Sphecos: a Forum for Aculeate Wasp Researchers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Digger Wasps of Saudi Arabia: New Records and Distribution, with a Checklist of Species (Hym.: Ampulicidae, Crabronidae and Sphecidae)
NORTH-WESTERN JOURNAL OF ZOOLOGY 9 (2): 345-364 ©NwjZ, Oradea, Romania, 2013 Article No.: 131206 http://biozoojournals.3x.ro/nwjz/index.html The digger wasps of Saudi Arabia: New records and distribution, with a checklist of species (Hym.: Ampulicidae, Crabronidae and Sphecidae) Neveen S. GADALLAH1,*, Hathal M. AL DHAFER2, Yousif N. ALDRYHIM2, Hassan H. FADL2 and Ali A. ELGHARBAWY2 1. Entomology Department, Faculty of Science, Cairo University, Giza, Egypt. 2. Plant Protection Department, College of Food and Agriculture Science, King Saud University, King Saud Museum of Arthropod (KSMA), Riyadh, Saudi Arabia. *Corresponing author, N.S. Gadalah, E-mail: [email protected] Received: 24. September 2012 / Accepted: 13. January 2013 / Available online: 02. June 2013 / Printed: December 2013 Abstract. The “sphecid’ fauna of Saudi Arabia (Hymenoptera: Apoidea) is listed. A total of 207 species in 42 genera are recorded including previous and new species records. Most Saudi Arabian species recorded up to now are more or less common and widespread mainly in the Afrotropical and Palaearctic zoogeographical zones, the exception being Bembix buettikeri Guichard, Bembix hofufensis Guichard, Bembix saudi Guichard, Cerceris constricta Guichard, Oxybelus lanceolatus Gerstaecker, Palarus arabicus Pulawski in Pulawski & Prentice, Tachytes arabicus Guichard and Tachytes fidelis Pulawski, which are presumed endemic to Saudi Arabia (3.9% of the total number of species). General distribution and ecozones, and Saudi Arabian localities are given for each species. In this study two genera (Diodontus Curtis and Dryudella Spinola) and 11 species are newly recorded from Saudi Arabia. Key words: Ampulicidae, Crabronidae, Sphecidae, faunistic list, new records, Saudi Arabia. Introduction tata boops (Schrank), Bembecinus meridionalis A.Costa, Diodontus sp. -
Functional Morphology and Evolution of the Sting Sheaths in Aculeata (Hymenoptera) 325-338 77 (2): 325– 338 2019
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Arthropod Systematics and Phylogeny Jahr/Year: 2019 Band/Volume: 77 Autor(en)/Author(s): Kumpanenko Alexander, Gladun Dmytro, Vilhelmsen Lars Artikel/Article: Functional morphology and evolution of the sting sheaths in Aculeata (Hymenoptera) 325-338 77 (2): 325– 338 2019 © Senckenberg Gesellschaft für Naturforschung, 2019. Functional morphology and evolution of the sting sheaths in Aculeata (Hymenoptera) , 1 1 2 Alexander Kumpanenko* , Dmytro Gladun & Lars Vilhelmsen 1 Institute for Evolutionary Ecology NAS Ukraine, 03143, Kyiv, 37 Lebedeva str., Ukraine; Alexander Kumpanenko* [[email protected]]; Dmytro Gladun [[email protected]] — 2 Natural History Museum of Denmark, SCIENCE, University of Copenhagen, Universitet- sparken 15, DK-2100, Denmark; Lars Vilhelmsen [[email protected]] — * Corresponding author Accepted on June 28, 2019. Published online at www.senckenberg.de/arthropod-systematics on September 17, 2019. Published in print on September 27, 2019. Editors in charge: Christian Schmidt & Klaus-Dieter Klass. Abstract. The sting of the Aculeata or stinging wasps is a modifed ovipositor; its function (killing or paralyzing prey, defense against predators) and the associated anatomical changes are apomorphic for Aculeata. The change in the purpose of the ovipositor/sting from being primarily an egg laying device to being primarily a weapon has resulted in modifcation of its handling that is supported by specifc morphological adaptations. Here, we focus on the sheaths of the sting (3rd valvulae = gonoplacs) in Aculeata, which do not penetrate and envenom the prey but are responsible for cleaning the ovipositor proper and protecting it from damage, identifcation of the substrate for stinging, and, in some taxa, contain glands that produce alarm pheromones. -
Cresson) (Hymenoptera: Sphecidae
Great Basin Naturalist Volume 35 Number 1 Article 16 3-31-1975 The nest and larva of Diploplectron brunneipes (Cresson) (Hymenoptera: Sphecidae) Howard E. Evans Colorado State University, Fort Collins Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Evans, Howard E. (1975) "The nest and larva of Diploplectron brunneipes (Cresson) (Hymenoptera: Sphecidae)," Great Basin Naturalist: Vol. 35 : No. 1 , Article 16. Available at: https://scholarsarchive.byu.edu/gbn/vol35/iss1/16 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. THE NEST AND LARVA OF DIPLOPLECTRON BRUNNEIPES (CRESSON) (HYMENOPTERA: SPHECIDAE) Howard E. Evans^ Abstract.— Diploplectron brunneipes (Cresson) makes a shallow nest in compact clay-sand con- taining at least two cells. It is provisioned with immature Heteroptera. The larva resembles that of Astata in a general way but differs in several particulars. Wasps of the genus Diploplectron es- the entrance. Each cell contained 6 im- ( ape frequent detection because of their mature bugs, Uhleriola floralis (Uhler) small size (4-7 mm) and secretive behav- (Lygaeidae) [det. J. A. Slater] and a ior. For many years the genus was poorly small larva, one of which was reared to understood, but in 1972 there appeared maturity and is described below. Both of two important papers: Parker presented these cells had been closed off with a bar- a revision of the 15 New World species, rier of sand. -
Hymenoptera (Stinging Wasps)
Return to insect order home Page 1 of 3 Visit us on the Web: www.gardeninghelp.org Insect Order ID: Hymenoptera (Stinging Wasps) Life Cycle–Complete metamorphosis: Queens or solitary adults lay eggs. Larvae eat, grow and molt. This stage is repeated a varying number of times, depending on species, until hormonal changes cause the larvae to pupate. Inside a cell (in nests) or a pupal case (solitary), they change in form and color and develop wings. The adults look completely different from the larvae. Solitary wasps: Social wasps: Adults–Stinging wasps have hard bodies and most have membranous wings (some are wingless). The forewing is larger than the hindwing and the two are hooked together as are all Hymenoptera, hence the name "married wings," but this is difficult to see. Some species fold their wings lengthwise, making their wings look long and narrow. The head is oblong and clearly separated from the thorax, and the eyes are compound eyes, but not multifaceted. All have a cinched-in waist (wasp waist). Eggs are laid from the base of the ovipositor, while the ovipositor itself, in most species, has evolved into a stinger. Thus only females have stingers. (Click images to enlarge or orange text for more information.) Oblong head Compound eyes Folded wings but not multifaceted appear Cinched in waist long & narrow Return to insect order home Page 2 of 3 Eggs–Colonies of social wasps have at least one queen that lays both fertilized and unfertilized eggs. Most are fertilized and all fertilized eggs are female. Most of these become workers; a few become queens. -
Additions to the Checklist of Scoliidae, Sphecidae, Pompilidae and Vespidae of Peru, with Notes on the Endemic Status of Some Species (Hymenoptera, Aculeata)
A peer-reviewed open-access journal ZooKeys 519:Additions 33–48 (2015) to the checklist of Scoliidae, Sphecidae, Pompilidae and Vespidae of Peru... 33 doi: 10.3897/zookeys.519.6501 CHECKLIST http://zookeys.pensoft.net Launched to accelerate biodiversity research Additions to the checklist of Scoliidae, Sphecidae, Pompilidae and Vespidae of Peru, with notes on the endemic status of some species (Hymenoptera, Aculeata) Eduardo Fernando dos Santos1, Yuri Campanholo Grandinete1,2, Fernando Barbosa Noll1 1 Departamento de Zoologia e Botânica, Instituto de Biociências, Letras e Ciências Exatas, Universidade Esta- dual Paulista “Júlio de Mesquita Filho”. Rua Cristóvão Colombo, 2265, Jd. Nazareth, 15054-000, São José do Rio Preto, SP, Brazil 2 Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil Corresponding author: Eduardo Fernando dos Santos ([email protected]) Academic editor: Michael Engel | Received 22 May 2015 | Accepted 19 August 2015 | Published 31 August 2015 http://zoobank.org/DA5A298F-BEF0-4AF5-AA08-FB8FF41FE6A4 Citation: dos Santos EF, Grandinete YC, Noll FB (2015) Additions to the checklist of Scoliidae, Sphecidae, Pompilidae and Vespidae of Peru, with notes on the endemic status of some species (Hymenoptera, Aculeata). ZooKeys 519: 33–48. doi: 10.3897/zookeys.519.6501 Abstract The first checklist of the Peruvian Hymenoptera listed 1169 species and subspecies of aculeate wasps, including 173 species of Pompilidae, seven of Scoliidae, 39 of Sphecidae and 403 of Vespidae. Herein are reported 32 species as new for Peru based mainly on the collection of the Natural History Museum, London. -
Food Load Manipulation Ability Shapes Flight Morphology in Females Of
Polidori et al. Frontiers in Zoology 2013, 10:36 http://www.frontiersinzoology.com/content/10/1/36 RESEARCH Open Access Food load manipulation ability shapes flight morphology in females of central-place foraging Hymenoptera Carlo Polidori1*, Angelica Crottini2, Lidia Della Venezia3,5, Jesús Selfa4, Nicola Saino5 and Diego Rubolini5 Abstract Background: Ecological constraints related to foraging are expected to affect the evolution of morphological traits relevant to food capture, manipulation and transport. Females of central-place foraging Hymenoptera vary in their food load manipulation ability. Bees and social wasps modulate the amount of food taken per foraging trip (in terms of e.g. number of pollen grains or parts of prey), while solitary wasps carry exclusively entire prey items. We hypothesized that the foraging constraints acting on females of the latter species, imposed by the upper limit to the load size they are able to transport in flight, should promote the evolution of a greater load-lifting capacity and manoeuvrability, specifically in terms of greater flight muscle to body mass ratio and lower wing loading. Results: Our comparative study of 28 species confirms that, accounting for shared ancestry, female flight muscle ratio was significantly higher and wing loading lower in species taking entire prey compared to those that are able to modulate load size. Body mass had no effect on flight muscle ratio, though it strongly and negatively co-varied with wing loading. Across species, flight muscle ratio and wing loading were negatively correlated, suggesting coevolution of these traits. Conclusions: Natural selection has led to the coevolution of resource load manipulation ability and morphological traits affecting flying ability with additional loads in females of central-place foraging Hymenoptera. -
A Review of the Genus Larrisson Menke, 1967, and Description of the New Genus Larrissa (Hymenoptera, Crabronidae)
JHR 25: 35–82A review (2012) of the genus Larrisson Menke, 1967, and description of the new genus Larrissa... 35 doi: 10.3897/JHR.25.2396 RESEARCH ARTICLE www.pensoft.net/journals/jhr A review of the genus Larrisson Menke, 1967, and description of the new genus Larrissa (Hymenoptera, Crabronidae) Wojciech J. Pulawski† Department of Entomology, California Academy of Sciences, 55 Music Concourse † urn:lsid:zoobank.org:author:ADB010F9-1DB3-4FA5-BEB5-6716AB2E0ED4 Corresponding author: Wojciech J. Pulawski ([email protected]) Academic editor: Stefan Schmidt | Received 20 November 2011 | Accepted 15 December 2012 | Published 23 March 2012 urn:lsid:zoobank.org:pub:BB6375D0-B9C1-448F-BE35-2EF89EECA8E9 Citation: Pulawski WJ (2012) A review of the genus Larrisson Menke, 1967, and description of the new genus Larrissa (Hymenoptera, Crabronidae). Journal of Hymenoptera Research 25: 35–82. doi: 10.3897/JHR.25.2396 Abstract Larrisson menkei Pagliano, 1995, is transferred to Clitemnestra comb. n. and twelve new species of Larris- son are described: armatus, carinatus, latifrons, niger, orbitalis, punctatus, quintus, spinosus, sulcatus, tegula- ris, tibialis, and variegatus, all from Australia. Based on a cladistic analysis of the genus, Larrisson nedymus Menke is transferred to Larrissa gen. n. Additional locality records are provided for Larrisson abnormis Turner, azyx Menke, rieki Menke, and for Larrissa nedyma (Menke). An updated key to the species of Larrisson and Larrissa is provided. Keywords Taxonomy, revision, Larrisson, new genus, Larrissa Introduction Larrisson is a little known, rarely collected, strictly Australian genus of the solitary wasp family Crabronidae. It was established for Sericophorus abnormis Turner, 1914 by Menke (1967) who in 1979 added three new species, revised the genus, and provided a key to their identification. -
Checklist of the Spider Wasps (Hymenoptera: Pompilidae) of British Columbia
Checklist of the Spider Wasps (Hymenoptera: Pompilidae) of British Columbia Scott Russell Spencer Entomological Collection Beaty Biodiversity Museum, UBC Vancouver, B.C. The family Pompilidae is a cosmopolitan group of some 5000 species of wasps which prey almost exclusively on spiders, giving rise to their common name - the spider wasps. While morphologically monotonous (Evans 1951b), these species range in size from a few millimetres long to among the largest of all hymenopterans; genus Pepsis, the tarantula hawks may reach up to 64 mm long in some tropical species (Vardy 2000). B.C.'s largest pompilid, Calopompilus pyrrhomelas, reaches a more modest body length of 19 mm among specimens held in our collection. In North America, pompilids are known primarily from hot, arid areas, although some species are known from the Yukon Territories and at least one species can overwinter above the snowline in the Colorado mountains (Evans 1997). In most species, the females hunt, attack, and paralyse spiders before laying one egg on (or more rarely, inside) the spider. Prey preferences in Pompilidae are generally based on size, but some groups are known to specialize, such as genus Ageniella on jumping spiders (Araneae: Salticidae) and Tachypompilus on wolf spiders (Araneae: Lycosidae) (Evans 1953). The paralysed host is then deposited in a burrow, which may have been appropriated from the spider, but is typically prepared before hunting from existing structures such as natural crevices, beetle tunnels, or cells belonging to other solitary wasps. While most pompilids follow this general pattern of behaviour, in the Nearctic region wasps of the genus Evagetes and the subfamily Ceropalinae exhibit cleptoparasitism (Evans 1953). -
ENTOMOLOGY NEWSLETTER ~ Department of Entomology Vo 1
/ ENTOMOLOGY NEWSLETTER ~ Department of Entomology Vo 1. 3, No. 1 University of Minnesota Ma r. 14, 1986 Monarch Migration: IN THIS ISSUE: an Endangered Phenomenon? Articles: Monarch Migration NCB-ESA Meetings by Nancy Read and Marc Epstein New Books Faculty News Few insects are better known in Greetings the U.S. than the monarch butterf 1y. The Frenatae activities monarch (Danaus p1exippus L.) is found Jobs throughout the American continent and has spread through much of the Pacific Next newsletter deadline: Apr. 14 islands, including Australia and New Zealand. Populations in the temperate NCB Meetings Update zones can avoid the vagaries of winter by Va 1 Cervenka weather by migrating to areas with cool but fairly stable conditions, such as . As the NCB-ESA meetings rapidly sheltered coastal areas in California or approach (Mar. 24-27), excitement at the the fir forests in the volcanic moun U. of Minn. ;s mounting to a fever tains in Mexico. 'pitch. The Local Arrangements Committee Dr. Lincoln Brower of the Univ. of has been work i ng extra hard and is busy Florida gave a seminar last week on the with last-minute details to make this physiology of the Mexican overwintering conference the best yet. You may want monarch colonies. He and his col leagues to make note of these recent changes and have shown that temperatures are a crit announcements: ical factor in survival. The monarchs There has been a change of speakers overwinter in reproductive diapause, and at the student symposium. Carl Barfield if cond i t ions are too warm they may of the University of Florida will be dehydrate or use up their ,1imited nutri replacing Grace Goodell, and Florence ent reserves. -
Pollination and Botanic Gardens Contribute to the Next Issue of Roots
Botanic Gardens Conservation International Education Review Volume 17 • Number 1 • May 2020 Pollination and botanic gardens Contribute to the next issue of Roots The next issue of Roots is all about education and technology. As this issue goes to press, most botanic gardens around the world are being impacted by the spread of the coronavirus Covid-19. With many Botanic Gardens Conservation International Education Review Volume 16 • Number 2 • October 2019 Citizen gardens closed to the public, and remote working being required, Science educators are having to find new and innovative ways of connecting with visitors. Technology is playing an ever increasing role in the way that we develop and deliver education within botanic gardens, making this an important time to share new ideas and tools with the community. Have you developed a new and innovative way of engaging your visitors through technology? Are you using technology to engage a Botanic Gardens Conservation International Education Review Volume 17 • Number 1 • April 2020 wider audience with the work of your garden? We are currently looking for a variety of contributions including Pollination articles, education resources and a profile of an inspirational garden and botanic staff member. gardens To contribute, please send a 100 word abstract to [email protected] by 15th June 2020. Due to the global impacts of COVID-19, BGCI’s 7th Global Botanic Gardens Congress is being moved to the Australian spring. Join us in Melbourne, 27 September to 1 October 2021, the perfect time to visit Victoria. Influence and Action: Botanic Gardens as Agents of Change will explore how botanic gardens can play a greater role in shaping our future. -
Efectos De La Fragmentación Del Hábitat Sobre Himenópteros Antófilos (Insecta) En El Bosque Chaqueño Serrano
Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Doctorado en Ciencias Biológicas Manuscrito de Tesis para optar al título de Dra. en Ciencias Biológicas Efectos de la fragmentación del hábitat sobre himenópteros antófilos (Insecta) en el Bosque Chaqueño Serrano Doctorando: Bióloga Mariana Laura Musicante Directora: Dra. Adriana Salvo Co-Director: Dr. Leonardo Galetto Centro de Investigaciones Entomológicas de Córdoba (CIEC) Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET) Córdoba, Argentina 2013 Comisión Asesora Dr. Marcelo Aizen Laboratorio Ecotono-Centro Regional Universitario Bariloche (CRUB), Universidad Nacional del Comahue e Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), San Carlos de Bariloche. Departamento de Botánica, Museo Argentino de Ciencias Naturales, Buenos Aires. Dr. Marcelo Cabido Instituto Multidisciplinario de Biología Vegetal-CONICT. Universidad Nacional de Córdoba. Dra. Adriana Salvo Centro de Investigaciones Entomológicas de Córdoba. Instituto Multidisciplinario de Biología Vegetal-CONICT Universidad Nacional de Córdoba. Defensa Oral y Pública Lugar y fecha: Calificación: Tribunal ______________________________ _____________________________________ Firma Aclaración ______________________________ _____________________________________ Firma Aclaración ______________________________ ____________________________________ Firma Aclaración A esos pequeños seres que zumbaban ayer y a los que todavía zumban hoy Efectos de la fragmentación del hábitat -
Full Issue, Vol. 57 No. 3
Great Basin Naturalist Volume 57 Number 3 Article 15 7-31-1997 Full Issue, Vol. 57 No. 3 Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation (1997) "Full Issue, Vol. 57 No. 3," Great Basin Naturalist: Vol. 57 : No. 3 , Article 15. Available at: https://scholarsarchive.byu.edu/gbn/vol57/iss3/15 This Full Issue is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. T H E GREAT BASBASINI1 naturalistnaturalist ale A VOLUME 57 ngN 3 JULY 1997 BRIGHAM YOUNG university GREAT BASIN naturalist editor assistant editor RICHARD W BAUMANN NATHAN M SMITH 290 MLBM 190 MLBM PO box 20200 PO box 26879 brigham youhgyoung university brigham young university provo UT 84602020084602 0200 provo UT 84602687984602 6879 8013785053801 378 5053 8017378801378668880173786688801 378 6688 FAX 8013783733801 378 3733 emailE mail nmshbllibyuedunmshbll1byuedu associate editors J R CALLAHAN PAUL C MARSH museum of southwestern biology university of tentercentergenter for environmental studies arizona new mexico albuquerque NM state university tempe AZ 85287 mailing address box 3140 hemet CA 92546 STANLEY D SMITH BRUCE D ESHELMAN department of biology department of Biologicbiologicalajlainaln sciences university of university of nevada las vegas wisconsin whitewawhitewaterwhitewayterten