Engines of Change

Total Page:16

File Type:pdf, Size:1020Kb

Engines of Change ~9I~o-------------------------------------SPRING80QKS------------------~N~A~T~U~R~E_v~o~L~.3~26~3~0_A_PR~I~L_l9~87 machines commercially available are the Engines of change Cray and Control Data Corporation John Forty ranges, which exploit the concepts of multiple central processing and architec­ tures which permit pipelining of a series of Supercomputers and Their Use. By similar processing steps which can thereby Christopher Lazou. Clarendon: 1986. be processed simultaneously, and conse­ Pp.227. £22.50, $45. quently increase the speed of calculation. The latest Crays incorporate up to four THE generally accepted definition of a powerful central processors so that this supercomputer is a general purpose com­ vector processing of data can be per­ puter which is the most powerful comput­ formed in parallel. Machines such as the ing engine available at any given time. In ICL DAP (distributed array processor), principle, therefore, there can only be one consisting of a very large number of simple such machine but in practice a range of processing units working in parallel, are supercomputers is available and the extremely effective in carrying out large choice depends on performance for the scale computations where there is a large particular application. Inevitably the pace number of similar tasks to be performed of advance in computer technology is such simultaneously. Computing engines of that no machine can hold the title for more this kind are orders of magnitude more than a few years; thus, in its day, the powerful than the conventional main­ Ferranti Atlas was a supercomputer but frame. was soon overtaken by the very powerful A useful measure of progress over the mainframes of the 1960s such as the IBM past 20 years can be obtained by compar­ 360/195 and the CDC 7600. ing peak performances, today's multi­ In the past decade there have been processor machines, such as the 4- Cray and his creation - Seymour Cray with enormous advances in computing power, processor Cray X-MP48, being several the Cray-2 machine, announced in June 1985. defined loosely in terms of the ability to thousand times faster than the Atlas. The basic concepts of supercomputers, deal with the very large scale computation Advances in hardware technology have the principles underlying their architec­ needed to solve complex problems, also resulted in a reduction of the cost per ture and the developments in semicon­ usually of a scientific nature. These have computational step by a similar factor. ductor technology which, of course, are come about largely as a result of the The result is an improvement in per­ fundamental to their performance, are set development of new forms of computer formance which is the equivalent of out in the first four chapters. The treat­ architecture. Currently the most powerful travelling at ten times the speed of Con­ ment is inevitably superficial, but the text corde compared with walking pace, for and well-chosen illustrations make it easy the same cost! to grasp the essential features. There are Computer design and engineering is also some useful chapters on scientific continually evolving, and it might be computational methods, including scalar thought that any account of super­ and vector techniques, and optimal computers as we know them today could vectorization of programs. The reader is be of little permanent value. That may be introduced to the concept of performance so, but Christopher Lazou's little book in terms of hardware and software para­ does serve a useful purpose. It draws meters such as the number of parallel attention to the emerging scientific processors, degree of vectorization and method of computation which is now seen the fraction of work that can be processed by scientists to be a valid and technically in parallel. As its title declares, the book feasible approach to solving problems also covers the uses of supercomputers (usually but not always of a scientific and a number of examples are described, nature) which are so complex that the drawn largely from the author's experi­ traditional approaches of experiment or ence with the Cray 1 (the supercomputer analytical investigation are impractical. of the late 1970s) at the University of Supercomputers have made it possible to London Computer Centre. Looking for­ study the behaviour of the Earth's ward, there is a useful survey at the end of atmosphere and oceans in great detail, the book of new supercomputers known which will lead to a better understanding to be in the pipeline and of future develop­ of climate, weather and so on. We can ments that should be made possible by produce computer models of whole oil advances in technology. reservoirs to optimize output. And air­ Lazou writes in a fluent, informative craft designers are able to design parts of, manner. Although the subject is not or even whole aeroplanes, and simulate explored in depth, the book provides a the aerodynamic performance over a wide good introduction for those who are range of flight conditions with such real­ already computer literate and wish to ism that the time-consuming and expen­ know more about these developments at sive process of wind-tunnel modelling is the forefront of computer technology. 0 no longer necessary. An important aim of John Forty is Vice-Chancellor and Principal of the author has been to draw attention to the University of Stirling, Stirling FK9 4LA, the strategic importance of the super­ UK. He is the author of Future Facilities for Advanced Research Computing, the report of a computer to the many areas of scientific Joint Working Party of the Advisory Board for research and engineering design in which the Research Councils, the Computer Board Reader Service No.7 it is now being applied. and the University Grants Committee. .
Recommended publications
  • Musings RIK FARROWOPINION
    Musings RIK FARROWOPINION Rik is the editor of ;login:. While preparing this issue of ;login:, I found myself falling down a rabbit hole, like [email protected] Alice in Wonderland . And when I hit bottom, all I could do was look around and puzzle about what I discovered there . My adventures started with a casual com- ment, made by an ex-Cray Research employee, about the design of current super- computers . He told me that today’s supercomputers cannot perform some of the tasks that they are designed for, and used weather forecasting as his example . I was stunned . Could this be true? Or was I just being dragged down some fictional rabbit hole? I decided to learn more about supercomputer history . Supercomputers It is humbling to learn about the early history of computer design . Things we take for granted, such as pipelining instructions and vector processing, were impor- tant inventions in the 1970s . The first supercomputers were built from discrete components—that is, transistors soldered to circuit boards—and had clock speeds in the tens of nanoseconds . To put that in real terms, the Control Data Corpora- tion’s (CDC) 7600 had a clock cycle of 27 .5 ns, or in today’s terms, 36 4. MHz . This was CDC’s second supercomputer (the 6600 was first), but included instruction pipelining, an invention of Seymour Cray . The CDC 7600 peaked at 36 MFLOPS, but generally got 10 MFLOPS with carefully tuned code . The other cool thing about the CDC 7600 was that it broke down at least once a day .
    [Show full text]
  • Magnetic Peripherals Inc Storage Module Drive Vintage: C.1975 Synopsis: 14-Inch Cartridge Disk Drive
    AccessionIndex: TCD-SCSS-T.20121208.028 Accession Date: 8-Dec-2012 Accession By: Tom Kearney Object name: Magnetic Peripherals Inc Storage Module Drive Vintage: c.1975 Synopsis: 14-inch cartridge disk drive. S/N: 652128. Description: Magnetic Peripherals Inc (MPI), of Minneapolis, Minnesota , was a joint venture formed by Control Data Corporation (CDC) and Honeywell Bull in 1975. CDC contributed their disk drive facilities at Normandale and Omaha, USA. Honeywell contributed its ex-GE disk plant at Oklahoma City and CII-Honeywell Bull’s plant at Heppenheim, Germany. Its early products were IBM-3330-like third generation disk drives, superceded by IBM-3340/3350/3370-like drives, all with IBM interfaces or Storage Module Device (SMD) interfaces. It became a major player in the hard disk drive market. It was the world wide leader in 14-inch disk drive technology in the OEM marketplace in the 1970s and early 1980s, especially with its SMD and CMD (Cartridge Module Drive) interfaces, and with its 24-hour/7-days-a-week plant at Brynmawr in South Wales, which celebrated the production of 1 million disks and 3 million magnetic tapes in Oct-1979. MPI was renamed Imprimus in 1988 and was bought by Seagate in 1989. The drive in this collection looks almost identical to a CDC9762 80MB disk drive, introduced in 1974 by CDC, see Figures 21 and 22. However, the drive in this collection was made in Portugal by Magnetic Peripherals Inc, and from the rear can be seen to have a different interface, which looks very like an SMD interface.
    [Show full text]
  • Sperry Corporation, UNIVAC Division Photographs and Audiovisual Materials 1985.261
    Sperry Corporation, UNIVAC Division photographs and audiovisual materials 1985.261 This finding aid was produced using ArchivesSpace on September 14, 2021. Description is written in: English. Describing Archives: A Content Standard Audiovisual Collections PO Box 3630 Wilmington, Delaware 19807 [email protected] URL: http://www.hagley.org/library Sperry Corporation, UNIVAC Division photographs and audiovisual materials 1985.261 Table of Contents Summary Information .................................................................................................................................... 3 Historical Note ............................................................................................................................................... 4 Scope and Content ......................................................................................................................................... 5 Arrangement ................................................................................................................................................... 6 Administrative Information ............................................................................................................................ 6 Related Materials ........................................................................................................................................... 7 Controlled Access Headings .......................................................................................................................... 8 Bibliography
    [Show full text]
  • Lecture 14 Data Level Parallelism (2) EEC 171 Parallel Architectures John Owens UC Davis Credits • © John Owens / UC Davis 2007–9
    Lecture 14 Data Level Parallelism (2) EEC 171 Parallel Architectures John Owens UC Davis Credits • © John Owens / UC Davis 2007–9. • Thanks to many sources for slide material: Computer Organization and Design (Patterson & Hennessy) © 2005, Computer Architecture (Hennessy & Patterson) © 2007, Inside the Machine (Jon Stokes) © 2007, © Dan Connors / University of Colorado 2007, © Kathy Yelick / UCB 2007, © Wen-Mei Hwu/David Kirk, University of Illinois 2007, © David Patterson / UCB 2003–7, © John Lazzaro / UCB 2006, © Mary Jane Irwin / Penn State 2005, © John Kubiatowicz / UCB 2002, © Krste Asinovic/Arvind / MIT 2002, © Morgan Kaufmann Publishers 1998. Outline • Vector machines (Cray 1) • Vector complexities • Massively parallel machines (Thinking Machines CM-2) • Parallel algorithms Vector Processing • Appendix F & slides by Krste Asanovic, MIT Supercomputers • Definition of a supercomputer: • Fastest machine in world at given task • A device to turn a compute-bound problem into an I/O bound problem • Any machine costing $30M+ • Any machine designed by Seymour Cray • CDC 6600 (Cray, 1964) regarded as first supercomputer Seymour Cray • “Anyone can build a fast CPU. The trick is to build a fast system.” • When asked what kind of CAD tools he used for the Cray-1, Cray said that he liked “#3 pencils with quadrille pads”. Cray recommended using the backs of the pages so that the lines were not so dominant. • When he was told that Apple Computer had just bought a Cray to help design the next Apple Macintosh, Cray commented that he had just bought
    [Show full text]
  • (U) NSA's Key Role in Major Developments in Computer Science
    .............. -· ,.. , __ .,,...... ___ , _.,.._ ~ __ ....:" -..... .. Doc ID: 6586785 _ __ I 5 SSRFI;';'?Et U 'f'; !! i; I llJ l!llft, I dL& (U) NSA's Key Role in Major Developments in Computer Science PART ONE (U) Cryptology has historically entailed an intensive application of labor. But since the middle of the last century, automation has been used as a way to greatly ease the making and breaking of codes. The formation and maturation of the National Security Agency (NSA) and the evolution of its missions paralleled in large part the advent of the computer age. A!J a consequence, the NSA and its predecessor agencies have historically been at the forefront of computer development in the United States. {U) But the use of computational machines in American cryptology long predated the official birth ofNSA. During World War I, the military incorporated use of encryption equipment. During the 1930s, both the Army and Navy cryptologic components acquired devices from International Business Machines {IBM), which allowed them to sort large amounts of data. By the time World War II had broken out, all of the major combatants possessed sophisticated cipher machines for most of their communications generation and security programs. {U) As the war progressed, the U.S. military services placed many electronic accounting machines into the field in order to process a wide array of enemy signals. The services developed relationships with industry -- Bell Laboratories and Teletype Corporation in the case of the Army, and IBM, Eastman Kodak, and National Cash Register (NCR) in the case of the Navy. A prime example of the benefits of such relationships was the construction of the Navy's cryptanalytic "Bombe," a machine built by NCR to decipher messages from the German ENIGMA machine.
    [Show full text]
  • Seymour Cray: the Father of World Supercomputer
    History Research 2019; 7(1): 1-6 http://www.sciencepublishinggroup.com/j/history doi: 10.11648/j.history.20190701.11 ISSN: 2376-6700 (Print); ISSN: 2376-6719 (Online) Seymour Cray: The Father of World Supercomputer Si Hongwei Department of the History of Science, Tsinghua University, Beijing, China Email address: To cite this article: Si Hongwei. Seymour Cray: The Father of World Supercomputer. History Research. Vol. 7, No. 1, 2019, pp. 1-6. doi: 10.11648/j.history.20190701.11 Received : May 14, 2019; Accepted : June 13, 2019; Published : June 26, 2019 Abstract: Seymour R. Cray was an American engineer and supercomputer developer who designed a series of the fastest computers in the world in 1960-1980s. The difference between Cray and most other corporate engineers is that he often won those business battles. His success was attributable to his existence in a postwar culture where engineers were valued. He was able to also part of an extraordinary industry where revolutionary developments were encouraged, and even necessary. Lastly Cray is recognized as "the father of world supercomputer". From the perspective of science and technology history, this paper describes the history of Cray and his development of supercomputer. It also sums up his innovative ideas and scientific spirit. It provides a reference for supercomputer enthusiasts and peers in the history of computer research. Keywords: Seymour R. Cray, Supercomputer, Science and Technology History 1. Introduction 2. The Genius Seymour Supercomputer refers to the most advanced electronic computer system with the most advanced technology, the Seymour Cray was born on September 28th, 1925 in the fastest computing speed, the largest storage capacity and the town of Chippewa, Wisconsin.
    [Show full text]
  • Sperry Corporation, Univac Division Records 1825.I
    Sperry Corporation, Univac Division records 1825.I This finding aid was produced using ArchivesSpace on September 14, 2021. Description is written in: English. Describing Archives: A Content Standard Manuscripts and Archives PO Box 3630 Wilmington, Delaware 19807 [email protected] URL: http://www.hagley.org/library Sperry Corporation, Univac Division records 1825.I Table of Contents Summary Information .................................................................................................................................... 4 Historical Note ............................................................................................................................................... 4 Scope and Content ......................................................................................................................................... 5 Administrative Information ............................................................................................................................ 7 Related Materials ........................................................................................................................................... 8 Controlled Access Headings .......................................................................................................................... 9 Appendices ..................................................................................................................................................... 9 Bibliography ................................................................................................................................................
    [Show full text]
  • A Look at Some Compilers MATERIALS from the DRAGON BOOK and WIKIPEDIA MICHAEL WOLLOWSKI
    2/11/20 A Look at some Compilers MATERIALS FROM THE DRAGON BOOK AND WIKIPEDIA MICHAEL WOLLOWSKI EQN oTakes inputs like “E sub 1” and produces commands for text formatter TROFF to produce “E1” 1 2/11/20 EQN EQN oTreating EQN as a language and applying compiler technologies has several benefits: oEase of implementation. oLanguage evolution. In response to user needs 2 2/11/20 Pascal Developed by Nicolas Wirth. Generated machine code for the CDC 6000 series machines To increase portability, the Pascal-P compiler generates P-code for an abstract stack machine. One pass recursive-descent compiler Storage is organized into 4 areas: ◦ Code for procedures ◦ Constants ◦ Stack for activation records ◦ Heap for data allocated by the new operator. Procedures may be nested, hence, activation record for a procedure contains both access and control links. CDC 6000 series The first member of the CDC 6000 series Was the supercomputer CDC 6600, Designed by Seymour Cray and James E. Thornton Introduced in September 1964 Performed up to three million instructions per second, three times faster than the IBM Stretch, the speed champion for the previous couple of years. It remained the fastest machine for five years until the CDC 7600 Was launched. The machine Was Freon refrigerant cooled. Control Data manufactured about 100 machines of this type, selling for $6 to $10 million each. 3 2/11/20 CDC 6000 series By Steve Jurvetson from Menlo Park, USA - Flickr, CC BY 2.0, https://commons.Wikimedia.org/w/index.php?curid=1114605 CDC 205 CDC 205 DKRZ 4 2/11/20 CDC 205 CDC 205 Wiring, davdata.nl Pascal 5 2/11/20 Pascal One of the compiler Writers states about the use of a one-pass compiler: ◦ Easy to implement ◦ Imposes severe restrictions on the quality of the generated code and suffers from relatively high storage requirements.
    [Show full text]
  • VHSIC and ETA10
    VHSIC and The First CMOS and Only Cryogenically Cooled Super Computer David Bondurant Former Honeywell Solid State Electronics Division VHSIC System Applications Manager ETA10 Supercomputer at MET Office - UK’s National Weather Forecasting Service Sources • “Very High Speed Integrated Circuits (VHSIC) Final Program Report 1980-1990, VHSIC Program Office”, Office of the Under Secretary of Defense for Acquisition, Deputy Director, Defense Research and Engineering for Research and Advanced Technology, September 30, 1990 • Carlson, Sullivan, Bach, and Resnick, “The ETA10 Liquid-Nitrogen-Cooled Supercomputer System”, IEEE Transactions on Electron Devices, Vol. 36, No. 8, August 1989. • Cummings and Chase, “High Density Packaging for Supercomputers” • Tony Vacca, “First Hand: The First CMOS And The Only Cryogenically Cooled Supercomputer”, ethw.org • Robert Peglar, “The ETA Era or How to (Mis-)Manage a Company According to Control Data Corp.”, April 17, 1990 Background • I graduated from Missouri S&T in May 1971 • My first job was at Control Data Corporation, the leading Supercomputer Company • I worked in Memory Development • CDC 7600 was in production, 8600 (Cray 1) was in development by Seymour Cray in Chippewa Falls, WI • Star 100 Vector Processor was in Development in Arden Hills • I was assigned to the development of the first DRAM Memory Module for a CDC Supercomputer • I designed the DRAM Module Tester Using ECL Logic Control Data Corporation Arden Hills • First DRAM Module was 4Kx32 using 128 1K DRAM Development Center - June 1971 Chips
    [Show full text]
  • Oral History of Les Davis
    Oral History of Les Davis Interviewed by: Dag Spicer Recorded: May 3, 2010 Chippewa Falls, Wisconsin CHM Reference number: X5796.2010 © 2010 Computer History Museum Oral History of Les Davis Dag Spicer: We're here today with Mr. Les Davis. it's May the third, 2010, and Les is one of the eminent computer designers and pioneers in the field who worked at Cray Research, and welcome today, Les, thank you for speaking with us. Les Davis: Glad to be here. Spicer: I wanted to start with your life early on. Tell us a bit about where you were born and what your parents did for a living. Davis: I was born in Minneapolis, my mother was actually an immigrant from-- a German immigrant from Russia, and she and my dad met in Minneapolis, were married. They later separated, and so I was raised by my mother. I went to school in Minneapolis, to a small parochial grade school and then to a Catholic high school, DeLaSalle High School, which is located in Minneapolis. From there, then, after graduating from high school, I struggled to try and find some work at that time, work was a little hard to find. And then shortly thereafter Uncle Sam took care of me by saying “Either come voluntarily or we will come and get you.” So I joined the Navy in 1951 and was in the Navy through 1955. During that time I was fortunate to have been able to go to a electronics school, and basically my training in electronics developed there.
    [Show full text]
  • PARALLEL OPERATION in the CONTROL DATA 6600 James E
    PARALLEL OPERATION IN THE CONTROL DATA 6600 James E. Thornton Control Data Corporation Minneapolis, Minnesota HISTORY survived early difficulties to become the basis for a nice jump in circuit performance. About four years ago, in the summer of 1960, Control Data began a project which cul­ SYSTEM ORGANIZATION minated last month in the delivery of the first 6600 Computer. In 1960 it was apparent that The computing system envisioned in that brute force circuit performance and parallel project, and now called the 6600, paid special operation were the two main approaches to attention to two kinds of use, the very large any advanced computer. scientific problem and the time sharing of This paper presents some of the consid­ smaller problems. For the large problem, a erations having to do with the parallel opera­ high-speed floating point central processor with tions in the 6600. A most important and access to a large central memory was obvious. fortunate event coincided with the beginning Not so obvious, but important to the 6600 of the 6600 project. This was the appearance system idea, was the isolation of this central of the high-speed silicon transistor, which arithmetic from any peripheral activity. 4096 WORD 4096 WORD 4096 WORD 4096 WORD CORE MEMORY CORE MEMORY ~ ~ CORE MEMORY CORE MEMORY PERIPHERAL PERIPHERAL PERIPHERAL PERIPHERAL & CONTROL & CONTROL & CONTROL & CONTROL PROCESSOR PROCESSOR PROCESSOR PROCESSOR 6600 CENTRAL MEMORY 4096 WORD 4096 WORD CORE MEMORY CORE MEMORY PERIPHERAL 6600 CENTRAL PROCESSOR PERIPHERAL & CONTROL & CONTROL PROCESSOR PROCESSOR 6600 CENTRAL MEMORY 4096 WORD 4096 WORD 4096 WORD 4096 WORD ~ CORE MEMORY - CORE MEMORY +- CORE MEMORY CORE MEMORY PHERIPHERAl PERIPHERAL PERIPHERAL PERIPHERAL & CONTROL & CONTROl.
    [Show full text]
  • TIME-SHARING CONTROL DATA® 3300/3500 Computer Systems
    TIME-SHARING CONTROL DATA® 3300/3500 Computer Systems Equipment Bulletin Pub. No. 60156000 © 1965, Control Data Corporation November, 1965 Printed in United States of America CONTENTS 1. Introduction Relocation 4-2 Page Structure 4-2 2. Modular Description Address Relocation 4-4 3. Software Systems Program Address and MASTER 3-1 Program Address Group 4-4 Real-Time SCOPE 3-1 ISR and OSR 4-4 MSIO 3-2 Page Index File 4-8 File Manager 3-3 Page Index 4-9 Disk SCOPE 3-3 Partial Page Adder 4-12 Relocated Address 4-13 4. Multiprogramming Concepts Page Zero Considerations 4-13 Executive Mode 4-1 Instructions 4-13 Monitor State 4-1 3300 and 3500 Instruction List 4-14 Program State 4-1 FIGURES 2-1 3300 Computer System Console 2-2 4-7 Example of Page Index Refer- encing 4-8 4-1 Address Relocation Process 4-3 4-8 Page Index Format 4-9 4-2 Word Addressing 4-4 4-9 Relocation Chassis Display Panel 4-9 4-3 Character Addressing 4-4 4-10 Storage Address Buses 4-10 4-4 Program Address Group 4-5 4-11 Page Length Subdivisions 4'-10 4-5 Page Index File Address and Hardware Structure 4-6 4-12 Quarter Page in Relation to PP Designator 4-11 4-6 Relocation System illustrating Memory Protection with Fully 4-13 Starting Quarters versus Relative Expanded Memory (262K) 4-7 Quarters 4-12 iii BUSINESS AND INDUSTRY: ... .•• ... · .• ·• •. ·• • SPACE ... ... .. •• .. ..• TIME -SHARI NG SYSTEMS •• FOR BUSINESS, SCIENTIFIC • .. & REAL -TIME APPLICATIONS ..•• .• 1.
    [Show full text]