The Visible and Infrared Survey Telescope for Astronomy \(VISTA\)

Total Page:16

File Type:pdf, Size:1020Kb

The Visible and Infrared Survey Telescope for Astronomy \(VISTA\) A&A 575, A25 (2015) Astronomy DOI: 10.1051/0004-6361/201424973 & c ESO 2015 Astrophysics The Visible and Infrared Survey Telescope for Astronomy (VISTA): Design, technical overview, and performance Will Sutherland1, Jim Emerson1, Gavin Dalton2;3, Eli Atad-Ettedgui4;5, Steven Beard4, Richard Bennett4, Naidu Bezawada4, Andrew Born4, Martin Caldwell2, Paul Clark6, Simon Craig7, David Henry4, Paul Jeffers7, Bryan Little4, Alistair McPherson8, John Murray4, Malcolm Stewart9, Brian Stobie4, David Terrett2, Kim Ward2, Martin Whalley2, and Guy Woodhouse2 1 School of Physics and Astronomy, Queen Mary University of London, Mile End Rd, London E1 4NS, UK e-mail: [email protected] 2 RAL Space, Harwell Oxford, Didcot, Oxfordshire OX11 0QX, UK 3 Astrophysics, University of Oxford, Keble Road, Oxford OX1 3RH, UK 4 UK Astronomy Technology Centre, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK 5 Senior Optical Consultant, 9 Abercorn Road, Edinburgh EH8 7DD, UK 6 Centre for Astronomical Instrumentation, University of Durham, South Road, Durham DH1 3LE, UK 7 National Solar Observatory, NSO/DKIST, 950 N. Cherry Avenue, Tucson, AZ 85719, USA 8 SKA Organisation, Jodrell Bank Observatory, Lower Withington, Macclesfield, Cheshire SK11 9DL, UK 9 Solaire Systems, 55/10 Bath Street, Edinburgh EH15 1HE, UK Received 12 September 2014 / Accepted 15 December 2014 ABSTRACT The Visible and Infrared Survey Telescope for Astronomy (VISTA) is the 4-m wide-field survey telescope at ESO’s Paranal Observatory, equipped with the world’s largest near-infrared imaging camera (VISTA IR Camera, VIRCAM), with 1.65 degree diam- eter field of view, and 67 Mpixels giving 0.6 deg2 active pixel area, operating at wavelengths 0:8−2:3 µm. We provide a short history of the project, and an overview of the technical details of the full system including the optical design, mirrors, telescope structure, IR camera, active optics, enclosure and software. The system includes several innovative design features such as the f =1 primary mir- ror, the dichroic cold-baffle camera design and the sophisticated wavefront sensing system delivering closed-loop 5-axis alignment of the secondary mirror. We conclude with a summary of the delivered performance, and a short overview of the six ESO public surveys in progress on VISTA. Key words. telescopes – instrumentation: photometers – instrumentation: miscellaneous – instrumentation: detectors 1. Introduction telescope, sited in the southern hemisphere and mainly dedicated to multicolour imaging surveys; this was named the Visible and Wide-field imaging surveys have long formed a cornerstone of Infrared Survey Telescope for Astronomy (VISTA). Since 2009, observational astronomy, from the photographic Schmidt tele- the VISTA telescope and its near-infrared camera (VIRCAM) scope surveys from Palomar, the UK Schmidt Telescope and have been in science operations at ESO’s Paranal Observatory: ESO in the 1950–1980 era. After the advent of large-format the product of 4 m aperture and 0:6 deg2 on-pixel field of view CCDs and near-IR detectors during the 1990s, these were fol- makes VISTA the world’s fastest near-infrared survey system, lowed by a number of major multi-colour digital sky surveys, and it seems likely to retain this advantage until the launch of a notably the Sloan Digital Sky Survey (SDSS; Gunn et al. 2006; dedicated space mission such as Euclid or WFIRST in around Abazajian et al. 2009), the 2 Micron All-Sky Survey (2MASS; 2020. Skrutskie et al. 2006), the CFHT Legacy Survey (CFHTLS; This paper provides an overview of the development, techni- Cuillandre et al. 2012), and the UK Infrared Deep Sky Survey cal details and on-sky performance of the VISTA telescope and (UKIDSS; Lawrence et al. 2007). As well as forming a funda- VIRCAM. The intention is to provide an intermediate level of mental legacy resource (notably as an atlas for identifications detail across the whole system, plus references to more detailed of sources discovered at many other wavelengths, from radio papers for each subsystem. The remainder of the paper is divided and sub-mm to X-rays and gamma rays), these surveys have led into sections as follows: in Sect.2 we provide a short outline of to a very wide range of new discoveries covering most areas the full system, to place in context the more detailed later sec- and scales of observational astronomy, ranging from asteroids, tions. In Sect.3 we outline the early history of the project and brown dwarfs, Galactic structure, new Milky Way satellite galax- rationale of the basic design choices; in Sect.4 we provide an ies, through external galaxies and clusters, out to large-scale overview of the system optical design and overall layout; Sect.5 structure, weak lensing and the highest redshift quasars. describes the two mirrors and their support systems; Sect.6 de- In late 1998, a new science funding opportunity was pro- scribes the telescope structure and axes rotation systems; Sect.7 vided by the UK Joint Infrastructure Fund; a consortium of describes the infrared camera; Sect.8 describes the active op- 18 UK universities (see Acknowledgements) put together a suc- tics control; Sect.9 describes the enclosure and ancillary equip- cessful proposal to build a new 4-m class wide-field survey ment; Sect. 10 describes computer control and software; Sect. 11 Article published by EDP Sciences A25, page 1 of 27 A&A 575, A25 (2015) Fig. 1. VISTA telescope at sunset, with the main Paranal summit and VLTs in the background. The VIRCAM vacuum window is visible in the centre of the tube. On the telescope top-end, the M2 hexapod is behind the top ring; the M2 Cell (black) below it, and the M2 Baffle is the metallic annulus. (Photo credit: G.Hudepohl/ESO.) summarises the commissioning; Sect. 12 summarises observa- from 2MASS) the major wide-area optical and near-IR surveys tion control, data processing and archiving; and Sect. 13 gives since 2000 (notably SDSS, CFHT Legacy Survey, UKIDSS) are a short summary of the operational performance. These sections all concentrated in the northern hemisphere. are largely self-contained, so the reader interested in particular During routine observing, VISTA is operated entirely in aspects is advised to read Sect.2 then skip to the specific sec- queue-scheduled mode, controlled remotely by a single tele- tion(s) of interest. scope operator in the main VLT control room; evening startup and morning shutdown procedures are done by an operator adja- 2. System overview cent to the telescope for safety reasons. The VISTA telescope (Fig.1) is located at ESO’s Cerro Paranal The telescope optics (Sect.4) use a very fast two-mirror Observatory in northern Chile, at latitude 24◦3605700 south, lon- quasi-Ritchey-Chretien design. The 4.1 m diameter primary mir- gitude 70◦2305100 west; this is approximately 120 km south of ror is a hyperboloid of f =1:0 focal ratio; together with a 1.24 m Antofagasta city, and 12 km from the Pacific coast. Locally, convex hyperboloid secondary mirror, this produces an f =3:25 VISTA is sited on a subsidiary summit of elevation 2518 m, ap- Cassegrain focus located behind the M1 cell, ≈1.17 m below proximately 1.5 km NNE from the main Paranal summit which the M1 pole (Fig.2). The Cassegrain is the only focal sta- hosts the four VLTs, the VLT Interferometer and the VLT Survey tion, so VISTA carries one large instrument at any time; cur- Telescope; thus VISTA shares the same outstanding weather rently the IR Camera is the only instrument available for VISTA. conditions. Though VISTA is at approximately 100 m lower el- The telescope is designed for occasional instrument interchange, evation than the main summit, it is rarely downwind of the main and a wide-field 2400-fibre multi-object spectrograph (4MOST; summit. Clearly, the southern hemisphere site is very impor- de Jong et al. 2012) is approved by ESO for installation after tant for complementarity with next-generation major projects 2019. The telescope uses active (not adaptive) optics; the pri- including ALMA, SKA Pathfinders and E-ELT, since (apart mary mirror has an 84-point active axial support system, while A25, page 2 of 27 W. Sutherland et al.: VISTA: Technical overview and performance The system is designed mainly for efficient surveying of large areas of sky: clearly the main design drivers for this are the very wide field of view, moderately large aperture, and the high QE of the detectors; other important contributing factors are the high fraction ≥75% of observing time dedicated to large-scale survey programs, and the minimisation of times for necessary observing overheads, e.g. detector readout and telescope jitter movements. An overview of the on-sky performance is given in Sect. 13. 3. Basic requirements and design selection 3.1. Top-level specifications At the start of the project “Phase A” design in April 2000, the basic requirements were as follows. The telescope aperture was set to approximately 4 m for budget and schedule reasons, avail- Fig. 2. Schematic view of the general layout of VISTA optical compo- ability of an existing mirror blank, and also because achieving a nents; this shows the two mirrors, the VIRCAM entrance window and wide field of view becomes progressively more challenging on lenses, and the main components of VIRCAM. larger telescopes. The initial baseline was to accommodate two cameras: a 0:3 deg2 36 Mpixel (9 detector) near-infrared cam- era, and a 2 deg2 450 Mpixel visible camera, both with image the secondary mirror is mounted on a hexapod for 5-axis posi- quality commensurate with seeing-limited images at a top-class tion control. Physical details of the two mirrors and their support ground-based site.
Recommended publications
  • Through a Technical Lens
    THROUGH A TECHNICAL LENS CRAIG MARTIN Figure 1. Front cover: Moon [Signature Page] THROUGH A TECHNICAL LENS A Design Thesis Submitted to the Department of Architecture and Landscape Architecture of North Dakota State University. By, Craig Michael Martin In Partial Fulfillment of the Requirements for the Degree of Master of Architecture. Primary Thesis Advisor Thesis Committee Chair May 2013 Fargo | North Dakota 2-3 TABLE OF CONTENTS Table of Figures 4-9 Thesis Abstract 11 Problem Statement 13 Statement of Intent 14-15 Narrative 17-18 A User/Client Description 19 Major Project Elements 21 Site Information 22-26 Project Emphasis 27 Plan for Proceeding 28-29 Previous Studio Experience 30-31 Theoretical Research 32-41 Typological Case Studies 42-73 Historical Context 74-81 Project Goals 82-83 Site Analysis 84-95 Climate Data 96-107 Programmatic Requirements 108-111 Design Process 112-129 Final Design 130-151 Presentation Display 152-153 References 154-157 Personal Information 159 [Table of Contents] List OF FIGURES Figure 1. Moon ESO: Chekalin 2011 1 Figure 2. Paranal Telescope ESO: Hudepohl 2012 10 Figure 3. Camera Lens Delirium 2012 16 Figure 4. Nebula 1 ESO: Chekalin 2011 18 Figure 4a. Nebula 2 ESO: Chekalin 2011 18 Figure 4b. Nebula 3 ESO: Chekalin 2011 18 Figure 5. Beartooth Pass Craig Martin 2012 20 Figure 6. Beartooth Pass 2 Craig Martin 2012 22 Figure 7. Macro Map Google 2012 22 Figure 8. Micro Map Craig Martin 2012 22 Figure 9. Beartooth Pass 3 Craig Martin 2012 24 Figure 10. Dark Sky Map Grosvold 2011 26 Figure 11.
    [Show full text]
  • 2004-2005 Annual Report
    Anglo-Australian Observatory Annual Report of the Anglo-Australian Telescope Board 1 July 2004 to 30 June 2005 Anglo-Australian Observatory 167 Vimiera Road Eastwood NSW 2122 Australia Postal Address: PO Box 296 Epping NSW 1710 Australia Telephone: (02) 9372 4800 (international) + 61 2 9372 4800 Facsimile: (02) 9372 4880 (international) + 61 2 9372 4880 e-mail: [email protected] Website: http://www.aao.gov.au/ Annual Report Website: http://www.aao.gov.au/annual/ Anglo-Australian Telescope Board Address as above Telephone: (02) 9372 4813 (international) + 61 2 9372 4813 e-mail: [email protected] ABN: 71871323905 © Anglo-Australian Telescope Board 2005 ISSN 1443-8550 Cover: Dome of the UK Schmidt Telescope. Photo courtesy Shaun Amy. Combined H-alpha and Red colour mosaic image of the Vela Supernova remnant taken from several AAO/UK Schmidt Telescope H- alpha survey fields. Image produced by Mike Read and Quentin Parker Cover Design: TTR Print Management Computer Typeset: Anglo-Australian Observatory Picture Credits: The editors would like to thank for their photographs and images throughout this publication Shaun Amy, Stuart Bebb (Physics Photo- graphic Unit, Oxford), Jurek Brzeski, Chris Evans, Kristin Fiegert, David James, Urs Klauser, David Malin, Chris McCowage and Andrew McGrath ii AAO Annual Report 2004–2005 The Honourable Dr Brendan Nelson, MP, Minister for Education, Science and Training Government of the Commonwealth of Australia The Right Honourable Alan Johnson, MP, Secretary of State for Trade and Industry, Government of the United Kingdom of Great Britain and Northern Ireland In accordance with Article 8 of the Agreement between the Australian Government and the Government of the United Kingdom to provide for the establishment and operation of an optical telescope at Siding Spring Mountain in the state of New South Wales, I present herewith a report by the Anglo-Australian Telescope Board for the year from 1 July 2004 to 30 June 2005.
    [Show full text]
  • 50 Years of Existence of the European Southern Observatory (ESO) 30 Years of Swiss Membership with the ESO
    Federal Department for Economic Affairs, Education and Research EAER State Secretariat for Education, Research and Innovation SERI 50 years of existence of the European Southern Observatory (ESO) 30 years of Swiss membership with the ESO The European Southern Observatory (ESO) was founded in Paris on 5 October 1962. Exactly half a century later, on 5 October 2012, Switzerland organised a com- memoration ceremony at the University of Bern to mark ESO’s 50 years of existence and 30 years of Swiss membership with the ESO. This article provides a brief summary of the history and milestones of Swiss member- ship with the ESO as well as an overview of the most important achievements and challenges. Switzerland’s route to ESO membership Nearly twenty years after the ESO was founded, the time was ripe for Switzerland to apply for membership with the ESO. The driving forces on the academic side included the Universi- ty of Geneva and the University of Basel, which wanted to gain access to the most advanced astronomical research available. In 1980, the Federal Council submitted its Dispatch on Swiss membership with the ESO to the Federal Assembly. In 1981, the Federal Assembly adopted a federal decree endorsing Swiss membership with the ESO. In 1982, the Swiss Confederation filed the official documents for ESO membership in Paris. In 1982, Switzerland paid the initial membership fee and, in 1983, the first year’s member- ship contributions. High points of Swiss participation In 1987, the Federal Council issued a federal decree on Swiss participation in the ESO’s Very Large Telescope (VLT) to be built at the Paranal Observatory in the Chilean Atacama Desert.
    [Show full text]
  • Strong Detection of the CMB Lensing × Galaxy Weak Lensing Cross
    Astronomy & Astrophysics manuscript no. main_file ©ESO 2020 November 24, 2020 Strong detection of the CMB lensing × galaxy weak lensing cross-correlation from ACT-DR4, Planck Legacy and KiDS-1000 Naomi Clare Robertson1; 2; 3,?, David Alonso3, Joachim Harnois-Déraps4; 5, Omar Darwish6, Arun Kannawadi7, Alexandra Amon8, Marika Asgari5, Maciej Bilicki9, Erminia Calabrese10, Steve K. Choi11; 12, Mark J. Devlin13, Jo Dunkley7; 14, Andrej Dvornik15, Thomas Erben16, Simone Ferraro17; 18, Maria Cristina Fortuna19 Benjamin Giblin5, Dongwon Han20, Catherine Heymans5; 16, Hendrik Hildebrandt15 J. Colin Hill21; 22, Matt Hilton23; 24, Shuay-Pwu P. Ho25, Henk Hoekstra19, Johannes Hubmayr26, Jack Hughes27, Benjamin Joachimi28, Shahab Joudaki3; 29, Kenda Knowles23, Konrad Kuijken19, Mathew S. Madhavacheril30, Kavilan Moodley23; 24, Lance Miller3, Toshiya Namikawa6, Federico Nati31, Michael D. Niemack11; 12, Lyman A. Page14, Bruce Partridge32, Emmanuel Schaan17; 18, Alessandro Schillaci33, Peter Schneider16, Neelima Sehgal20, Blake D. Sherwin6; 2, Cristóbal Sifón34, Suzanne T. Staggs14, Tilman Tröster5, Alexander van Engelen35, Edwin Valentijn36, Edward J. Wollack37, Angus H. Wright15, Zhilei Xu13; 38 (Affiliations can be found after the references) Received XXXX; accepted YYYY ABSTRACT We measure the cross-correlation between galaxy weak lensing data from the Kilo Degree Survey (KiDS-1000, DR4) and cosmic microwave background (CMB) lensing data from the Atacama Cosmology Telescope (ACT, DR4) and the Planck Legacy survey. We use two samples of source galaxies,
    [Show full text]
  • La Silla Paranal Observatory Observatory
    European Southern La Silla Paranal Observatory Observatory HARPS Secondary Guiding Poster 7739-171 Gerardo Ihle1, Ismo Kastinen1, Gaspare Lo Curto1, Alex Segovia1, Peter Sinclaire1, Raffaele Tomelleri2 [email protected], [email protected], [email protected] Introduction Design and Fabrication HARPS, the High Accuracy Radial velocity Planet Searcher at the ESO La Silla 3.6m telescope, is The design and fabrication of the unit was done by Tomelleri s.r.l., Villafranca, Italy following defined dedicated to the discovery of exosolar planets and high resolution spectroscopy. specifications and requirements. The unit was installed on top of the HARPS adaptor flange. The current precision in the measurement of the radial velocity of stars down to 60 cm/sec in the long term, has permitted to discover the majority of the “super Earth” type of extra solar planets up to date. Several factors enter in the radial velocity error budget, among these is the guiding accuracy, which has direct influence on the light injection into the spectrograph’s fiber. Guiding is actually done by corrections directly sent to the telescope with frequencies in the range of 0.2 Hz-0.05 Hz, depending on the brightness of the target. Due to mechanical limitations of the telescope there is an expected relaxation time of approximately 2 sec. The final objective of this modification is to reach radial velocities precision of 30 cm/sec with HARPS, that will allow the detection of Earth mass planets in close-in orbits. Fig. 5a Details Fig. 5 Tip Tilt table. The table movement is done by means of three voice coil actuators, with a resolution of 0.1 microns, controlled by an amplifier included in a GALIL- Fig.
    [Show full text]
  • ASTRONET IR Final Word Doc for Printing with Logo
    ASTRONET: Infrastructure Roadmap Update Ian Robson The ASTRONET Science Vision and Infrastructure Roadmap were published in 2007 and 2008 respectively and presented a strategic plan for the development of European Astronomy. A requirement was to have a light-touch update of these midway through the term. The Science Vision was updated in 2013 and the conclusions were fed into the Roadmap update. This was completed following the outcome of the ESA decisions on the latest missions. The community has been involved through a variety of processes and the final version of the update has been endorsed by the ASTRONET Executive. ASTRONET was created by a group of European funding agencies in order to establish a strategic planning mechanism for all of European astronomy . It covers the whole astronomical domain, from the Sun and Solar System to the limits of the observable Universe, and from radioastronomy to gamma-rays and particles, on the ground as well as in space; but also theory and computing, outreach, training and recruitment of the vital human resources. And, importantly, ASTRONET aims to engage all astronomical communities and relevant funding agencies on the new map of Europe. http://www.astronet-eu.org/ ASTRONET has been supported by the EC since 2005 as an ERA-NET . Despite the formidable challenges of establishing such a comprehensive plan, ASTRONET reached that goal with the publication of its Infrastructure Roadmap in November 2008. Building on this remarkable achievement, the present project will proceed to the implementation stage, a very significant new step towards the coordination and integration of European resources in the field.
    [Show full text]
  • Esocast Episode 29: Running a Desert Town 00:00 [Visuals Start
    ESOcast Episode 29: Running a Desert Town 00:00 [Visuals start] Images: [Narrator] 1. The Atacama Desert in northern Chile — one of the driest and most hostile environments in the Plain desert world. Under the blazing Sun, only a few species of animals and plants have evolved to survive. Yet, this is where the European Southern Observatory operates its Very Large Telescope. Running this technological oasis in the barren desert, Paranal seen from distance and making it a comfortable place for people to live, poses many challenges. 00:42 ESOcast intro 2. This is the ESOcast! Cutting-edge science and life ESOcast introduction behind the scenes of ESO, the European Southern Observatory. Exploring the ultimate frontier with our host Dr J, a.k.a. Dr Joe Liske. 00:59 [Dr J] Dr J in studio, on screen: 3. Hello and welcome to the ESOcast. Paranal observatory Cerro Paranal, in the heart of the Atacama Desert, is one of the world’s best sites for observing the night sky. Paranal observatory But operating an observatory with more than 100 staff in such a remote and isolated place poses a real logistical challenge; it’s like running a desert town. 1:25 [Narrator] 4. Everything that is needed to make this Mars-like Water truck landscape a haven for people has to be brought in from far away. The most essential delivery to the arid desert is water. The observatory needs up to 70 000 litres of water each day, and literally every drop has to be brought in from the town of Antofagasta, which lies about 120 kilometres away.
    [Show full text]
  • Inferring Kilonova Population Properties with a Hierarchical Bayesian Framework I : Non-Detection Methodology and Single-Event Analyses
    Draft version July 16, 2021 Typeset using LATEX twocolumn style in AASTeX631 Inferring kilonova population properties with a hierarchical Bayesian framework I : Non-detection methodology and single-event analyses Siddharth R. Mohite,1, 2, ∗ Priyadarshini Rajkumar,3 Shreya Anand,4 David L. Kaplan,1 Michael W. Coughlin,5 Ana Sagues-Carracedo´ ,6 Muhammed Saleem,5 Jolien Creighton,1 Patrick R. Brady,1 Tomas´ Ahumada,7 Mouza Almualla,8 Igor Andreoni,4 Mattia Bulla,9 Matthew J. Graham,4 Mansi M. Kasliwal,4 Stephen Kaye,10 Russ R. Laher,11 Kyung Min Shin,12 David L. Shupe,11 and Leo P. Singer13, 14 1Center for Gravitation, Cosmology and Astrophysics, Department of Physics, University of Wisconsin{Milwaukee, P.O. Box 413, Milwaukee, WI 53201, USA 2Center for Computational Astrophysics, Flatiron Institute, 162 5th Ave, New York, NY 10010, USA 3Department of Physics and Astronomy, Texas Tech University, Lubbock, TX 79409-1051, USA 4Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 5School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA 6The Oskar Klein Centre, Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm, Sweden 7Department of Astronomy, University of Maryland, College Park, MD 20742, USA 8Department of Physics, American University of Sharjah, PO Box 26666, Sharjah, UAE 9The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, SE-10691 Stockholm, Sweden 10Caltech Optical Observatories, California
    [Show full text]
  • J-PLUS: on the Identification of New Cluster
    A&A 622, A178 (2019) https://doi.org/10.1051/0004-6361/201731348 Astronomy & © ESO 2019 Astrophysics J-PLUS: On the identification of new cluster members in the double galaxy cluster A2589 and A2593 using PDFs A. Molino1,2, M. V. Costa-Duarte1,3, C. Mendes de Oliveira1, A. J. Cenarro4, G. B. Lima Neto1, E. S. Cypriano1, L. Sodré Jr1, P. Coelho1, M. Chow-Martínez5,6, R. Monteiro-Oliveira7,1, L. Sampedro1,2, D. Cristobal-Hornillos4, J. Varela4, A. Ederoclite4, A. L. Chies-Santos7, W. Schoenell1, T. Ribeiro8, A. Marín-Franch4, C. López-Sanjuan4, J. D. Hernández-Fernández1, A. Cortesi1, H. Vázquez Ramió4, W. Santos Jr1, N. Cibirka1, P. Novais1, E. Pereira1, J. A. Hernández-Jimenez1, Y. Jimenez-Teja9, M. Moles4, N. Benítez2, and R. Dupke9 1 Universidade de São Paulo, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Rua do Matão 1226, 05508-090 São Paulo, Brazil e-mail: [email protected] 2 Instituto de Astrofísica de Andalucía. IAA-CSIC. Glorieta de la astronomía s/n, 18008 Granada, Spain 3 Leiden Observatory, Leiden University, Niels Bohrweg 2, 2333 CA Leiden, The Netherlands 4 Centro de Estudios de Física del Cosmos de Aragón, Plaza San Juan 1, 44001 Teruel, Spain 5 Departamento de Astronomía, DCNE, Universidad de Guanajuato, Apdo. Postal 144, CP 36000 Guanajuato, Mexico 6 Instituto de Geología y Geofísica - Centro de Investigaciones Geocientíficas/Universidad Nacional Autónoma de Nicaragua, Managua, Rotonda Universitaria 200 metros al Este, Managua, Nicaragua 7 Departamento de Astronomía, Instituto de Física, Universidade Federal do Rio Grande do Sul, 15051 Porto Alegre RS, Brazil 8 Departamento de Física, Universidade Federal de Sergipe, Av.
    [Show full text]
  • RASC Choosing and Using a Telescope for Astronomy
    of binoculars accompanied by a good rainbow, obscuring fine detail. The objective astronomy guide like the Royal Astronomical lens in achromat refractors is commonly made Society of Canada’s Observer’s Handbook or of two or more lenses of different glass types to Beginner’s Observing Guide is all you need to begin help correct this problem, Choosing understanding the night sky. known as chromatic aberration. This most and Using a TELESCOPE READINESS TEST commonly manifests itself as faint fringes of colour “Space is mostly empty and you can find a around objects like the whole lot of nothing with a telescope” --- Moon or Jupiter, but it is Richard Weis, former President of rarely fully cured except in RASC-Calgary Centre. Telescope very expensive If you can do the following, then you are ready apochromat refractors. for Astronomy to make full and rewarding use of a telescope: Advantages: Refractors, by default, have a Find and name four circumpolar totally clear aperture. No central obstruction constellations causes light to be scattered from brighter to For many people, the words ‘astronomy’ and Find and name three constellations seen in darker areas. Thus, contrast is good in ‘telescope’ are inseparable. Many newcomers to the southern sky in each of the four seasons refractors. Refractors are often chosen as the the hobby of astronomy mistakenly believe that Find and name - (a) 4 double stars (b) 4 premier instruments for planetary and double- it is important to get a telescope as quickly as variable stars (c) 5 star clusters (d) 5 nebulae star observing. Refractors are also low in possible.
    [Show full text]
  • Combining Dark Energy Survey Science Verification Data with Near
    Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 16 October 2018 (MN LATEX style file v2.2) Combining Dark Energy Survey Science Verification Data with Near Infrared Data from the ESO VISTA Hemisphere Survey Manda Banerji1⋆, S. Jouvel1, H. Lin2, R. G. McMahon3,4, O. Lahav1, F. J. Castander5, F. B. Abdalla1, E. Bertin6, S. E. Bosman3, A. Carnero7,8, M. Carrasco Kind9, L. N. da Costa7,8, D. Gerdes10, J. Gschwend7,8, M. Lima11,8, M. A. G. Maia7,8, A. Merson3, C. Miller10, R. Ogando7,8, P. Pellegrini7,8, S. Reed3, R. Saglia12,C.Sanchez´ 13, S. Allam14,2, J. Annis2, G. Bernstein15, J. Bernstein16, R. Bernstein17, D. Capozzi18, M. Childress19,20, Carlos E. Cunha21, T. M. Davis22,20, D. L. DePoy23, S. Desai24,25, H. T. Diehl2, P. Doel1, J. Findlay3, D. A. Finley2, B. Flaugher2, J. Frieman2, E. Gaztanaga5, K. Glazebrook26, C. Gonzalez-Fern´ andez´ 3, E. Gonzalez-Solares3, K. Honscheid27, M. J. Irwin3, M. J. Jarvis28,29, A. Kim30, S. Koposov3, K. Kuehn31, A. Kupcu-Yoldas3, D. Lagattuta26,20, J. R. Lewis3, C. Lidman31, M. Makler32, J. Marriner2, Jennifer L. Marshall23, R. Miquel13,33, Joseph J. Mohr24,25,12, E. Neilsen2, J. Peoples2, M. Sako15, E. Sanchez34, V. Scarpine2, R. Schindler35, M. Schubnell10, I. Sevilla34, R. Sharp36, M. Soares-Santos2, M. E. C. Swanson37, G. Tarle11, J. Thaler38, D. Tucker2, S. A. Uddin26,20, R. Wechsler21, W. Wester2, F. Yuan38,19, J. Zuntz39 16 October 2018 ABSTRACT We present the combination of optical data from the Science Verification phase of the Dark Energy Survey (DES) with near infrared data from the ESO VISTA Hemisphere Survey (VHS).
    [Show full text]
  • The Case for Irish Membership of the European Southern Observatory Prepared by the Institute of Physics in Ireland June 2014
    The Case for Irish Membership of the European Southern Observatory Prepared by the Institute of Physics in Ireland June 2014 The Case for Irish Membership of the European Southern Observatory Contents Summary 2 European Southern Observatory Overview 3 European Extremely Large Telescope 5 Summary of ESO Telescopes and Instrumentation 6 Technology Development at ESO 7 Big Data and Energy-Efficient Computing 8 Return to Industry 9 Ireland and Space Technologies 10 Astrophysics and Ireland 13 Undergraduate Teaching 15 Outreach and Astronomy 17 Education and Training 19 ESO Membership Fee 20 Conclusions 22 References 24 1 Summary The European Southern Observatory (ESO) is universally acknowledged as being the world leading facility for observational astronomy. The astrophysics community in Ireland is united in calling for Irish membership of ESO believing that this action would strongly support the Irish government’s commitment to its STEM (science, technology, engineering and maths) agenda. An essential element of the government’s plans for the Irish economy is to substantially grow its high-tech business sector. Physics is a core part of that base, with 86,000 jobs in Ireland in this sector1 while astrophysics, in particular, is a key driver both of science interest and especially of innovation. To support this agenda, Irish scientists and engineers need access to the best research facilities and with this access comes the benefits of spin-off technology, contracts and the jobs which this can bring. ESO is currently expanding its membership to include Brazil and is considering some eastern European countries. The cost of membership will increase as more states join and as Ireland’s GDP increases.
    [Show full text]