Petroleomics Applications of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Crude Oil and Bitumen Analysis Donald Francis Smith

Total Page:16

File Type:pdf, Size:1020Kb

Petroleomics Applications of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Crude Oil and Bitumen Analysis Donald Francis Smith Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2007 Petroleomics Applications of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry: Crude Oil and Bitumen Analysis Donald Francis Smith Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES PETROLEOMICS APPLICATIONS OF FOURIER TRANSFORM ION CYCLOTRON RESONANCE MASS SPECTROMETRY: CRUDE OIL AND BITUMEN ANALYSIS By DONALD FRANCIS SMITH A Dissertation submitted to the Department of Chemistry and Biochemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Fall Semester, 2007 The members of the Committee approve the Dissertation of Donald Francis Smith defended on October 29, 2007. Alan Marshall Professor Directing Dissertation William Landing Outside Committee Member Christopher Hendrickson Committee Member Ryan Rodgers Committee Member Joseph Schlenoff Committee Member Albert Stiegman Committee Member Approved: Joseph Schlenoff, Interim Chair, Department of Chemistry and Biochemistry Joseph Travis, Dean, College of Arts and Sciences The Office of Graduate Studies has verified and approved the above named committee members. ii ACKNOWLEDGEMENTS In my search for a school to pursue graduate education, I had only one pre-requisite, mass spectrometry. I read dozens of journal articles and websites to get a handle on research topics and sent email to professors with interesting research. By far the most pleasant, interested and approachable was Dr. Alan Marshall. When I joined the Marshall group, I knew little of the scope and scale of its research program, but I learned quickly of its prominent role in the mass spectrometry community. Regardless of his many other hats, Alan always seems to have time to discuss anything in regards to research and remains pleasant, interested and approachable. I thank Alan for the excellent opportunity to work in his laboratory and for the support he, and the research environment he has built at the NHMFL, have given me in my time in Tallahassee. I must also thank Dr. Ryan Rodgers for enduring my endless questions and ideas, and also for his friendship. Watch out for hoverboards, remember to always check the fridge for cucumbers, and keep the television on channel 52. I want to thank Dr. Tanner Schaub for his patience while teaching me everything about FT-ICR MS, and mass spectrometry in general. I couldn’t have asked for a better teacher, and I thank you. I need to thank Dr. Chris Hendrickson and John Quinn for their help and support. Many thanks go out to the rest of the Marshall group, past and present, for assistance with projects and their support and friendship. This includes, Dr. Greg Blakney, Dr. Sunghwan Kim, Dr. Sasa Kazazic, Dr. Geoffrey Kline, Dr. Jerry Purcell, Dr. Priyanka Juyal, Brandie Ehrmann, Amy McKenna and Myles Mapolelo. I must also thank the friends I have made in Tallahassee for helping me take my mind off of work; Milton Truong (and his mom), Tyler Wyly and Sam Watkins. I thank my numerous collaborators for their helpful discussions, including Dr. Bernhard Linden, Dr. Parviz Rahimi and Dr. iii Andrew Yen. I must also thank Andy Powell in the NHMFL electronics shop for his help in building the new FD controller. I must also thanks the National Science Foundation (DMR 00-84173), the Canadian Program for Energy Research and Development, Florida State University and the National High Magnetic Field Laboratory for support of my research. Lastly I must thank my parents and family for their love and support throughout my academic career. I thank you for always believing in me and supporting my endeavors. I love you all very much. iv TABLE OF CONTENTS LIST OF TABLES ........................................................................ X LIST OF FIGURES......................................................................XI ABSTRACT ..............................................................................XXI 1. INTRODUCTION...................................................................... 1 Fourier Transform Ion Cyclotron Resonance Mass Spectrometry 1 Cyclotron Motion............................................................................ 1 Excitation and Detection for FT-ICR Mass Spectrometry ................. 2 Mass Calibration ............................................................................ 3 Petroleomics .............................................................................. 3 Need for Ultra-high Mass Resolving Power and High Mass Accuracy 5 Kendrick Mass Sorting, Data Handling and Graphical Representation ............................................................................... 8 Field Desorption Ionization for Analysis of Non-Polar and Low- Polarity Compounds ..................................................................... 12 Electrospray Ionization for Analysis of Polar Compounds.............. 16 2. AUTOMATED LIQUID INJECTION FIELD DESORPTION IONIZATION FOR FOURIER TRANSFORM ION CYCLOTRON RESONANCE MASS SPECTROMETRY........................................ 21 Summary ................................................................................. 21 Introduction............................................................................. 21 Experimental Methods ............................................................. 23 Results and Discussion............................................................. 26 Conclusions ............................................................................. 31 3. CHARACTERIZATION OF ACIDIC SPECIES IN ATHABASCA BITUMEN AND BITUMEN HEAVY VACUUM GAS OIL BY NEGATIVE- ION ESI FT-ICR MS WITH AND WITHOUT ACID-IER PREFRACTIONATION ............................................................... 32 Summary ................................................................................. 32 Introduction............................................................................. 33 v Experimental Methods ............................................................. 35 Sample Description and Bulk Property Measurements.................. 35 Sample Preparation for ESI FT-ICR MS......................................... 35 Instrumentation ........................................................................... 35 Mass Calibration and Data Analysis ............................................. 36 Results and Discussion............................................................. 36 Feedstock Properties .................................................................... 36 Mass Spectrometric Analysis ........................................................ 37 Naphthenic Acids in Bitumen vs. HVGO and Ion-Exchange Fractions ................................................................................... 37 DBE vs. Carbon Number for O2 Class Species ............................ 40 DBE vs. Carbon Number for S1O2 Class Species......................... 42 DBE vs. Carbon Number for N1 Class Species ............................ 43 4. CHARACTERIZATION OF ATHABASCA BITUMEN HEAVY VACCUM GAS OIL DISTILLATION CUTS BY NEGATIVE/POSITIVE ELECTOSRPAY IONIZATION AND AUTOMATED LIQUID INJECTION FIELD DESORPTION IONIZATION FT-ICR MS ......... 46 Summary ................................................................................. 46 Introduction............................................................................. 47 Experimental Methods ............................................................. 49 Sample Description and Preparation for ESI MS ........................... 49 Instrumentation: Electrospray FT-ICR MS .................................... 50 Instrumentation: Automated LIFDI FT-ICR MS........................... 50 Mass Calibration and Data Analysis........................................... 50 Results and Discussion............................................................. 51 Negative-Ion ESI FT-ICR MS ......................................................... 54 Positive-Ion ESI FT-ICR MS .......................................................... 57 Automated LIFDI FT-ICR MS ........................................................ 60 Structural Changes as a Function of Boiling Point........................ 64 Conclusions ............................................................................. 64 5. ANALYSIS OF ACIDIC SPECIES IN THERMALLY TREATED ATHABASCA BITUMEN BY NEGATIVE-ION ELECTROSPRAY FT- ICR MASS SPECTROMETRY ..................................................... 67 Summary ................................................................................. 67 Introduction............................................................................. 68 vi Experimental Methods ............................................................. 69 Sample Description and Bulk Measurements................................ 69 Thermal Treatment....................................................................... 70 Sample Preparation for ESI FT-ICR MS......................................... 70 Instrumentation ........................................................................... 70 Mass Calibration and Data Analysis for ESI FT-ICR MS................ 70 Results and Discussion............................................................. 71 Bulk Properties of HVGO Feed and Treatment Products................ 71 Negative-Ion ESI FT-ICR MS ......................................................... 73 Conclusions ............................................................................
Recommended publications
  • (ESI) Electrospray Ionization
    Electrospray Ionization (ESI) • sample solution • voltage drop • solvent evaporates is injected between source, away as droplets directly into analyzer generates migrate across gap instrument ionized droplets “sheath gas” Electrospray Ionization (ESI) Injected solution usually includes ionizing agent H+ (from acid), Na+, K+ Large droplets from injected stream Resulting ions can be spontaneously eject singly or multiply smaller droplets (due to charged electrostatic repulsion) Electrospray Ionization (ESI) Multiply charged ions frequently observed. ESI M [M•H]+ + [M•2H]2+ + [M•3H]3+ + ... or [M•Na]+ + [M•2Na]2+ + [M•3Na]3+ + ... multiply lysozyme: charged big > 10 kDa protein (protonated) ions From this series of peaks, how do we determine mass of protein? Charge Ladders in Electrospray Ionization We know two things: 1. Any peak corresponds to [M•nH]n+; ion mass m =M+= M + n, charge z = n. 2. Peak to that peak’s left has one more proton attached, one more charge; ion mass m = M + n + 1, charge z = n + 1. Charge Ladders in Electrospray Ionization Set of simultaneous equations: (observed m/z #1) • z = M + z(H+) (observed m/z #2) • (z + 1) = M + z(H+) + 1 2 1 Charge Ladders in Electrospray Ionization Now performed by computer algorithm Set of simultaneous equations: that searches for ladders, outputs likely mass candidates. 1486 • z = M + z 1372.5 • (z + 1) = M + z + 1 Solution: z = 12 M = 17827.2 [M•13H]13+ 2 [M•12H]1 12+ actual MW lysozyme: 17825.2 If sample contains a mixture of counterions, can get messy. ESI-MS 22-mer single-stranded DNA (difficult to desalt) Atmospheric Pressure Chemical Ionization (APCI) •+ •+ Analogous to CI, but uses discharge to generate N2 /O2 , which then iiionizes evapora tdltllThthiited solvent molecules.
    [Show full text]
  • Contents • Introduction to Proteomics and Mass Spectrometry
    Contents • Introduction to Proteomics and Mass spectrometry - What we need to know in our quest to explain life - Fundamental things you need to know about mass spectrometry • Interfaces and ion sources - Electrospray ionization (ESI) - conventional and nanospray - Heated nebulizer atmospheric pressure chemical ionization - Matrix assisted laser desorption • Types of MS analyzers - Magnetic sector - Quadrupole - Time-of-flight - Hybrid - Ion trap In the next step in our quest to explain what is life The human genome project has largely been completed and many other genomes are surrendering to the gene sequencers. However, all this knowledge does not give us the information that is needed to explain how living cells work. To do that, we need to study proteins. In 2002, mass spectrometry has developed to the point where it has the capacity to obtain the "exact" molecular weight of many macromolecules. At the present time, this includes proteins up to 150,000 Da. Proteins of higher molecular weights (up to 500,000 Da) can also be studied by mass spectrometry, but with less accuracy. The paradigm for sequencing of peptides and identification of proteins has changed – because of the availability of the human genome database, peptides can be identified merely by their masses or by partial sequence information, often in minutes, not hours. This new capacity is shifting the emphasis of biomedical research back to the functional aspects of cell biochemistry, the expression of particular sets of genes and their gene products, the proteins of the cell. These are the new goals of the biological scientist: o to know which proteins are expressed in each cell, preferably one cell at a time o to know how these proteins are modified, information that cannot necessarily be deduced from the nucleotide sequence of individual genes.
    [Show full text]
  • MARA): an Improved Method for Elemental Composition Assignment in Petroleomics
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Debrecen Electronic Archive Subscriber access provided by UNIV OF LOUISIANA Article Mass-Remainder Analysis (MARA): An Improved Method for Elemental Composition Assignment in Petroleomics. Tibor Nagy, Ákos Kuki, Miklós Nagy, Miklos Zsuga, and Sándor Kéki Anal. Chem., Just Accepted Manuscript • Publication Date (Web): 26 Mar 2019 Downloaded from http://pubs.acs.org on March 30, 2019 Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts.
    [Show full text]
  • Ion Structure and Energetics in the Gas Phase Characterized Using Fourier Transfom Ion Cyclotron Resonance Mass Spectrometry
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2014-09-01 Ion Structure and Energetics in the Gas Phase Characterized Using Fourier Transfom Ion Cyclotron Resonance Mass Spectrometry Chad A. Jones Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Biochemistry Commons, and the Chemistry Commons BYU ScholarsArchive Citation Jones, Chad A., "Ion Structure and Energetics in the Gas Phase Characterized Using Fourier Transfom Ion Cyclotron Resonance Mass Spectrometry" (2014). Theses and Dissertations. 4253. https://scholarsarchive.byu.edu/etd/4253 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Ion Structure and Energetics in the Gas Phase Characterized Using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Chad A. Jones A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy David V. Dearden, Chair Matthew Asplund Daniel Austin James Patterson Randall B. Shirts Department of Chemistry and Biochemistry Brigham Young University September 2014 Copyright © 2014 Chad A. Jones All Rights Reserved ABSTRACT Ion Structure and Energetics in the Gas Phase Characterized Using Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Chad A. Jones Department of Chemistry and Biochemistry, BYU Doctor of Philosophy In this dissertation, I use Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) to study the structure and energetics of gas phase ions. Infrared multiphoton dissociation spectroscopy (IRMPD) is a technique for measuring the IR spectrum of gas phase ions in a Penning trap.
    [Show full text]
  • An Organic Chemist's Guide to Electrospray Mass Spectrometric
    molecules Review An Organic Chemist’s Guide to Electrospray Mass Spectrometric Structure Elucidation Arnold Steckel 1 and Gitta Schlosser 2,* 1 Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary; [email protected] 2 Department of Analytical Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary * Correspondence: [email protected] Received: 16 January 2019; Accepted: 8 February 2019; Published: 10 February 2019 Abstract: Tandem mass spectrometry is an important tool for structure elucidation of natural and synthetic organic products. Fragmentation of odd electron ions (OE+) generated by electron ionization (EI) was extensively studied in the last few decades, however there are only a few systematic reviews available concerning the fragmentation of even-electron ions (EE+/EE−) produced by the currently most common ionization techniques, electrospray ionization (ESI) and atmospheric pressure chemical ionization (APCI). This review summarizes the most important features of tandem mass spectra generated by collision-induced dissociation fragmentation and presents didactic examples for the unexperienced users. Keywords: tandem mass spectrometry; MS/MS fragmentation; collision-induced dissociation; CID; ESI; structure elucidation 1. Introduction Electron ionization (EI), a hard ionization technique, is the method of choice for analyses of small (<1000 Da), nonpolar, volatile compounds. As its name implies, the technique involves ionization by electrons with ~70 eV energy. This energy is high enough to yield very reproducible mass spectra with a large number of fragments. However, these spectra frequently lack the radical type molecular ions (M+) due to the high internal energy transferred to the precursors [1].
    [Show full text]
  • Orbitrap Fusion Tribrid Mass Spectrometer
    MASS SPECTROMETRY Product Specifications Thermo Scientific Orbitrap Fusion Tribrid Mass Spectrometer Unmatched analytical performance, revolutionary MS architecture The Thermo Scientific™ Orbitrap Fusion™ mass spectrometer combines the best of quadrupole, Orbitrap, and linear ion trap mass analysis in a revolutionary Thermo Scientific™ Tribrid™ architecture that delivers unprecedented depth of analysis. It enables life scientists working with even the most challenging samples—samples of low abundance, high complexity, or difficult-to-analyze chemical structure—to identify more compounds faster, quantify them more accurately, and elucidate molecular composition more thoroughly. • Tribrid architecture combines quadrupole, followed by ETD or EThCD for glycopeptide linear ion trap, and Orbitrap mass analyzers characterization or HCD followed by CID • Multiple fragmentation techniques—CID, for small-molecule structural analysis. HCD, and optional ETD and EThCD—are available at any stage of MSn, with The ultrahigh resolution of the Orbitrap mass subsequent mass analysis in either the ion analyzer increases certainty of analytical trap or Orbitrap mass analyzer results, enabling molecular-weight • Parallelization of MS and MSn acquisition determination for intact proteins and confident to maximize the amount of high-quality resolution of isobaric species. The unsurpassed data acquired scan rate and resolution of the system are • Next-generation ion sources and ion especially useful when dealing with complex optics increase system ease of operation and robustness and low-abundance samples in proteomics, • Innovative instrument control software metabolomics, glycomics, lipidomics, and makes setup easier, methods more similar applications. powerful, and operation more intuitive The intuitive user interface of the tune editor The Orbitrap Fusion Tribrid MS can perform and method editor makes instrument calibration a wide variety of analyses, from in-depth and method development easier.
    [Show full text]
  • And Ion Mobility – Mass Spectrometry As Platforms for X-Omic Analyses
    ABSTRACT Fueling Advances in Ultra Performance Liquid Chromatography – and Ion Mobility – Mass Spectrometry as Platforms for X-omic Analyses Sharon Michelle Munisamy, Ph.D. Mentor: C. Kevin Chambliss, Ph.D. Analysis of x-omics samples presents a significant challenge to analytical chemists. The complexity and diversity of x-omics samples make it difficult to determine or develop the right analytical approach. This dissertation presents novel applications of ultra performance liquid chromatography – high-resolution mass spectrometry (UPLC- HRMS) and ion mobility – high-resolution mass spectrometry (IM-HRMS) in two emerging x-omics areas: lignocellulomics and petroleomics. Compared to traditional methods of x-omics analyses, these techniques offer higher chromatographic efficiency with UPLC, which can equate to faster analysis times and greater separation, an additional degree of separation with ion mobility spectrometry (IMS), and high peak resolution and mass accuracy with HRMS, which allow for identification of known and unknown analytes. Direct infusion electrospray ionization – ion mobility – high-resolution mass spectrometry (DIESI-IM-HRMS) has been evaluated as a rapid technique for the determination of total molecular composition in “whole-sample” biomass hydrolysates and extracts. IM-HRMS data reveal a high molecular weight range of biomass components (up to 1100 m/z) and provide trendline isolation of feedstock components from those introduced “in process”. Carbohydrates and other lignocellulosic degradation products were identified via HRMS exact mass measurements (with typical mass errors less than 5 ppm). Analyte assignments were supported via IM-MS collision-cross-section (CCS) measurements and trendline analysis. An automated “omics” approach utilizing UPLC-HR-TOF-MS was developed for the identification of previously unknown lignocellulosic degradation products.
    [Show full text]
  • Electrification Ionization: Fundamentals and Applications
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 11-12-2019 Electrification Ionization: undamentalsF and Applications Bijay Kumar Banstola Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Analytical Chemistry Commons Recommended Citation Banstola, Bijay Kumar, "Electrification Ionization: undamentalsF and Applications" (2019). LSU Doctoral Dissertations. 5103. https://digitalcommons.lsu.edu/gradschool_dissertations/5103 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. ELECTRIFICATION IONIZATION: FUNDAMENTALS AND APPLICATIONS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Chemistry by Bijay Kumar Banstola B. Sc., Northwestern State University of Louisiana, 2011 December 2019 This dissertation is dedicated to my parents: Tikaram and Shova Banstola my wife: Laxmi Kandel ii ACKNOWLEDGEMENTS I thank my advisor Professor Kermit K. Murray, for his continuous support and guidance throughout my Ph.D. program. Without his unwavering guidance and continuous help and encouragement, I could not have completed this program. I am also thankful to my committee members, Professor Isiah M. Warner, Professor Kenneth Lopata, and Professor Shengli Chen. I thank Dr. Fabrizio Donnarumma for his assistance and valuable insights to overcome the hurdles throughout my program. I appreciate Miss Connie David and Dr.
    [Show full text]
  • Electrospray Ionization and Samples Complexity in Meta-Metabolomics
    Electrospray Ionization and samples complexity in Meta-metabolomics: a biomarker or a suppressed ion? Hikmat Ghosson, Chandrashekhar Patil, Amani Ben Jrad, Delphine Raviglione, Marie-Virginie Salvia, Cédric Bertrand To cite this version: Hikmat Ghosson, Chandrashekhar Patil, Amani Ben Jrad, Delphine Raviglione, Marie-Virginie Salvia, et al.. Electrospray Ionization and samples complexity in Meta-metabolomics: a biomarker or a suppressed ion?. European RFMF Metabomeeting 2020, Jan 2020, Toulouse, France. European RFMF Metabomeeting 2020 Book Of Abstract, pp.248, 2020, Poster abstracts. hal-02456148 HAL Id: hal-02456148 https://hal.archives-ouvertes.fr/hal-02456148 Submitted on 27 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License Project co-financed by the European Regional Development Fund (ERDF) Electrospray Ionization and samples complexity in Meta-metabolomics: a biomarker or a suppressed ion? Hikmat Ghosson1,2,*, Chandrashekhar Patil1, Amani Ben Jrad1,2, Delphine Raviglione1,2, Marie-Virginie Salvia1,2,3, Cédric Bertrand1,2,3,4 *: [email protected] 1: PSL Université Paris: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France 2: UFR Sciences Exactes et Expérimentales, Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France 3: Laboratoire d’Excellence « CORAIL », Université de Perpignan, 52 Avenue Paul Alduy, 66860 Perpignan Cedex, France 4: S.A.S.
    [Show full text]
  • Spatially Resolved Metabolomics to Discover Tumor- Associated Metabolic Alterations
    Spatially resolved metabolomics to discover tumor- associated metabolic alterations Chenglong Suna, Tiegang Lia, Xiaowei Songa, Luojiao Huanga, Qingce Zanga, Jing Xua, Nan Bib, Guanggen Jiaoc, Yanzeng Haoc, Yanhua Chena, Ruiping Zhanga, Zhigang Luoa, Xin Lia, Luhua Wangb, Zhonghua Wangd, Yongmei Songe, Jiuming Hea,1, and Zeper Abliza,d,1 aState Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 100050 Beijing, China; bDepartment of Radiation Oncology, Cancer Institute, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021 Beijing, China; cDepartment of Pathology and Thoracic Surgery, Linzhou Esophageal Cancer Hospital, 456500 Linzhou, China; dCenter for Imaging and Systems Biology, Minzu University of China, 100081 Beijing, China; and eState Key Laboratory of Molecular Oncology, Cancer Institute, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021 Beijing, China Edited by Matthew G. Vander Heiden, Koch Institute at Massachusetts Institute of Technology, and accepted by Editorial Board Member Rakesh K. Jain November 27, 2018 (received for review May 24, 2018) Characterization of tumor metabolism with spatial information tissue samples is lost over the course of elaborate sample pre- contributes to our understanding of complex cancer metabolic treatment (7). Matrix-assisted laser desorption ionization mass reprogramming, facilitating the discovery of potential metabolic spectrometry imaging (MALDI-MSI) is an effective tool to vi- vulnerabilities that might be targeted for tumor therapy. However, sualize the spatial location of proteins and metabolites with high given the metabolic variability and flexibility of tumors, it is still spatial resolution, but high-vacuum environments and matrix challenging to characterize global metabolic alterations in heteroge- assistance are usually needed for ionization (8–11).
    [Show full text]
  • Mass Spectrometry Analysis and Raw Data Processing
    molecules Review Characterization of Lignin Compounds at the Molecular Level: Mass Spectrometry Analysis and Raw Data Processing Ruochun Zhang 1,2, Yulin Qi 1,2,*, Chao Ma 1, Jinfeng Ge 1, Qiaozhuan Hu 1, Fu-Jun Yue 1,2 , Si-Liang Li 1,2 and Dietrich A. Volmer 3 1 Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; [email protected] (R.Z.); [email protected] (C.M.); [email protected] (J.G.); [email protected] (Q.H.); [email protected] (F.-J.Y.); [email protected] (S.-L.L.) 2 Tianjin Key Laboratory of Earth Critical Zone Science and Sustainable Development in Bohai Rim, Tianjin University, Tianjin 300072, China 3 Department of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany; [email protected] * Correspondence: [email protected]; Fax: +86-022-27405051 Abstract: Lignin is the second most abundant natural biopolymer, which is a potential alternative to conventional fossil fuels. It is also a promising material for the recovery of valuable chemicals such as aromatic compounds as well as an important biomarker for terrestrial organic matter. Lignin is currently produced in large quantities as a by-product of chemical pulping and cellulosic ethanol processes. Consequently, analytical methods are required to assess the content of valuable chemicals contained in these complex lignin wastes. This review is devoted to the application of mass spec- trometry, including data analysis strategies, for the elemental and structural elucidation of lignin products. We describe and critically evaluate how these methods have contributed to progress and trends in the utilization of lignin in chemical synthesis, materials, energy, and geochemistry.
    [Show full text]
  • Analysis of Stress Due to Plasma Disruption Current in the KSTAR ICRF Antenna
    Transactions of the Korean Nuclear Society Autumn Meeting Gyeongju, Korea, November 2-3, 2006 Analysis of Stress due to Plasma Disruption Current in the KSTAR ICRF Antenna Suk-Kwon Kim, Dong-Won Lee, Young-Dug Bae, Jong-Gu Kwak Korea Atomic Energy Research Institute, Daejeon 305-353, Korea [email protected] 1. Introduction 3 The stress analysis of KSTAR ICRF antenna has been The dimension of antenna is 730W×1030H×1865L mm , performed by ANSYSTM analytic code. The stress of antenna is composed of the shell-type main box of 20 antenna is caused by the torque of Faraday shield tube mm thickness, inter-plate of 35 mm, cavity of 200 mm which is produced by the induced-current in the case of length, and Faraday shield tube of Φ5/8″(Fig. 2). tokamak plasma disruption. The stress of antenna box and cavity has been analyzed with respect to structural deformation inside the KSTAR RF port. From this (A) (A) analysis, the techniques and mechanism will be prepared, which put ICRF antenna in the rigid position of KSTAR Figure 2. Single component of 5/8″ Faraday shield tube. port. 2. Methods and Results The ASME yield stress (S ) for Inconel 625 of m Faraday shield tube is about 252 MPa for temperature The change of magnetic field is due to the plasma up to 149 °C, and the allowable thermal stress is 3 S , if disruption current decay from 2 MA to 0 in 2 ms and m there are no other stresses. The Faraday shield tubes of vertical drift in the ICRF antenna position [1,2], the ICRF antenna satisfy these requirements from the early cavity current is induced by this varying magnetic field.
    [Show full text]