Topics on Dehn Surgery

Total Page:16

File Type:pdf, Size:1020Kb

Topics on Dehn Surgery TOPICS ON DEHN SURGERY By Xingru Zhang B.Sc. of Mathematics, Nanjing Institute of Posts and Telecommunications A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES MATHEMATICS We accept this thesis as conforming to the required standard THE UNIVERSITY OF BRITISH COLUMBIA January 1991 © Xingru Zhang, 1991 In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the head of my department or by his or her representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission. Department of M.flfjt.l^ri(3t f The University of British Columbia Vancouver, Canada Date A^-.| tf?i DE-6 (2788) Abstract Cyclic surgery on satellite knots in S3 is classified and a necessary condition is given for a knot in S3 to admit a nontrivial cyclic surgery with slope m/l, \m\ > 1. A complete classi• fication of cyclic group actions on the Poincare sphere with 1-dimensional fixed point sets is obtained. It is proved that the following knots have property I, i.e. the fundamental group of the manifold obtained by Dehn surgery on such a knot cannot be the binary icosahedral group I120, the fundamental group of the Poincare homology 3-sphere: nontrefoil torus knots, satellite knots, nontrefoil generalized double knots, periodic knots with some possible specific exceptions, amphicheiral strongly invertible knots, certain families of pretzel knots. Further the Poincare sphere cannot be obtained by Dehn surgery on slice knots and a certain family of knots formed by band-connect sums. It is proved that if a nonsufficiently large hyperbolic knot in S3 admits two nontrivial cychc Dehn surgeries then there is at least one nonintegral boundary slope for the knot. There are examples of such knots. Thus nonintegral boundary slopes exist. ii Table of Contents Abstract " List of Figures v Acknowledgements V1 Introduction v" 1 On Cyclic Surgery 1 1.1 Introduction 1 1.2 Preliminaries 5 1.2.1 CM. Gordon's Lemma 5 1.2.2 D. Gabai's Results 6 1.3 Proof of Theorem 1.1.4 9 1.4 Proof of Proposition 1.1.1 11 1.5 Examples, Remarks and Open Problems 12 2 On Property I 18 2.1 Introduction 18 2.2 Prehminaries 20 2.2.1 The Casson Invariant and Property I (I) 20 iii 2.2.2 The Rohlin Invariant and the Arf Invariant 25 2.2.3 The Conway Polynomial and the Kauffman Bracket Polynomial 26 2.3 Cyclic Actions on the Poincare Homology 3-Sphere 28 2.4 Knots Having Property I or I 35 2.4.1 Torus knots, Slice Knots and Knots Formed by Band Connect Sums ... 35 2.4.2 Satellite Knots and Generalized Double Knots 40 2.4.3 Periodic Knots 43 2.4.4 Strongly Invertible Knots 46 2.4.5 Pretzel Knots 48 2.4.6 Knots up to 9 Crossings 50 2.5 Concluding Remarks and Open Problems 52 3 On Boundary Slopes 55 3.1 Introduction 55 3.2 Proof of Theorem 3.1.1 56 3.3 Proof of Lemma 3.1.1 58 3.4 Properties of <p(K) and Open Problems 62 Bibliography 64 iv List of Figures 1.1 Fintushel-Stern knots Kn 13 1.2 Berge-Gabai knots Jn 14 2.3 several surgery presentations of the Poincare sphere 29 2.4 a band-connect sum of two knots 36 2.5 r-moves 38 2.6 Ki#bK2 is r-equivalent to K1^K2 39 2.7 a generalized double knot 41 2.8 generalized twisted knot KVA 42 2.9 8i8 has 4i as a factor knot 45 2.10 a pretzel knot of type K(pi, • • • ,pm) 49 2.11 a pretzel knot of type (2m -f 1,2m + 1,2m + 1) and its factor knot 51 2.12 a Montesinos knot of type (px/gi, „.,pn/on) 53 3.13 surgery on (—2,3, 7) pretzel knot and double branched covering 59 3.14 branched sets of 18- 19-surgeries on the (—2,3,7) pretzel knot 61 v Acknowledgements I wish to express my gratitude to my supervisor, Professor Erhard Luft, for his invaluable guidance, encouragement and support. I also would hke to thank the University of British Columbia for its generous financial assistance. Final thanks go to my family, especially to my wife, Lijuan Zhang, for their emotional support. vi Introduction One of the basic methods to construct closed orientable 3-manifolds is by Dehn surgery on knots or links in the 3-sphere S3, which was introduced by M. Dehn in 1910 [18]. It is the process of removing a regular neighborhood of the knot or hnk and sewing it back in via a homeomorphism on the boundary torus or tori respectively of the regular neighborhood. The fact that every closed orientable 3-manifold can be obtained by Dehn surgery on a link in S3 was proven by A.Wallace [80] and W.B.B.. Lickorish [49] in the early sixties. Thus a good understanding of Dehn surgery is important for the theory of 3-manifolds. However, even in the case of knots in 53, it is in general not known which manifold can be obtained by which surgery on which knot. There are very few classes of knots on which the manifolds obtained by Dehn surgery are explicitly known (among them are the torus knots [56]). Around the late seventies a general picture of 3-manifolds obtained by surgery on links was described by W. Thurston through his geometric approach [78] [77]. In particular he proved that if a knot in S3 is neither a satellite knot nor a torus knot then the interior of the knot complement admits a complete hyperbolic structure of finite volume (such a knot is called a hyperbolic knot) and Dehn surgeries on a hyperbolic knot yield hyperbolic manifolds except for finitely many cases. It is also well known that if the complement of a hyperbolic knot contains no incompressible nonboundary parallel closed surfaces, then again except for finitely many cases Dehn surgeries on the knot yield hyperbolic manifolds that do not contain incompressible closed surfaces. For a satellite knot, nonboundary parallel incompressible tori in the knot complement will remain incompressible in manifolds obtained by Dehn surgery on the satellite knot except for finitely many cases, unless the knot is a cabled knot [16]. Naturally questions about those exceptional surgeries in the sense described above are of considerable interest. In this paper we address three topics concerning Dehn surgery along this line. vii Topic 1. Which Dehn surgery on which knot in S3 can yield a lens space? More generally which Dehn surgery on which knot in S3 can yield a manifold with cychc fundamental group? Topic 2. Which Dehn surgery on which knot in 53 can yield the Poincare homology 3- sphere? More generally which Dehn surgery on which knot in S3 can yield a manifold with fundamental group I\2Q, the binary icosahedral group? Topic 3. Axe there nonintegral boundary slopes for knots in 53? The main results of the thesis are the following. On Topic 1: Cychc surgery on satellite knots in S3 is classified and a necessary condition is given for a knot in S3 to admit a nontrivial cychc surgery with slope m/Z, |m| > 1. A theorem of Gabai is proved by using the /3-norm based sutured 3-manifold theory of M. Scharlemann. On Topic 2: A complete classification of cychc group actions on the Poincare sphere with 1-dimensional fixed point sets is obtained. It is proved that the fundamental group of a manifold obtained by Dehn surgery on the following knots cannot be the binary icosahedral group IHQ: nontrefoil torus knots, satellite knots, nontrefoil generalized double knots, periodic knots with some possible specific exceptions, amphicheiral strongly invertible knots, certain families of pretzel knots. The Poincare sphere cannot be obtained by Dehn surgery on slice knots and a certain family of knots formed by band-connect sums. On Topic 3: It is proved that if a hyperbolic knot in S3 admits two nontrivial cychc surgeries then there exists at least one nonintegral boundary slope. There are examples of such knots. Thus nonintegral boundary slopes exist. viii Chapter 1 On Cyclic Surgery 1.1 Introduction We work in all three chapters in the PL category. A PL homeomorphism we simply call an isomorphism. Our reference for basic terminology is [37] and [65]. We first describe (Dehn) surgery. This operation can be done along any knot K in any orientable 3-manifold M. Namely, remove a tubular neighborhood N(K) of K in M and sew it back in by an isomorphism of tori. Let E = M — intN(K) and choose two simple closed curves, fi and A, on dE such that H\(dE) = Z[p] + Z[X]. Then the different surgeries (sewings) can be parametrized by so called surgery slopes mfl 6 Q U {1/0} where m and / are integers with (m,l) = 1; namely corresponding to the surgery with slope m/l the simple closed curve (up to isotopy of torus) on dE with homology class m[p] + l[X] in H\(dE) = Z[p] + Z[X] bounds a meridian disc in the sewn solid torus.
Recommended publications
  • Gluing Maps and Cobordism Maps for Sutured Monopole Floer Homology
    Gluing maps and cobordism maps for sutured monopole Floer homology Zhenkun Li Abstract The naturality of sutured monopole Floer homology, which was introduced by Kronheimer and Mrowka [17], is an important ques- tion and is partially answered by Baldwin and Sivek [1]. In this paper we construct the cobordism maps for sutured monopole Floer homology, thus improve its naturality. The construction can be carried out for sutured instantons as well. In the paper we also con- struct gluing maps in sutured monopoles and sutured instantons. Contents 1 Introduction 3 1.1 Maintheoremsandbackgrounds. 3 1.2 Outlineoftheproof....................... 6 1.3 Futurequestions ........................ 9 2 Prelimilaries 11 2.1 Monopole Floer homology for 3´manifold . 11 2.2 SuturedmonopoleFloerhomology . 12 2.3 The naturality of sutured monopole Floer homology . 14 3 Handle gluing maps and cancelations 21 3.1 Prelimilary discussions . 21 arXiv:1810.13071v3 [math.GT] 15 Jul 2019 3.2 Constructions of handle gluing maps . 26 3.3 Basicpropertiesofhandleattachingmaps . 31 4 The general gluing maps 45 1 Zhenkun Li CONTENTS 5 The cobordism maps 50 5.1 Constructions and functoriality . 50 5.2 Duality and turning cobordism around . 52 6 A brief discussion on Instanton 58 2 Zhenkun Li 1 INTRODUCTION 1 Introduction 1.1 Main theorems and backgrounds Sutured manifold is a powerful tool introduced by Gabai [6] in 1983, to study the topology of 3-manifolds. In 2010, the construction of monopole Floer homology was carried out on balanced sutured manifold by Kron- heimer and Mrowka [17]. The combination of Floer theories and sutured manifolds has many important applications.
    [Show full text]
  • Introduction to the Berge Conjecture
    Introduction to the Berge Conjecture Gemma Halliwell School of Mathematics and Statistics, University of Sheffield 8th June 2015 Outline Introduction Dehn Surgery Definition Example Lens Spaces and the Berge conjecture Lens Spaces Berge Knots Martelli and Petronio Baker Families of Berge Knots Outline Introduction Dehn Surgery Definition Example Lens Spaces and the Berge conjecture Lens Spaces Berge Knots Martelli and Petronio Baker Families of Berge Knots It is not yet known whether [the partial filling on the 3-chain link]... gives rise to Berge knots. In this talk I will aim to answer this question and discuss how this relates to the Berge conjecture and future work. Introduction In their 2008 paper, “Dehn Surgery and the magic 3-manifold”, Martelli and Pertronio ended with the following statement: In this talk I will aim to answer this question and discuss how this relates to the Berge conjecture and future work. Introduction It is not yet known whether [the partial filling on the 3-chain link]... gives rise to Berge knots. Introduction It is not yet known whether [the partial filling on the 3-chain link]... gives rise to Berge knots. In this talk I will aim to answer this question and discuss how this relates to the Berge conjecture and future work. Outline Introduction Dehn Surgery Definition Example Lens Spaces and the Berge conjecture Lens Spaces Berge Knots Martelli and Petronio Baker Families of Berge Knots I A closed tubular neighbourhood N of L. I a specifed simple closed curve J in @N. Then we can construct the 3-manifold: ◦ [ M = (S3 − N) N h ◦ where N denotes the interior of N, and h is a homeomorphism which takes the meridian, µ, of N to the specifed J.
    [Show full text]
  • Dehn Surgery on Knots of Wrapping Number 2
    Dehn surgery on knots of wrapping number 2 Ying-Qing Wu Abstract Suppose K is a hyperbolic knot in a solid torus V intersecting a meridian disk D twice. We will show that if K is not the Whitehead knot and the frontier of a regular neighborhood of K ∪ D is incom- pressible in the knot exterior, then K admits at most one exceptional surgery, which must be toroidal. Embedding V in S3 gives infinitely many knots Kn with a slope rn corresponding to a slope r of K in V . If r surgery on K in V is toroidal then either Kn(rn) are toroidal for all but at most three n, or they are all atoroidal and nonhyperbolic. These will be used to classify exceptional surgeries on wrapped Mon- tesinos knots in solid torus, obtained by connecting the top endpoints of a Montesinos tangle to the bottom endpoints by two arcs wrapping around the solid torus. 1 Introduction A Dehn surgery on a hyperbolic knot K in a compact 3-manifold is excep- tional if the surgered manifold is non-hyperbolic. When the manifold is a solid torus, the surgery is exceptional if and only if the surgered manifold is either a solid torus, reducible, toroidal, or a small Seifert fibered manifold whose orbifold is a disk with two cone points. Solid torus surgeries have been classified by Berge [Be] and Gabai [Ga1, Ga2], and by Scharlemann [Sch] there is no reducible surgery. For toroidal surgery, Gordon and Luecke [GL2] showed that the surgery slope must be either an integral or a half integral slope.
    [Show full text]
  • Dehn Surgery on Arborescent Knots and Links – a Survey
    CHAOS, SOLITONS AND FRACTALS Volume 9 (1998), pages 671{679 DEHN SURGERY ON ARBORESCENT KNOTS AND LINKS { A SURVEY Ying-Qing Wu In this survey we will present some recent results about Dehn surgeries on ar- borescent knots and links. Arborescent links are also known as algebraic links [Co, BoS]. The set of arborescent knots and links is a large class, including all 2-bridge links and Montesinos links. They have been studied by many people, see for exam- ple [Ga2, BoS, Mo, Oe, HT, HO]. We will give some definitions below. One is referred to [He] and [Ja] for more detailed background material for 3-manifold topology, to [Co, BoS, Ga2, Wu3] for arborescent tangles and links, to [Th1] for hyperbolic manifolds, and to [GO] for essential laminations and branched surfaces. 0.1. Surfaces and 3-manifolds. All surfaces and 3-manifolds are assumed ori- entable and compact, and surfaces in 3-manifolds are assumed properly embedded. Recalled that a surface F in a 3-manifold M is compressible if there is a loop C on F which does not bound a disk in F , but bounds one in M; otherwise F is incompressible. A sphere S in M is a reducing sphere if it does not bound a 3-ball in M, in which case M is said to be reducible. A 3-manifold is a Haken man- ifold if it is irreducible and contains an incompressible surface. M is hyperbolic if it admits a complete hyperbolic metric. M is Seifert fibered if it is a union of disjoint circles.
    [Show full text]
  • Dehn Filling: a Survey
    KNOT THEORY BANACH CENTER PUBLICATIONS, VOLUME 42 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 1998 DEHN FILLING: A SURVEY C. McA. GORDON Department of Mathematics, The University of Texas at Austin Austin, Texas 78712-1082, U.S.A. E-mail: [email protected] 1. Introduction. In this paper we give a brief survey of the present state of knowledge on exceptional Dehn fillings on 3-manifolds with torus boundary. For our discussion, it is necessary to first give a quick overview of what is presently known, and what is conjectured, about the structure of 3-manifolds. This is done in Section 2. In Section 3 we summarize the known bounds on the distances between various kinds of exceptional Dehn fillings, and compare these with the distances that arise in known examples. In Section 4 we make some remarks on the special case of complements of knots in the 3-sphere. We have chosen to phrase questions as conjectures; this gives them a certain edge and perhaps increases the likelihood that someone will try to (dis)prove them. Incidentally, no particular claim is made for unattributed conjectures; most of them are lore to the appropriate folk. Related survey articles are [Go1] and [Lu]. I would like to thank Pat Callahan, Craig Hodgson, John Luecke, Alan Reid and Eric Sedgwick for helpful conversations, and the referee for his useful comments. 2. 3-Manifolds. Throughout this section, all 3-manifolds will be closed and oriented. Recall that the connected sum of two 3-manifolds M1 and M2 is defined by removing the interior of a 3-ball from each of M1 and M2 and identifying the resulting boundaries by an orientation-reversing homeomorphism.
    [Show full text]
  • Dehn Surgery on Complicated Fibered Knots in the 3-Sphere
    DEHN SURGERY ON COMPLICATED FIBERED KNOTS IN THE 3-SPHERE Abstract. Let K be a fibered knot in S3. We show that if the monodromy of K is sufficiently complicated, then Dehn surgery on K cannot yield a lens space. Work of Yi Ni shows that if K has a lens space surgery then it is fibered. Combining this with our result we see that if K has a lens space surgery then it is fibered and the monodromy is relatively simple. Abigail Thompson 1 1. Introduction Let K be a knot in S3. One can obtain a new manifold M by removing an open neighborhood of K and attaching a solid torus T to the resulting knot complement via some homeomorphism h from @T to @N(K). The homeomorphism h is completely determined by a pair of relatively prime integers (p; q), where h maps the boundary of a meridian disk of T to a curve α that wraps p times around K meridionally and q times longitudinally. This is called surgery on K. If q = 1 the surgery is integral. The definition extends in an obvious way to a link with more than one component. It is a useful and classical result that every 3-manifold can be ob- tained by surgery on a link in S3 [12], which in general has many components. A natural question thus arises: which manifolds can be obtained by surgery on a knot in S3, and more specifically, on which knots? If one starts with the trivial knot K, it is clear that any surgery yields S3, S1 × S2 or a lens space L.
    [Show full text]
  • Small Surfaces and Dehn Filling 0 Introduction
    ISSN 1464-8997 (on line) 1464-8989 (printed) 177 Geometry & Topology Monographs Volume 2: Proceedings of the Kirbyfest Pages 177–199 Small surfaces and Dehn filling Cameron McA Gordon Abstract We give a summary of known results on the maximal distances between Dehn fillings on a hyperbolic 3–manifold that yield 3–manifolds containing a surface of non-negative Euler characteristic that is either essential or Heegaard. AMS Classification 57M25; 57M50 Keywords Dehn filling, hyperbolic 3–manifold, small surface Dedicated to Rob Kirby on the occasion of his 60th birthday 0 Introduction By a small surface we mean one with non-negative Euler characteristic, ie a sphere, disk, annulus or torus. In this paper we give a survey of the results that are known on the distances between Dehn fillings on a hyperbolic 3–manifold that yield 3–manifolds containing small surfaces that are either essential or Heegaard. We also give some new examples in this context. In Section 1 we describe the role of small surfaces in the theory of 3–manifolds, and in Section 2 we summarize known results on the distances ∆ between Dehn fillings on a hyperbolic 3–manifold M that create such surfaces. Section 3 discusses the question of how many manifolds M realize the various maximal values of ∆, while Section 4 considers the situation where the manifold M is large in the sense of Wu [53]. Finally, in Section 5 we consider the values of ∆ for fillings on a hyperbolic manifold M with k torus boundary components, as k increases. I would like to thank John Luecke and Alan Reid for useful conversations.
    [Show full text]
  • Representations of the (-2,3,7)-Pretzel Knot and Orderability of Dehn Surgeries
    Representations of the (-2,3,7)-Pretzel Knot and Orderability of Dehn Surgeries Konstantinos Varvarezos November 27, 2019 Abstract We construct a 1-parameter family of SL2(R) representations of the pretzel knot P (−2; 3; 7). As a consequence, we conclude that Dehn surgeries on this knot are left-orderable for all rational surgery slopes less than 6. Furthermore, we discuss a family of knots and exhibit similar orderability results for a few other examples. 1 Introduction This paper studies the character variety of a certain knot group in view of the relationship between PSL^2(R) representations and the orderability of Dehn surgeries on the knot. This is of interest because of an outstanding conjectured relationship between orderability and L-spaces. A left-ordering on a group G is a total ordering ≺ on the elements of G that is invariant under left-multiplication; that is, g ≺ h implies fg ≺ fh for all f; g; h 2 G. A group is said to be left-orderable if it is nontrivial and admits a left ordering. A 3-manifold M is called orderable if π1(M) is arXiv:1911.11745v1 [math.GT] 26 Nov 2019 left-orderable. If M is a rational homology 3-sphere, then the rank of its Heegaard Floer homology is bounded below by the order of its first (integral) homology group. M is called an L-space if equality holds; that is, if rk HFd(M) = jH1(M; Z)j. This work is motivated by the following proposed connection between L-spaces and orderability, first conjectured by Boyer, Gordon, and Watson.
    [Show full text]
  • Pretzel Knot and Reebless Foliation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Topology and its Applications 145 (2004) 209–232 www.elsevier.com/locate/topol (−2, 3, 7)-pretzel knot and Reebless foliation Jinha Jun 1,2 Samsung Electronics, Dong-Suwon PO Box 105, Suwon-city, Gyeonggi-do, 442-600, Republic of Korea Received 28 June 2004; accepted 2 July 2004 Communicated by Rachel Roberts Abstract We show that if p/q > 18, p is odd, and p/q = 37/2, then (p, q)-Dehn surgery for the (−2, 3, 7)- pretzel knot produces a 3-manifold without Reebless foliation. We also show that the manifold obtained by (p, q)-Dehn surgery for the same knot does not contain any R-covered foliation when p/q > 10 and p is odd. 2004 Elsevier B.V. All rights reserved. MSC: 57M25; 57R30 Keywords: (−2, 3, 7)-pretzel knot; Reebless foliation; R-covered foliation; Essential lamination; Dehn surgery; Group action 1. Introduction Every closed orientable 3-manifold admits a foliation with Reeb components [17]. On the contrary, Reebless foliation F reflects the topological information of the ambient mani- fold M ⊃ F. Novikov [12] showed that leaves of F are π1-injective and π2(M) = 0 unless F contains a sphere leaf, i.e., M is S2 × S1 or double covered by S2 × S1. Rosenberg [16] showed M is irreducible or M ≈ S2 × S1 unless F is a gluing of twisted I-bundle over E-mail address: [email protected] (J. Jun). 1 Tel: +82-31-279-5125, Fax: +82-31-279-5515.
    [Show full text]
  • Arxiv:1802.08620V3 [Math.GT]
    Irreducible 3-manifolds that cannot be obtained by 0-surgery on a knot Matthew Hedden, Min Hoon Kim, Thomas E. Mark, and Kyungbae Park Abstract. We give two infinite families of examples of closed, orientable, irreducible 3-manifolds M such that b1(M) =1and π1(M) has weight 1, but M is not the result of Dehn surgery along a knot in the 3-sphere. This answers a question of Aschenbrenner, Friedl and Wilton, and provides the first examples of irreducible manifolds with b1 = 1 that are known not to be surgery on a knot in the 3-sphere. One family consists of Seifert fibered 3-manifolds, while each member of the other family is not even homology cobordant to any Seifert fibered 3-manifold. None of our examples are homology cobordant to any manifold obtained by Dehn surgery along a knot in the 3-sphere. 1. Introduction It is a well-known theorem of Lickorish [Lic62] and Wallace [Wal60] that every closed, oriented 3-manifold is obtained by Dehn surgery on a link in the three-sphere. This leads one to wonder how the complexity of a 3-manifold is reflected in the links which yield it through surgery, and conversely. A natural yet difficult goal in this vein is to determine the minimum number of components of a link on which one can perform surgery to produce a given 3-manifold. In particular, one can ask which 3-manifolds are obtained by Dehn surgery on a knot in S3. If, following [Auc97], we define the surgery number DS(Y ) of a closed 3-manifold Y to be the smallest number of components of a link in S3 yielding Y by (Dehn) surgery, we ask for conditions under which DS(Y ) > 1.
    [Show full text]
  • Dehn Surgery on the Figure 8 Knot: Immersed Surfaces
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 127, Number 8, Pages 2437{2442 S 0002-9939(99)04716-4 Article electronically published on March 24, 1999 DEHN SURGERY ON THE FIGURE 8 KNOT: IMMERSED SURFACES I. R. AITCHISON, S. MATSUMOTO, AND J. H. RUBINSTEIN (Communicated by Ronald A. Fintushel) Abstract. It is known that about 70% of surgeries on the figure 8 knot give manifolds which contain immersed incompressible surfaces. We improve this to about 80% by giving a very simple proof that all even surgeries give manifolds containing such a surface. Moreover, we give a quick proof that every (6k; t) surgery is virtually Haken, thereby partially dealing with some exceptional cases in Baker's results. 1. Introduction Perhaps the best studied knot complement is that of the figure eight knot, or Listing’s knot. We will denote the complement by M8. A brief description of M8 can be found in Thurston [Th2], with more detail in [Th1]. The analysis in [Th1] is facilitated by the simplicity of the combinatorial structure of M8:it is the union of two tetrahedra, with corresponding combinatorial decomposition of its universal cover being the tessellation of hyperbolic 3-space by regular ideal hyperbolic tetrahedra. Thurston [Th1] showed that all but finitely many surgeries on the figure eight knot yield non-Haken hyperbolic 3-manifolds. Therefore no closed, incompressible surfaces exist in these manifolds. It is conjectured that every closed hyperbolic 3-manifold contains an immersed incompressible surface of negative Euler characteristic, • is finitely covered by a Haken manifold, • has virtually Z-representable fundamental group, and • is a virtual bundle over S1.
    [Show full text]
  • Dehn Surgery Along a Torus T2-Knot II by IWASE, Zjunici
    Japan. J. Math. Vol. 16, No. 2, 1990 Dehn surgery along a torus T2-knot II By IWASE, Zjunici (Received November 2, 1988) (Revised April 17, 1989) This paper is a continuation of "Dehn-surgery along a torus T2-knot" , in which the author defined and classified torus T2-knots in S4 and studied some properties of the 4-manifolds obtained by Dehn surgeries along them . In this paper we investigate the diffeomorphism types of such manifolds , which has been determined in some cases. •˜ 1. Introduction An embedded 2-torus in S4 is called a torus T2-knot if K is incompres sibly embedded in aN(U), where U is an embedded 2-torus which bounds a solid torus S1 X D2 in S4. This is an analogy of classical torus knots in S3 , Put (S4, K(p, q, 0))=((S3, k(p, q))\Int B3)XS1Uid 52XD2, (S4, K(p, q, q))=((S3, k(p, q))\Int B3)X53Ut52XD2, where k(p, q) means the classical torus knot of type (p , q) and r is an automorphism of 52 X S1(i.e. a diffeomorphism from 52 X 51 to itself) which is not isotopic to identity. In [3], we proved the following. PROPOSITION 1.1. Any torus T2-knot is equivalent to one and only one of the following: (i) K(p, q, 0), 1<p<q, gcd (p, q)=1; (ii) K(p, q, q), 1<p<q, gcd (p, q)=1; (iii) unknotted T2-knot(=K(1, 0, 0)). 0 A Dehn surgery is an operation of cutting off and gluing back the tubular neighborhood of a submanifold.
    [Show full text]