55.5±0.8% 14.9±1.4% White-faced flying squirrel (Petaurista alborufus) 7C12T7L3S (19TL) 22 Adult: 22 15.2±1.1% 46.0±2.3% 54.0±2.3% 15.3±1.3% Japanese giant flying squirrel (Petaurista leucogenys) 7C12T7L3S (19TL) 8 Adult: 8 16.9±0.9% 44.2±1.4% 55.8±1.4% 16.3±1.4% Southern flying squirrel (Glaucomys volans) 7C12T7L3S (19TL) 12 Total: 12 18.5±3.2% 47.4±1.7% 52.6±1.7% 17.5±4.1% (Adult: 9) 17.5±2.3% 47.4±1.3% 52.6±1.3% 15.4±2.0% (Juvenile: 3) 22.5±1.5% 46.4±2.7% 53.6±2.7% 22.8±3.2% Lord Derby’s scaly-tailed squirrels (Anomalurus derbianus) 7C16T9L4S (25TL) 10 Total: 10 18.5±1.1% 48.6±1.0% 51.4±1.0% 17.2±1.1% (Adult: 9) 18.6±1.1% 48.5±1.0% 51.5±1.0% 16.9±0.6% (Juvenile: 1) 16,90% 49,60% 50.4% 19,80% Sugar glider (Petaurus breviceps) 7C13T6L2S (19TL) 10 Adult: 10 17.1±1.1% 53.4±1.8% 46.7±1.8% 10.0±1.0% Megabats (Pteropus spp.) 7C13T5L4S (18TL) 7 Adult: 7 48.1±4.0% 68.1±2.3% 31.9±2.3% 23.5±2.0% Large flying fox (Pteropus vampyrus) 7C13T5L4S (18TL) 3 Adult: 3 40.5±2.1% 69.0±2.1% 31.0±2.1% 22.1±4.1% Jamaican fruit bat (Artibeus jamaicensis) 7C13T4L4S (17TL) 5 Adult:5 24.1±5.8% 74.1±3.5% 25.9±3.5% 22.9±3.9% Hammer-headed bat (Hypsignathus monstrosus) 7C15T3L4S (18TL) 5 Adult:5 37.7±4.1% 81.3±0.4% 18.7±0.4% 16.2±1.0% Arboreal /Terrestrial Common tree shrew (Tupaia glis) 7C13T6L3S (19TL) 6 Adult: 6 18.5±1.8% 53.6±3.2% 46.5±3.2% 14.3±1.2% Japanese squirrel (Sciurus lis) 7C13T6L3S (19TL) 4 Adult: 4 19.4±1.8% 56.5±1.8% 43.5±1.8% 16.7±1.1% Eastern Gray squirrel (Sciurus carolinensis) 7C13T6L3S (19TL) 8 Adult: 8 17.9±1.0% 56.2±4.0% 43.8±4.0% 14.3±2.7% Pallas’s squirrel (Callosciurus erythraeus) 7C12T7L3S (19TL) 9 Adult: 9 18.3±2.5% 52.0±2.1% 49.6±2.1% 14.6±1.9% Terrestrial/Digging Rat (Rattus norvegicus) 7C13T6L3S (19TL) 10 Adult: 10 22.7±2.3% 55.9±3.2% 44.1±3.2% 23.2±5.5% Black-tailed prairie dog (Cynomys ludovicianus) 7C12T7L4S (19TL) 4 Adult: 4 20.4±1.2% 51.6±0.8% 48.4±0.8% 18.0±0.8% Groundhog (Marmota monax) 7C13T6L4S (19TL) 10 Adult: 10 21.1±2.0% 59.4±1.9% 40.6±1.9% 18.3±2.2% Guinea pig (Cavia porcellus) 7C13T6L3S (19TL) 5 Adult: 5 27.1±3.2% 67.6±3.1% 32.4±3.1% 20.5±2.1% Plains pocket gopher (Geomys bursarius) 7C12T7L5S (19TL) 6 Adult: 6 19.6±2.0% 51.8±2.4% 48.2±2.4% 31.2±4.0% Asiatic brush-tailed porcupine (Atherura macrura) 7C15T4L3S (19TL) 5 Adult: 5 27.5±1.3% 64.3±3.2% 35.7±3.2% 18.7±0.9% African crested porcupine (Hystrix cristata galeata) 7C14T5L4S (19TL) 5 Adult: 5 29.4±2.6% 64.2±2.0% 35.8±2.0% 24.5±2.9% Semi-aquatic Capybara (Hydrochoerus hydrochaeris) 7C13T6L4S (19TL) 7 Total: 7 32.4±6.1% 58.8±0.9% 48.2±0.9% 24.1±3.3% (Adult: 4) 29.8±0.6% 59.2±1.9% 40.8±1.9% 23.0±1.2% (Juvenile: 3) 35.8±9.0% 58.4±0.1% 41.6±0.1% 25.6±4.9% Nutria (Myocastor coypus) 7C13T6L4S (19TL) 9 Adult: 9 23.8±1.9% 56.4±2.2% 43.6±2.2% 24.0±4.2% North American beaver (Castor canadensis) 7C14T5L4S (19TL) 11 Adult: 11 18.3±1.1% 65.2±2.5% 34.8±2.5% 27.6±1.6%

C — cervival; T — thoracic; L — lunbar; S — sacral

expression patterns of the Hox genes [8, 11, 12, 19]. cused to examine their evolutionary and developmental Additionally, somite segmentation genes also play an transformations in afrotherian mammals [42], sloths important role in vertebral column development [12, [7, 23, 56], pygmy right whale [6], manatees [56], an- 24]. Based on these recent developments, TL counts thropoid primates [62], and dolphins [59]. Because the were determined to be relatively constant at the levels TL counts in colugos, tree shrews, and rodents were of families and orders [33, 42]. As mentioned in those mostly thought to be fixed at 19, they were excluded studies, many mammalian TL counts are fixed at 19, from detailed examination [2, 16, 18, 33, 42]. However, with a constant 7 cervical vertebrae and therefore, other we recognised exceptions in some rodents and needed exceptional unique mammalian species have been fo- to search any selection factor for vertebral variability.

50 T. Kawashima et al., Vertebral changes in aerodynamic mammals

Figure 2. Morphological varia­ bility in vertebral formula for colugos (A–G) and tree shrews (H–K). Circles (˜), triangles (), and arrowheads show the thoracic vertebrae, lumbar vertebrae, and sacroiliac articulation, respectively; A. Sunda colugo (G. variegatus), 18 TL (USNM155363); B. Sunda colugo (G. variegatus), 19 TL (AMNH101679); C. Sunda colugo (G. variegatus), 20 TL (USNM-A49693); D. Philippine colugo (C. volans), 19TL (FMNH15593); E. Philippine colugo (C. volans), 20TL (USNM197203); F. Philippine colugo (C. volans), 21TL (FM61031); G. Philippine colugo (C. volans), 22TL (FMNH56438); H. Slender tree shrew (T. gracilis), 18TL (USNM578565); I. Common tree shrew (T. glis), 19TL (FMNH66019); J. Mindanao tree shrew (U. everetti), 20TL (FMNH57311); K. Mindanao tree shrew (U. everetti), 21TL (FMNH61419). Scale bar = 10 mm.

Alternatively, the vertebral counts and/or morpho- available on axial skeleton of colugos, tree shrews, logical transformations that reflect adaptation have and specialised rodents, such as scaly-tailed squirrels been reported: elongated lumbar vertebrae in gliding and pocket gophers. Therefore, we investigated mor- squirrels compared with non-gliding squirrels contribute phological variability of vertebral counts and propor- to increased stiffness and are useful for stability and tions based on different locomotive modes. control for gliding [54, 55]; and arboreal tree shrews are In colugos, Leche [29] introduced some classical more thoracic for increased stability on trees, terrestrial data on vertebral formula, but only described a few tree shrews are more lumbar for increased flexibility specimens, mostly one or two specimens. Although [40]. Additionally, there are morphological differences of these data were clearly insufficient for comparison vertebrae in bridging and cantilevering mammals [21], with other mammals, these data also seem to show and vertebral morphology and counts differ based on vertebral variability: 7C, 13–14T, 5–9L, 3–6S and running speed in mammals [18]. 18–22TV. In a recent study on mammalian TL counts, Our previous anatomical studies on gliding mam- Sánchez-Villagra et al. [42] included 16 Philippine mals [27, 28] revealed that there were insufficient data colugos (Cynocephalus volans) and described 19 TL

51 Folia Morphol., 2018, Vol. 77, No. 1

Figure 3. Comparison of vertebral formulae and proportions in a typical non-gliding rodent (A), gliding rodents (B–F), and a flying bat (G). Circles (˜), triangles (), and arrow- heads show the thoracic vertebrae, lumbar vertebrae, and sacroiliac articulation, respectively. A. Typical thoracolumbar formula and proportion in most rodents, rat (19TL, USNM255345); B. Longer lumbar vertebrae in white-faced flying squirrels (Petaurista alborufus, 19TL, USNM332937); C. Longer lumbar vertebrae in southern flying squirrels (Glaucomys volans, 19TL, USNM569025); D. Variation on an additional lumbar ver- tebra with typical thoracic and sacral formula in a sugar glider (Petaurus breviceps, 19TL, USNM221215); E , F. Constant additional and longer lumbar vertebrae in scaly-tailed squirrels: E. Anomlidae sp., 25TL, USNM599180; F. Anom- alurus derbianus, 26TL, AMNH150446; G. Constant fewer lumbar vertebrae with longer cervical vertebrae in bats (Pteropus vampyrus 18TL (USNM197227).

in 15 (93.8%) cases and 21 TL in only 1 (6.3%) case. data on vertebral formulae are also surprisingly poor. Therefore, to the best of our knowledge, the present Most studies that used small sample sizes, mostly study provides the first large data set for future colugo one specimen, showed that the average number of studies. Although our range of vertebral formulae were vertebrae for Tupaia tree shrews [32, 40], Urogale similar to those of previous reports, our data clearly [40], Dendorogale [13, 40], and Anathana [58] was showed high variation in individuals, with meristic devia- 7C, 13T, 6L, 3S, and 19TL, whereas Ptilocercus tree tion and substantial geographical variation of vertebral shrews were 7C, 14T, 5L, 3S, and 19TL [22, 30, 32, formulae between two colugos: 7C, 13–14T, 6–8L, 4–5S, 40]. These reports showed consistent vertebral for- and 19–22TL (mean: 20.9TL) in Philippine colugos and mula for Tupaia species (7C, 13T, 6L, and 3S) and 7C, 13–14T, 5–7L, 4–5S, and 18–20TL (mean: 19.0TL) in Ptilocercus species (7C, 14T, 5L, and 3S). According Sunda colugos. Although Janečka et al. [25] reported to Sánchez-Villagra et al. [42], all eight tree shrews evidence for three species of Sunda colugos based on (Ptilocercus lowii) were 19TL. In another studies, their skull morphology, distinct vertebral formulae based Shultz [43] examined axial vertebrae in 16 Tupaia on geography in the three subspecies of Sunda colugos tree shrews. He classified the cases with transitional were not found in the present study. These data strongly (asymmetrical) vertebrae as intermediate number indicate that vertebral formulae in colugos reflect selec- as follows: 12.5T (1/16, 6%), 13T (14/16, 88%), 14T tion from gliding adaptation and geographical variation (1/16, 6%); 5L (1/16, 6%), 6L (13/16, 82%), 6.5L between two species. (1/16, 6%), 7L (1/16, 6%); 18TL (1/16, 6%), 19TL In tree shrews, functional adaptation of the ver- (13/16, 81%), 20TL (2/16, 13%); 3S (15/16, 94%), tebral column has been well debated, although most 4S (1/16, 6%).

52 T. Kawashima et al., Vertebral changes in aerodynamic mammals

Based on previous data, Sargis [40] commented To elucidate mammalian vertebral transforma- that arboreal Ptilocercus had more thoracic and fewer tion by different locomotive modes, some research- lumbar vertebrae than terrestrial Tupaiines, and the ers have explained the functional aspects: various axial vertebral column in Tupaia might be more flex- locomotive behaviours such as suspension, gliding, ible than that in Ptilocercus; therefore, Tupaia is more bridging between branches, climbing, and clinging, adapted to the ground. are considered to be related to more stable and less Our results using a large sample size of 112 tree flexible vertebral columns in mammals [5, 9, 26, 40, shrews showed higher variation in TL counts (19TL in 44, 60]. Therefore, detailed lumbar vertebral charac- 81/112, 72.3%) than previous data. Unfortunately, we teristics and their relationships with the locomotive could not confirm whether arboreal Ptilocercus has behaviours have been examined [16, 18, 20, 21]. more thoracic vertebrae than terrestrial Tupaia because To understand these relationships correctly, it is of the limited sample size of Ptilocercus in our present important to elucidate by osteological, ligamentous, study. However, the most frequent vertebral formulae and/or muscular mechanisms [20]; however, it is dif- in Urogale tree shrews (predominately terrestrial [15]) ficult to identify their relationships because of the was also 7C, 14T, 5L, and 3S (5/10, 50.0%). In addi- complex nature of these mechanisms. Therefore, we tion, the typical vertebral formula of 13T, 6L, and 19TL tried to obtain a perspective on the vertebral modi- in more terrestrial Tupaia species was present in only fication by different locomotive modes based on 63/99 (63.7%) individuals in our study. Therefore, our a large data set of vertebral counts and proportions. results did not support clearly the previous idea regard- Our vertebral data clearly indicate that some aero- ing the vertebral difference between living in arboreal dynamic mammals, such as colugos, southern flying and terrestrial habitats [40]. squirrels, scaly-tailed squirrels, and bats, show ex- Rodents are definitely the least variable group with- ceptionally high frequencies of variation in thoracic, out any deviation in thoracolumbar counts as shown in lumbar, and thoracolumbar counts; and sugar gliders other studies [2, 33, 42]. Our study showed that most and some semi-aquatic rodents also show some varia- arboreal and terrestrial rodents were fixed at 19TL with- tion. These results indicate that morphological change out any deviation, but most flying squirrels showed rela- in vertebral formulae by aerodynamic adaptation is tively high variation among populations and frequencies possible as a selection. (18–21TL), and most semi-aquatic mammals had some variation in frequency (18–20TL). Furthermore, scaly- Morphological transformation of vertebral tailed squirrels were ultimately exceptional rodents, proportion among different locomotive modes and typically had 25TL (17/19, 89.5%) with variation. Although the specialised and proportional modi- We found only one skeleton illustration of a Pel’s flying fications of the forelimb in some aerodynamic mam- squirrel (Anomalurus pelii) and it appeared to be 16T, mals have been well examined [4, 28, 46, 47, 49, 9L, and 25TL [14]. Any other previous statistical data 53–55], it is still not fully understood whether verte- on the axial vertebrae were always missing Anomalidae bral proportions have been modified by aerodynamic data from rodents and therefore concluded that rodents adaptation. Thorington and Santana [55] compared mostly have a fixed 19 TL. the body skeletal proportions among Glaucomys Furthermore, the lineage-specific TL numbers in bats (gliding squirrels) and (non-gliding squir- were also uniquely different: flying foxes (18TL in all three) rels), and reported longer forearms and lumbar and and fruit bats (16TL in 1 and 17TL in 1 of 2). Similar TL mid-caudal vertebrae and shorter hands and feet in modification in bats has been reported (14T4L inPteropus gliding squirrels compared with non-gliding squirrels sp. [38]; 11T5L in Plecotus auritus [34]; 11T5L in Myotis as morphological modifications for evolution of glid- [57]; 13T5L in Rousette [35]). In addition, our finding ing flight. In the present study, we confirmed longer regarding sugar gliders also showed 18TL (2/13, 15.4%) lumbar and shorter thoracic vertebrae in flying squir- among the relatively consistent 19 TL counts in exam- rels and in scaly-tailed squirrels. These results show ined marsupials. According to Barbour [3], the vertebral a shared trait in gliding rodents, and this elongation column always has 26 presacral vertebrae with lineage- might be a unique selection and have only evolved in specific trade-off of thoracic and lumbar vertebrae [36, 37, gliding rodents. Furthermore, Dermoptera and Chi- 50, 63]. Flower [17] also described similar characteristics roptera have prominently longer thoracic and shorter for 27 marsupials, including two sugar gliders. lumbar vertebrae, but sugar gliders have almost the

53 Folia Morphol., 2018, Vol. 77, No. 1

same thoracic and lumbar vertebral proportions as CONCLUSIONS seen in the other mammals adapted to arboreal, ter- We tested our hypothesis that aerodynamic adap- restrial, and digging habitats. Therefore, each glider tation modifies axial vertebrae based on locomotive may have a unique vertebral proportion with different mode, and produced a large data set of vertebral developmental constraints. This is a developmental formulae and proportions for colugos, tree shrews, issue that should be further addressed in the future. rodents and others, which included all aerodynamic Our findings also clearly showed prominently mammals. Our results show that aerodynamic mam- elongated cervical and thoracic vertebral proportions mals have high variation in thoracic, lumbar, and TL in colugos and bats (Table 4). Jenkins [26] discussed counts and proportions. Therefore, aerodynamic ad- how thickened ribs might facilitate slow climbing and aptation is potentially a selection factor that, despite bridging in lorisine primates by increasing the stability developmental constraints, shapes variation among of the thorax, which, in turn, increases the stability of mammals with different locomotive modes, such as the vertebral column. Based on his hypothesis, both arboreal, terrestrial, digging, and semi-aquatic. colugos and bats seem to share unique functional morphological characteristics. Colugos and bats have Acknowledgements wide ribs, and another feature considered to be a syn- For proving the opportunity to measure dry col- apomorphy uniting these two groups in supraorder lections, the authors thank Mr. Darrin P. Lunde, Ms. Volitantia [45, 46, 47, 51, 52, 61]. Because there are Esther M. Langan, Ms. Nicole R. Edmison, Dr. Kristofer fewer ribs in the tree shrews than in the colugos and M. Helgen, Dr. James G. Mead, Mr. Charles W. Potter, bats, the morphological characteristics of the ribs Ms. Suzanne C. Peurach, Ms. Linda Gordon, Mr. John might be associated with functional convergence. J. Ososky, and all staff of the Division of Mammals, The elongated thoracic vertebrae with wide and more National Museum of Natural History, Smithsonian ribs have been considered to be advantageous in the Institution (Washington, DC, USA); Dr. Lawrence chiropterans for hanging [46, 47, 51, 52] and/or for Heaney, Mr. William Stanley, and Ms. Tracy Damitz stability of the thorax during flight [48]. of the Field Museum of Natural History (Chicago, IL, Of mammals we examined, colugos and bats have USA); Dr. Nancy B. Simmons and Ms. Eileen Westwig elongated necks, and these are interestingly hanging of the Department of , American Mu- and roosting species that do not make a nest. Because seum of Natural History (New York, NY, USA); Ms. Judy they always have to pay attention to their predators Chupasko of the Department of Mammals, Museum during roosting, it is beneficial to be equipped with of Comparative Zoology, Harvard University (Boston, a flexible and rotating neck to search for predators MA, USA); Dr. Philip Unitt of the Department of Bird in addition to advantageous for enlargement of the and Mammals, San Diego Natural History Museum propatagium. (San Diego, CA, USA); Dr. Janet K. Braun and Ms. Furthermore, tree sloths are also hanging species Marcia A. Revelez of the Department of Mammal- but were not examined in this research. Because three- ogy, Sam Noble Oklahoma Museum of Natural His- toed sloths (Bradypus sp.) are known to have nine cer- tory, University of Oklahoma (Norman, OK, USA); Ms. vical vertebrae, these species may be advantageous for Yen-Jean Chen and staff of the Division of Birds and head rotation during roosting and hanging. However, Mammals, Department of Zoology, National Museum two-toed sloths (Choloepus sp.) imply some difficulties of Natural Science (Taichung, Taiwan); Dr. Yi-Jung when compared with other mammals in cervical count: Lin of the Museum of Zoology and College of Life 5CV in 6/49 (12%), 6CV in 42/49 (86%), and 7CV in 1/49 Science, National Taiwan University (Taipei, Taiwan); (2%) in C. hoffmanni; seven cervical vertebrae in almost Prof. Kenjiro Matsuno, Prof. Hisashi Ueta, and Prof. all C. didactylus [7]. These results regarding specialised Hideo Takahashi of the Department of Anatomy, elongated and shortened cervical vertebrae may show Dokkyo Medical University (Mibu, Tochigi, Japan); a relationship with ecological selection. Mr. Wayne Longmore and Dr. Erich Fitzgerald of the Therefore, a relatively elongated neck might be Melbourne Museum (Melbourne, VIC, Australia); Mr. considered a contributing factor to the derived func- Jay Villenarette, Mr. Josh Villenarette, and Mr. Joey tional adaptation of the specialised roosting habits Williams of the Museum of Osteology (Oklahoma City, and developed propatagium, and not a flying/gliding OK, USA); Dr. Robert Asher and Mr. Mathew Lowe adaptation. of Cambridge Museum of Zoology (Cambridge, UK);

54 T. Kawashima et al., Vertebral changes in aerodynamic mammals

Dr. Nicolas Violaine and Dr. Guillaume Billet of Muséum 12. Cordes R, Schuster-Gossler K, Serth K, et al. Specification National d’Histoire Naturelle (Paris, France); and of vertebral identity is coupled to Notch signalling and the segmentation clock. Development. 2004; 131(6): 1221–1233, Dr. Hiroko Hirotani and Dr. Hajime Taru of Kanagawa doi: 10.1242/dev.01030, indexed in Pubmed: 14960495. Prefectural Museum of Natural History (Odawara, 13. Davis DD. Notes on the anatomy of the treeshrew Dendrogale. Field Mus Nat His (Zool Series. 1938; 20: 383–404. Kanagawa, Japan). 14. De Blainville HMD. Ostéographie ou description iconographique This study was supported by Scientific Research comparée du squelette et du système dentaire des mam- Grants (KAKENHI) from the Japanese Ministry of mifères récents et fossils. JB Bailliére et Fils. Paris. 1840. 15. Doyle GA, Walker AC. D’Souza F.A preliminary field report on the Education, Culture, Sports, Science and Technol- lessor tree shrew Tupaia minor. In: Martin RD, Doyle GA, Walker ogy (2004–2006, No. 16790804; 2007–2009, No. AC (eds.). Prosimian biology. Duckworth, London 1974: 167–182. 19790985; 2011–2014, No. 23791579; 2016–2019, 16. Filler AG. Homeotic evolution in the mammalia: diversifica- tion of therian axial seriation and the morphogenetic basis of No. 16K10640); a grant from the International Re- human origins. PLoS One. 2007; 2(10): e1019, doi: 10.1371/ search Programme of the Japanese Ministry of Edu- journal.pone.0001019, indexed in Pubmed: 17925867. cation, Culture, Sports, Science, and Technology 17. Flower W. An introduction to the osteology of the Mammalia. Macmillan, London. 1885, doi: 10.5962/bhl.title.101537. (2008–2009); a Visiting Research Grant from the 18. Galis F, Carrier DR, van Alphen J, et al. Fast running re- Field Museum of Natural History (2008–2009); and stricts evolutionary change of the vertebral column in a grant from the Project research program of Toho mammals. Proc Natl Acad Sci USA. 2014; 111(31): 11401–11406, doi: 10.1073/pnas.1401392111, indexed in Pubmed: University Medical School (H23-29, H24-02, H26-01, 25024205. H27-4). 19. Gaunt SJ. Conservation in the Hox code during morphologi- cal evolution. Int J Dev Biol. 1994; 38(3): 549–552, indexed References in Pubmed: 7848839. 20. Granatosky MC, Lemelin P, Chester SGB, et al. Functional 1. Aimi M. Numerical variation of vertebrae in Japanese ma- and evolutionary aspects of axial stability in euarchontans caques, macaca fuscata. Anthropol Sci. 1994; 102(Supple- and other mammals. J Morphol. 2014; 275(3): 313–327, ment): 1–10, doi: 10.1537/ase.102.supplement_1. doi: 10.1002/jmor.20216, indexed in Pubmed: 24288155. 2. Asher RJ, Lin KH, Kardjilov N, et al. Variability and constraint 21. Granatosky MC, Miller CE, Boyer DM, et al. Lumbar vertebral in the mammalian vertebral column. J Evol Biol. 2011; 24(5): morphology of flying, gliding, and suspensory mammals: 1080–1090, doi: 10.1111/j.1420-9101.2011.02240.x, indexed implications for the locomotor behavior of the subfossil in Pubmed: 21338435. lemurs Palaeopropithecus and Babakotia. J Hum Evol. 2014; 3. Barbour RA. Anatomy of marsupials. In: Stonehouse B and 75: 40–52, doi: 10.1016/j.jhevol.2014.06.011, indexed in Gilmore D (eds.). The biology of marsupials. University Park Pubmed: 25216795. Press, Baltimore 1977: 237–272. 22. Gregory WK. Relationship of the Tupaiidae and of 4. Beard KC. Origin and evolution of gliding in early Cenozoic Lemurs, especially Notharctus. Bull Geol Soc Am. 1913; 24(1): Dermoptera (Mammalia, ). In: MacPhee RDE 247–252, doi: 10.1130/gsab-24-247. (ed.). Primates and their relatives in phylogenetic perspective. 23. Hautier L, Weisbecker V, Sánchez-Villagra MR, et al. Skeletal Plenum Press, New York 1993: 63–90. 5. Boyer DM, Bloch JI. Evaluating the mitten-gliding hypothesis development in sloths and the evolution of mammalian ver- for Paromomyidae and Micromomyidae (Mammalia, “Plesia- tebral patterning. Proc Natl Acad Sci U S A. 2010; 107(44): dapiformes”) using comparative functional morphology of 18903–18908, doi: 10.1073/pnas.1010335107, indexed in new skeletons. In: Dagosto MJ, Sargis EJ (eds.). Pubmed: 20956304. Mammalian evolutionary morphology. A tribute to Frederick 24. Ikeya M, Takada S. Wnt-3a is required for somite specification S. Szalay. Springer-Verlag, New York 2008: 231–279. along the anteroposterior axis of the mouse embryo and for 6. Buchholtz E. Vertebral and rib anatomy in Caperea marginata: regulation of cdx-1 expression. Mech Dev. 2001; 103(1-2): Implications for evolutionary patterning of the mammalian 27–33, indexed in Pubmed: 11335109. vertebral column. Marine Mammal Science. 2010; 27(2): 25. Janecka JE, Miller W, Pringle TH, et al. Molecular and genomic 382–397, doi: 10.1111/j.1748-7692.2010.00411.x. data identify the closest living relative of primates. Science. 7. Buchholtz EA, Stepien CC. Anatomical transformation in mam- 2007; 318(5851): 792–794, doi: 10.1126/science.1147555, mals: developmental origin of aberrant cervical anatomy in indexed in Pubmed: 17975064. tree sloths. Evol Dev. 2009; 11(1): 69–79, doi: 10.1111/j.1525- 26. Jenkins FA. Anatomy and function of expanded ribs in certain 142X.2008.00303.x, indexed in Pubmed: 19196334. edentates and primates. J Mammal. 1970; 51(2): 288–301, 8. Burke AC, Nelson CE, Morgan BA, et al. Hox genes and the indexed in Pubmed: 5425659. evolution of axial morphology. Development. 1995; 27. Kawashima T, Murakami K, Takayanagi M, et al. Evolutionary 121(2): 333–346, indexed in Pubmed: 7768176. transformation of the cervicobrachial plexus in the colugo (Cyno- 9. Cartmill M, Milton K. The lorisiform wrist joint and the cephalidae: Dermoptera) with a comparison to treeshrews (Tupaii- evolution of “brachiating” adaptations in the hominoidea. dae: Scandentia) and strepsirrhines (: Primates). Folia Am J Phys Anthropol. 1977; 47(2): 249–272, doi: 10.1002/ Morphol. 2012; 71(4): 228–239, indexed in Pubmed: 23197142. ajpa.1330470206, indexed in Pubmed: 410307. 28. Kawashima T, Thorington RW, Bohaska PW, et al. Evolutionary 10. Clutton-Brock J, Wilson DE. Mammals. Smithsonian hand- Transformation of the Palmaris Longus Muscle in Flying Squir- books DK, New York 2002. rels (Pteromyini: Sciuridae): An Anatomical Consideration of 11. Cohn MJ, Tickle C. Developmental basis of limblessness and the Origin of the Uniquely Specialized Styliform Cartilage. Anat axial patterning in snakes. Nature. 1999; 399(6735): 474–479, Rec. 2017; 300(2): 340–352, doi: 10.1002/ar.23471, indexed doi: 10.1038/20944, indexed in Pubmed: 10365960. in Pubmed: 27611816.

55 Folia Morphol., 2018, Vol. 77, No. 1

29. Leche W. Über die Säugethiergattung Galeopithecus eine 46. Simmons NB. Bat relationship and origin of flight. Symp Zool Morphologische Untersuchung. Kungl Svenska Ventenskap Soc Lond. 1995; 67: 27–43. Akad Stochholm. 1886; 21: 3–92. 47. Simmons N, Quinn T. Evolution of the digital tendon locking 30. Le Gros Clark WE. On the Anatomy of the Pen-tailed Tree- mechanism in bats and dermopterans: A phylogenetic per- Shrew (Ptilocercus lowii.). Proc zool Soc Lond. 1926; 96(4): spective. J Mammal Evol. 1994; 2(4): 231–254, doi: 10.1007/ 1179–1309, doi: 10.1111/j.1096-3642.1926.tb02241.x. bf01464276. 31. Lim N. Colugo. The flying of South-east Asia. Draco 48. Slijper EJ. Comparative biologic-anatomical investigations on Publishing & Distribution Pte Ltd. And National University of the vertebral column and spinal musculature of mammals. , Singapore 2007. Verh K Ned Akad Wet Tweede Sectie. 1946; 42: 1–128. 32. Lyon M. Treeshrews: An account of the mammalian fam- 49. Stafford B, Jr. RT, Kawamichi T. Gliding behavior of japanese ily Tupaiidae. Proc US Nat Mus. 1913; 45(1976): 1–188, giant flying squirrels (Petaurista leucogenys). J Mammal. 2002; doi: 10.5479/si.00963801.45-1976.1. 83(2): 553–562, doi: 10.1644/1545-1542(2002)083<0553:gb 33. Narita Y, Kuratani S. Evolution of the vertebral formulae in ojgf>2.0.co;2. mammals: a perspective on developmental constraints. J Exp 50. Stirling EL. Description of a new and species of Mar- Zool B Mol Dev Evol. 2005; 304(2): 91–106, doi: 10.1002/ supialia, ‘Notoryctes typhlops’. Trans Roy Soc S Australia. jez.b.21029, indexed in Pubmed: 15660398. 1891; 14: 154–187. 34. Norberg UM. Functional osteology and myology of the wing 51. Szalay FS, Lucas SG. ranioskeletal morphology of archontans, of Plecotus auritus Linnaeus (Chiroptera). Arkiv för Zoologi. and diagnoses of Chiroptera, Vilitantia, and . In: 1968; 22: 483–543. MacPhee RDE (ed.). Primates and their relatives in phylog- 35. Norberg U. Functional osteology and myology of the wing enyetic perspective, Advances in Primatology Series. Plenum of the dog-faced bat Rousettus aegyptiacus (É. Geoffroy) Press, New York 1993: 187–226. (Mammalia, Chiroptera). Z Morph Tiere. 1972; 73(1): 1–44, 52. Szalay FS, Lucas SG. Postcranial morphology of Paleocene doi: 10.1007/bf00418146. Chriacus and Mixodectes and the phylogenetic relationships 36. Owen R. Outlines of a classification of the Masupialia. Trans of archontan mammals. New Mexico Bulletin of Natural His- Zool Soc London. 1841; 2: 315–333. tory and Science. 1996; 7: 1–47. 37. Owen R. On the osteology of the Marsupialia. Trans Zool Soc 53. Thorington RW, Darrow K, Anderson CG. Wing Tip Anatomy London. 1841; 2: 379–408. and Aerodynamics in Flying Squirrels. J Mammal. 1998; 79(1): 38. Owen R. Descriptive catalogue of the osteological series 245–250, doi: 10.2307/1382860. contained in the museum of the of England. Royal College 54. Thorington RW, Heaney LR. Body Proportions and Gliding of Surgeons. London. 1853. Adaptations of Flying Squirrels (Petauristinae). J Mammal. 39. Pilbeam D. The anthropoid postcranial axial skeleton: com- 1981; 62(1): 101–114, doi: 10.2307/1380481. ments on development, variation, and evolution. J Exp Zool B 55. Thorington R, Santana E. How to make a flying squirrel: Mol Dev Evol. 2004; 302(3): 241–267, doi: 10.1002/jez.b.22, glaucomysanatomy in phylogenetic perspective. J Mammal. indexed in Pubmed: 15211685. 2007; 88(4): 882–896, doi: 10.1644/06-mamm-s-325r2.1. 40. Sargis E. A preliminary qualitative analysis of the axial skeleton 56. Varela-Lasheras I, Bakker AJ, van der Mije SD, et al. Breaking of tupaiids (Mammalia, Scandentia): functional morphology evolutionary and pleiotropic constraints in mammals: On sloths, and phylogenetic implications. J Zool. 2001; 253(4): 473–483, manatees and homeotic mutations. Evodevo. 2011; 2: 11, doi: 10.1017/s0952836901000437. doi: 10.1186/2041-9139-2-11, indexed in Pubmed: 21548920. 41. Sawin P. Preliminary studies of hereditary variation in the 57. Vaughan TA. The skeletal system. In: Wimsatt WA (ed.). axial skeleton of the rabbit. Anat Rec. 1937; 69(4): 407–428, Biology of Bats vol. 1. Chapter 3. Academic Press, New York doi: 10.1002/ar.1090690403. 1970: 97–138. 42. Sánchez‐Villagra M, Narita Y, Kuratani S. Thoracolumbar verte- 58. Verma K. Notes on the biology and anatomy of the indian bral number: The first skeletal synapomorphy for afrotherian tree-shrew, anathana wroughtoni. Mammalia. 1965; 29(3): mammals. Systematics and Biodiversity. 2007; 5(1): 1–7, 289–330, doi: 10.1515/mamm.1965.29.3.289. doi: 10.1017/s1477200006002258. 59. Viglino M, Flores DA, Ercoli MD, et al. Patterns of morphologi- 43. Schultz A. Vertebral column and thorax. In: Hofer H, Schultz cal variation of the vertebral column in dolphins. J Zool. 2014; AH, Starck D (eds.). Primatologia Vol IV S Karger, Basel 1961: 294(4): 267–277, doi: 10.1111/jzo.12177. 1–66. 60. Ward C. Torso morphology and locomotion inProconsul nyan- 44. Shapiro LJ, Simons CVM. Functional aspects of strepsirrhine zae. Am J Phys Anthropol. 1993; 92(3): 291–328, doi: 10.1002/ lumbar vertebral bodies and spinous processes. J Hum Evol. ajpa.1330920306. 2002; 42(6): 753–783, doi: 10.1006/jhev.2002.0560, indexed 61. Wible JR, Novacek MJ. Cranial evidence for the monophyletic in Pubmed: 12069508. origin of bats. Am Mus Novitates. 1988; 2911: 1–19. 45. Shoshani J, McKenna MC. Higher taxonomic relationships 62. Williams S. Variation in anthropoid vertebral formulae: impli- among extant mammals based on morphology, with selected cations for homology and homoplasy in hominoid evolution. comparisons of results from molecular data. Mol Phylogenet J Exp Zool. 2011: 134–147, doi: 10.1002/jez.b.21451. Evol. 1998; 9(3): 572–584, doi: 10.1006/mpev.1998.0520, 63. Wood Jones F. The mammals of South Australia. Govt Printer, indexed in Pubmed: 9668007. Adelaide 1923.

56