Asexual Reproduction of Marine Invertebrate Embryos and Larvae

Total Page:16

File Type:pdf, Size:1020Kb

Asexual Reproduction of Marine Invertebrate Embryos and Larvae W&M ScholarWorks Arts & Sciences Book Chapters Arts and Sciences 1-2018 Asexual Reproduction of Marine Invertebrate Embryos and Larvae Jonathan D. Allen College of William and Mary, [email protected] Adam M. Reitzel William Jaeckel Follow this and additional works at: https://scholarworks.wm.edu/asbookchapters Part of the Marine Biology Commons Recommended Citation Allen, J. D., Reitzel, A. M., and Jaeckle, W., Asexual reproduction of marine invertebrate embryos and larvae. In. Evolutionary Ecology of Marine Invertebrate Larvae. (2018). Edited by Tyler J. Carrier, Adam M. Reitzel, and Andreas Heyland: Oxford University Press. This Book Chapter is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been accepted for inclusion in Arts & Sciences Book Chapters by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Chapter 5 Asexual Reproduction of Marine Invertebrate Embryos and Larvae Jonathan D. Allen, Adam M. Reitzel, and William Jaeckle 5.1 Introduction addressed with respect to such aspects of sexual re- production as facultative progenesis, where larval The life histories of marine invertebrates are incred- stages develop gametes (Poulin, 2001), and poecil- ibly diverse and provide a wealth of opportunities ogony, where one individual or species exhibits dif- to develop and test hypotheses about how and why ferent reproductive modes (Krug, 1998). One area of modes of reproduction, development, and behav- life history plasticity that is far more common, but ior evolve within and among lineages. With respect has received less attention, is asexual reproduction. to the evolution of reproductive and developmen- Asexual reproduction during development oc- tal mode, phylogenetic, adaptive, and functional curs in most marine phyla (reviewed by Alvarado, hypotheses presented over the past century have 2000; Blackstone and Jasker, 2003) and may occur predominantly focused on the evolution of repro- at multiple stages during the indirect development ductive traits (e.g., free spawning, brooding, en- of some species. Despite, or perhaps because of, its capsulation; Rouse and Fitzhugh, 1994), nutritional broad distribution among phyla, diverse explana- mode of larvae (e.g., planktotrophy and lecithotro- tions for the adaptive value or evolutionary sig- phy; Strathmann, 1985; Hart et al., 1997), and devel- nificance of asexual reproduction as a life history opmental form (e.g., larval morphology; Jeffery and strategy have been offered. Adaptive explanations Swalla, 1992; direct and indirect development; Wray, include the following: as a method to weather 1995; McEdward and Janies, 1997). Frequently, but harsh environments (e.g., gemmules in sponges, not exclusively, these hypotheses have been tied to statoblasts in bryozoans); as a short-term solution changes in per-offspring investment (Emlet et al., for escaping mutation load (Hurst and Peck, 1996); 1987; Sinervo and McEdward, 1988; Emlet and as a means to colonize and/or adapt to chang- Hoegh-Guldberg, 1997), and influential models of ing or new habitats (Maynard Smith, 1971); or as per-offspring investment often serve as a frame- a means to persist at low population sizes (Gerber work for studies of the evolution of developmen- and Kokko, 2016). Several authors have addressed tal modes (Vance, 1973; Christiansen and Fenchel, adult asexual propagation and regeneration across 1979; Levita n, 2000). Phylogenetic assessment of the animal kingdom (e.g., Ferretti and Geraudie the evolution of character states within lineages has 2001), but asexual propagation is also employed by revealed frequent shifts among life histories traits pre-adult stages. In this chapter we aim to synthe- (McHugh and Rouse, 1998, and references therein). size the literature describing asexual reproduction In addition to these macroevolutionary changes by embryonic and larval stages of marine inver- among species, the life history exhibited by indi- tebrates, with a particular focus on echinoderms, viduals may change in response to one or more where the ecological and evolutionary costs and environmental features (life history plasticity). Plas- benefits of diverse modes of clonal replication have ticity in the evolution of life histories has also been been most studied. We conclude with a list of open Allen, J. D., Reitzel, A. M., and Jaeckle, W., Asexual reproduction of marine invertebrate embryos and larvae. In. Evolutionary Ecology of Marine Invertebrate Larvae. Edited by Tyler J. Carrier, Adam M. Reitzel, and Andreas Heyland: Oxford University Press (2018). © Oxford University Press. DOI: 10.1093/oso/9780198786962.003.0005 68 EVOLUTIONARY ECOLOGY OF MARINE INVERTEBRATE LARVAE questions that may provide fruitful future research may also undergo facultative asexual propagation avenues to better understand this understudied life to yield many hundreds of embryos that complete history trait of marine invertebrates. development and that are released as lecithotrophic larvae. Polyembryony has been described for one 5.2 Types of Asexual Reproduction species of cnidarian, the coral Acropora millepora, of and by Embryos and Larvae where environmental turbulence fragments early embryos and the isolated blastomeres can develop The general life history of a marine invertebrate into complete larvae (Heyward and Negri, 2012). has two potential stages where asexual propaga- Among echinoderms, polyembryony has been ob- tion could occur after fertilization, but prior to served in five species from the class Echinoidea: the the development of the adult stage: the develop- sea urchins Prionocidaris baculosa (Mortensen, 1938), ing embryo and, when present, the larva. Asexual Eucidaris tribuloides, Lytechinus variegatus, and Stron- reproduction in various marine invertebrates, as gylocentrotus droebachiensis, and the sand dollar Echi- well as throughout all animal phyla, also occurs narachnius parma (Allen et al., 2015). The incidence of by an elimination of meiosis during reproduction polyembryony in these species is highly variable and (e.g., parthenogenesis, apomixis, automixis; Judson significantly impacted by changes in environmental and Normark, 1996) and during the juvenile/adult conditions (e.g., salinity, discussed later). Finally, a stage (Blackstone and Jasker, 2003). species of ectoparasitic flatworm (phylum Platyhel- minthes), Gyrodactylus elegans, also exhibits polyem- bryony but through a different mechanism involving 5.2.1 Embryo unequal cleavage, instead of embryo fragmentation. Asexual propagation at the embryo stage is referred For this species, a single fertilized egg undergoes to as polyembryony. Polyembryony is defined as unequal cleavage that produces a second embryo the splitting of one sexually produced embryo into within the initial embryo, a third embryo within the many independent individuals. Approximately 20 second, and a fourth embryo within the third (Kath- years ago, Craig et al. (1997) reviewed the occur- eriner, 1904). rence of polyembryony in animals. They included both fragmentation of embryonic stages and larval 5.2.2 Larva budding within the term polyembryony, whereas here we will limit our definition of polyembryony to Asexual propagation at the larval stage has been re- asexual propagation prior to the formation of a de- ported in at least four phyla: Arthropoda, Cnidaria, finitive larva. Embryos and larvae commonly have Neodermata (within the traditional phylum Platy- different levels or degrees of tissue and structural helminthes), and Echinodermata (addressed in a organization, which allow for different mechanisms separate section later). For those species where it of asexual reproduction. For some terrestrial species has been described, asexual propagation occurs (e.g., nine-banded armadillos and various species by budding, although the method of budding can of parasitoid wasps), polyembryony is an obligate be quite variable. Within the phylum Arthropoda, part of the life history where a single fertilized oo- the parasitic rhizocephalan barnacles display a bi- cyte fragments to result in more than one develop- zarre method of larval budding, where they use ing embryo. Polyembryony has also been reported totipotent cells for host invasion (Glenner and in a handful of species from the Bryozoa, Cnidaria, Høeg, 1995). The cyprid larva settles on a decapod Echinodermata, and Platyhelminthes. Some spe- host and transforms into a kentrogon, which then cies of cyclostome bryozoans (e.g., Crisia denticulata; injects a number of de-differentiated cells into the Hughes et al., 2005) exhibit polyembryony via frag- host. Each cell forms a vermiform stage that splits mentation of the cleaving embryo. Adults produce into individual cells that will form independ- one or two primary embryos in the gonozooid that in ent adults in different parts of the host. A similar turn divide to produce up to 100 secondary embryos “infective” single-cell stage may occur via amoe- (reviewed in Reed, 1991). These secondary embryos boid cells in narcomedusozoans (Russell, 1953), ASEXUAL REPRODUCTION OF MARINE INVERTEBRATE EMBRYOS AND LARVAE 69 although the specific details are limited. For other infrequently observed and there is one larval form species of narcomedusan hydrozoans (Osborn, (tentatively assigned to the taxonomic order Paxil- 2000), scyphozoan s (Berrill, 1949), one species of sea losida, family Astropectinidae) that asexually re- anemone (Edwardsiella lineata; Reitzel et al., 2009), produces by autotomy
Recommended publications
  • Reproduction in Plants Which But, She Has Never Seen the Seeds We Shall Learn in This Chapter
    Reproduction in 12 Plants o produce its kind is a reproduction, new plants are obtained characteristic of all living from seeds. Torganisms. You have already learnt this in Class VI. The production of new individuals from their parents is known as reproduction. But, how do Paheli thought that new plants reproduce? There are different plants always grow from seeds. modes of reproduction in plants which But, she has never seen the seeds we shall learn in this chapter. of sugarcane, potato and rose. She wants to know how these plants 12.1 MODES OF REPRODUCTION reproduce. In Class VI you learnt about different parts of a flowering plant. Try to list the various parts of a plant and write the Asexual reproduction functions of each. Most plants have In asexual reproduction new plants are roots, stems and leaves. These are called obtained without production of seeds. the vegetative parts of a plant. After a certain period of growth, most plants Vegetative propagation bear flowers. You may have seen the It is a type of asexual reproduction in mango trees flowering in spring. It is which new plants are produced from these flowers that give rise to juicy roots, stems, leaves and buds. Since mango fruit we enjoy in summer. We eat reproduction is through the vegetative the fruits and usually discard the seeds. parts of the plant, it is known as Seeds germinate and form new plants. vegetative propagation. So, what is the function of flowers in plants? Flowers perform the function of Activity 12.1 reproduction in plants. Flowers are the Cut a branch of rose or champa with a reproductive parts.
    [Show full text]
  • Feeding-Dependent Tentacle Development in the Sea Anemone Nematostella Vectensis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.12.985168; this version posted March 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Feeding-dependent tentacle development in the sea anemone Nematostella vectensis Aissam Ikmi1,2*, Petrus J. Steenbergen1, Marie Anzo1, Mason R. McMullen2,3, Anniek Stokkermans1, Lacey R. Ellington2, and Matthew C. Gibson2,4 Affiliations: 1Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany. 2Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA. 3Department of Pharmacy, The University of Kansas Health System, Kansas City, Kansas 66160, USA. 4Department of Anatomy and Cell Biology, The University of Kansas School of Medicine, Kansas City, Kansas 66160, USA. *Corresponding author. Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.12.985168; this version posted March 12, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Summary In cnidarians, axial patterning is not restricted to embryonic development but continues throughout a prolonged life history filled with unpredictable environmental changes. How this developmental capacity copes with fluctuations of food availability and whether it recapitulates embryonic mechanisms remain poorly understood. To address these questions, we utilize the tentacles of the sea anemone Nematostella vectensis as a novel paradigm for developmental patterning across distinct life history stages.
    [Show full text]
  • Revised Glossary for AQA GCSE Biology Student Book
    Biology Glossary amino acids small molecules from which proteins are A built abiotic factor physical or non-living conditions amylase a digestive enzyme (carbohydrase) that that affect the distribution of a population in an breaks down starch ecosystem, such as light, temperature, soil pH anaerobic respiration respiration without using absorption the process by which soluble products oxygen of digestion move into the blood from the small intestine antibacterial chemicals chemicals produced by plants as a defence mechanism; the amount abstinence method of contraception whereby the produced will increase if the plant is under attack couple refrains from intercourse, particularly when an egg might be in the oviduct antibiotic e.g. penicillin; medicines that work inside the body to kill bacterial pathogens accommodation ability of the eyes to change focus antibody protein normally present in the body acid rain rain water which is made more acidic by or produced in response to an antigen, which it pollutant gases neutralises, thus producing an immune response active site the place on an enzyme where the antimicrobial resistance (AMR) an increasing substrate molecule binds problem in the twenty-first century whereby active transport in active transport, cells use energy bacteria have evolved to develop resistance against to transport substances through cell membranes antibiotics due to their overuse against a concentration gradient antiretroviral drugs drugs used to treat HIV adaptation features that organisms have to help infections; they
    [Show full text]
  • Sulphated Saponins from the Starfish Luidia Senegalensis Collected As By-Catch Fauna
    SULPHATED SAPONINS FROM THE STARFISH LUIDIA SENEGALENSIS COLLECTED AS BY-CATCH FAUNA Marcelo M.P. Tangerina, Júlia P. Cesário, Gerson R.R. Pereira, Tânia M. Costa, Wagner C. Valenti and Wagner Vilegas UNESP- Paulista State University, Paulista Coastal Campus , Praça Infante Dom Henrique s/n, São Vicente, São Paulo, CEP: 11330-900, Brazil. [email protected] Abstract: The by-catch fauna of the shrimp fishery includes a number of marine invertebrates that are discarded because they do not have commercial value. In order to try to add some value to these materials, we analyzed the chemical composition of the starfish Luidia senegalensis (Luidiidae, Asteroidea: Paxillosida) collected in the Brazilian coast as a consequence of the trawling fishery method. In order to access their chemical composition, we used a combination of solid phase extraction (SPE) followed by ultra high performance liquid chromatography coupled to electrospray ionization ion trap tandem mass spectrometry (UPLC-ESI-IT-MS n). Luidia spp. contains mainly asterosaponins, which are the glycosides derived from the polyhydroxysteroids. Four asterosaponins found in L. senegalensis present a ∆9,11 -3β,6 α- steroidal core, with four rings, a sulphate group at C3, one oxo group at the side chain, and five or six sugar moieties attached to C-6 (Aglycone 1) [C 62 H101 O33 SNa MW 1428; C 62 H101 O32 SNa MW 1412; 24,25 C56 H91 O27 SNa MW 1250 (two isomers)]; a fifth saponin presented an additional double bond at ∆ (Aglycone 2) [C 55 H87 O27 SNa MW 1262]. Sulphated steroidal saponins present several biological activities, like hemolytic, antineoplastic, cytotoxic, antitumor, antibacterial, antiviral antifungal and anti-inflammatory [1].
    [Show full text]
  • Reproduction in Fungi: Genetical and Physiological Aspects by CHARLES G
    J. Genet., Vol. 73, Number 1, April 1994, pp. 55-56. (~) Printed in India. BOOK REVIEW Reproduction in Fungi: Genetical and Physiological Aspects By CHARLES G. ELLIOTT; Chapman & Hall, London, 1994; 310 pages; s 35.00 It is now ahnost one hundred years since Klebs (1986)laid the foundation of a scientific approach to the study of reproduction in fungi. Since then an extensive literature has accumulated on reproduction in fungi. To present this information ill terms of principles and concepts and to highlight the immediate problems for study is a daunting task. C. G. Elliott has made a commendable attempt in presenting an overview of the genetical and physiological aspects of fungal reproduction. Fungi are remarkable for producing many kinds of reproductive structures in many ways. They produce spores both asexually and sexually. A single fungus produces a single kind of sexual spore: oospores in phycomycetes, ascospores in ascmnycetes and basidiospores in basidiomycetes. The underlying genetical and physiological mechanisms in the formation of spores are complex and we are only beginning to discern them. The introductory chapter examines the advantages of both asexual and sexual reproduction and the persistence of sex in the face of the apparent advantage of asexual reproduction. The reader is reminded that sexual reproduction in fungi not only serves to generate variability, but also provides a means of repairing damaged DNA. Moreover, it can give rise to propagules resistant to unfavourable environmental conditions. In the chapters that follow, one learns that superimposed on the basic event of nuclear fusion are a variety of regulating medhanisms, the effects of which are to determine a successful mating.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Aquatic Critters Aquatic Critters (Pictures Not to Scale) (Pictures Not to Scale)
    Aquatic Critters Aquatic Critters (pictures not to scale) (pictures not to scale) dragonfly naiad↑ ↑ mayfly adult dragonfly adult↓ whirligig beetle larva (fairly common look ↑ water scavenger for beetle larvae) ↑ predaceous diving beetle mayfly naiad No apparent gills ↑ whirligig beetle adult beetle - short, clubbed antenna - 3 “tails” (breathes thru butt) - looks like it has 4 - thread-like antennae - surface head first - abdominal gills Lower jaw to grab prey eyes! (see above) longer than the head - swim by moving hind - surface for air with legs alternately tip of abdomen first water penny -row bklback legs (fbll(type of beetle larva together found under rocks damselfly naiad ↑ in streams - 3 leaf’-like posterior gills - lower jaw to grab prey damselfly adult↓ ←larva ↑adult backswimmer (& head) ↑ giant water bug↑ (toe dobsonfly - swims on back biter) female glues eggs water boatman↑(&head) - pointy, longer beak to back of male - swims on front -predator - rounded, smaller beak stonefly ↑naiad & adult ↑ -herbivore - 2 “tails” - thoracic gills ↑mosquito larva (wiggler) water - find in streams strider ↑mosquito pupa mosquito adult caddisfly adult ↑ & ↑midge larva (males with feather antennae) larva (bloodworm) ↑ hydra ↓ 4 small crustaceans ↓ crane fly ←larva phantom midge larva ↑ adult→ - translucent with silvery bflbuoyancy floats ↑ daphnia ↑ ostracod ↑ scud (amphipod) (water flea) ↑ copepod (seed shrimp) References: Aquatic Entomology by W. Patrick McCafferty ↑ rotifer prepared by Gwen Heistand for ACR Education midge adult ↑ Guide to Microlife by Kenneth G. Rainis and Bruce J. Russel 28 How do Aquatic Critters Get Their Air? Creeks are a lotic (flowing) systems as opposed to lentic (standing, i.e, pond) system. Look for … BREATHING IN AN AQUATIC ENVIRONMENT 1.
    [Show full text]
  • Visceral and Cutaneous Larva Migrans PAUL C
    Visceral and Cutaneous Larva Migrans PAUL C. BEAVER, Ph.D. AMONG ANIMALS in general there is a In the development of our concepts of larva II. wide variety of parasitic infections in migrans there have been four major steps. The which larval stages migrate through and some¬ first, of course, was the discovery by Kirby- times later reside in the tissues of the host with¬ Smith and his associates some 30 years ago of out developing into fully mature adults. When nematode larvae in the skin of patients with such parasites are found in human hosts, the creeping eruption in Jacksonville, Fla. (6). infection may be referred to as larva migrans This was followed immediately by experi¬ although definition of this term is becoming mental proof by numerous workers that the increasingly difficult. The organisms impli¬ larvae of A. braziliense readily penetrate the cated in infections of this type include certain human skin and produce severe, typical creep¬ species of arthropods, flatworms, and nema¬ ing eruption. todes, but more especially the nematodes. From a practical point of view these demon¬ As generally used, the term larva migrans strations were perhaps too conclusive in that refers particularly to the migration of dog and they encouraged the impression that A. brazil¬ cat hookworm larvae in the human skin (cu¬ iense was the only cause of creeping eruption, taneous larva migrans or creeping eruption) and detracted from equally conclusive demon¬ and the migration of dog and cat ascarids in strations that other species of nematode larvae the viscera (visceral larva migrans). In a still have the ability to produce similarly the pro¬ more restricted sense, the terms cutaneous larva gressive linear lesions characteristic of creep¬ migrans and visceral larva migrans are some¬ ing eruption.
    [Show full text]
  • A Systematic Revision of the Asterinid Genus Aquilonastra O'loughlin
    Memoirs of Museum Victoria 63(2): 257–287 (2006) ISSN 1447-2546 (Print) 1447-2554 (On-line) http://www.museum.vic.gov.au/memoirs/index.asp A systematic revision of the asterinid genus Aquilonastra OʼLoughlin, 2004 (Echinodermata: Asteroidea) P. M ARK OʼLOUGHLIN1 AND FRANCIS W.E. ROWE2 1Honorary Associate, Marine Biology Section, Museum Victoria, GPO Box 666, Melbourne, Vic. 3001, Australia ([email protected]) 2Research Associate, Australian Museum, Sydney, NSW, Australia ([email protected]). Private address: Beechcroft, Norwich Road, Scole, Diss, Norfolk, IP21 4DY, U.K. Abstract OʼLoughlin, P. Mark and Rowe, Francis W.E. A systematic revision of the asterinid genus Aquilonastra OʼLoughlin, 2004 (Echinodermata: Asteroidea). Memoirs of Museum Victoria 63(2): 257–287. The Indo-west Pacifi c Aquilonastra OʼLoughlin is reviewed. Eleven species are retained in Aquilonastra: A. anomala (H.L. Clark); A. batheri (Goto); A. burtonii (Gray); A. cepheus (Müller and Troschel); A. corallicola (Marsh); A. coronata (Martens); A. iranica (Mortensen); A. limboonkengi (Smith); A. minor (Hayashi); A. rosea (H.L. Clark); A. scobinata (Livingstone). Asterina lorioli Koehler is reassigned to Aquilonastra. Thirteen new species are described: A. byrneae; A. colemani; A. conandae; A. doranae; A. halseyae; A. marshae; A. moosleitneri; A. oharai; A. richmondi; A. rowleyi; A. samyni; A. watersi; A. yairi. The four subspecies of Asterina coronata Martens are junior synonyms: Asterina coronata cristata Fisher; Asterina coronata euerces Fisher; Asterina coronata fascicularis Fisher; Asterina coronata forma japonica Hayashi. The 13 fi ssiparous Red Sea specimens described by Perrier as Asteriscus wega are the syntypes. Asteriscus wega Perrier is a junior synonym of Asterina burtonii Gray.
    [Show full text]
  • Reproductive Ecology & Sexual Selection
    Reproductive Ecology & Sexual Selection REPRODUCTIVE ECOLOGY REPRODUCTION & SEXUAL SELECTION • Asexual • Sexual – Attraction, Courtship, and Mating – Fertilization – Production of Young The Evolutionary Enigma of Benefits of Asex Sexual Reproduction • Sexual reproduction produces fewer reproductive offspring than asexual reproduction, a so-called reproductive handicap 1. Eliminate problem to locate, court, & retain suitable mate. Asexual reproduction Sexual reproduction Generation 1 2. Doubles population growth rate. Female Female 3. Avoid “cost of meiosis”: Generation 2 – genetic representation in later generations isn't reduced by half each time Male 4. Preserve gene pool adapted to local Generation 3 conditions. Generation 4 Figure 23.16 The Energetic Costs of Sexual Reproduction Benefits of Sex • Allocation of Resources 1. Reinforcement of social structure 2. Variability in face of changing environment. – why buy four lottery tickets w/ the same number on them? Relative benefits: Support from organisms both asexual in constant & sexual in changing environments – aphids have wingless female clones & winged male & female dispersers – ciliates conjugate if environment is deteriorating Heyer 1 Reproductive Ecology & Sexual Selection Simultaneous Hermaphrodites TWO SEXES • Advantageous if limited mobility and sperm dispersal and/or low population density • Guarantee that any member of your species encountered is the • Conjugation “right” sex • Self fertilization still provides some genetic variation – Ciliate protozoans with + & - mating
    [Show full text]
  • Practical Euthanasia Method for Common Sea Stars (Asterias Rubens) That Allows for High-Quality RNA Sampling
    animals Article Practical Euthanasia Method for Common Sea Stars (Asterias rubens) That Allows for High-Quality RNA Sampling Sarah J. Wahltinez 1 , Kevin J. Kroll 2, Elizabeth A. Nunamaker 3 , Nancy D. Denslow 2,4 and Nicole I. Stacy 1,* 1 Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; swahltinez@ufl.edu 2 Department of Physiological Sciences, Center for Environmental and Human Toxicology, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA; krollk@ufl.edu (K.J.K.); ndenslow@ufl.edu (N.D.D.) 3 Animal Care Services, University of Florida, Gainesville, FL 32611, USA; nunamaker@ufl.edu 4 Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA * Correspondence: stacyn@ufl.edu Simple Summary: Sea stars are iconic marine invertebrates and are important for maintaining the biodiversity in their ecosystems. As humans, we interact with sea stars when they are used as research animals or displayed at public or private aquaria. Molecular research requires fresh tissues that have thus far been considered to be of the best quality if collected without euthanasia. This is the first paper describing a method to euthanize sea stars that still allows for sampling of high-quality tissue that can be used for advanced research. Since it can be difficult to tell if an invertebrate has died, it is important to use a two-step method where the first step makes it non-responsive and Citation: Wahltinez, S.J.; Kroll, K.J.; the next step ensures it has died.
    [Show full text]
  • Evolution of Direct-Developing Larvae: Selection Vs Loss Margaret Snoke Smith,1 Kirk S
    Hypotheses Evolution of direct-developing larvae: selection vs loss Margaret Snoke Smith,1 Kirk S. Zigler,2 and Rudolf A. Raff1,3* Summary echinoderms, sea urchins, reveal that a majority of sea urchin Observations of a sea urchin larvae show that most species exhibit one of two life history strategies (Fig. 1).(10) species adopt one of two life history strategies. One strategy is to make numerous small eggs, which develop One strategy is to make many small eggs that develop into a into a larva with a required feeding period in the water larva that must feed and grow for weeks or months in the water column before metamorphosis. In contrast, the second column before metamorphosis. In the water column, these strategy is to make fewer large eggs with a larva that does larvae are dependent on plankton abundance for food and are not feed, which reduces the time to metamorphosis and subject to high levels of predation.(11) The other strategy thus the time spent in the water column. The larvae associated with each strategy have distinct morpholo- involves increasing egg size and maternal provisioning, which gies and developmental processes that reflect their decreases the reliance on planktonic food sources and the feeding requirements, so that those that feed exhibit time to metamorphosis, thus minimizing larval mortality. indirect development with a complex larva, and those that However, assuming finite resources for egg production, do not feed form a morphologically simplified larva and increasing egg size also reduces the total number of eggs exhibit direct development. Phylogenetic studies show that, in sea urchins, a feeding larva, the pluteus, is the produced.
    [Show full text]