Determining the Speed of Light

Total Page:16

File Type:pdf, Size:1020Kb

Determining the Speed of Light ! Determining the Speed of Light The speed of light is one of the most important constants in physical science. In addition to the basic role it plays in the theory of relativity, its value is required for work in photonics, electronics, electromagnetism, quantum theory and nuclear physics. For this reason, a great deal of time and energy has been devoted to its determination. Although its measurement has occupied many scientists from the time of Galileo to the present day, it was the work of British physicist, Louis Essen, that led to the present accepted value and the subsequent re-definition of the unit of length (metre) in terms of the speed of light. Louis Essen is better known for building the first operational atomic clock in 1955 but he was also aware that there was an urgent need for better long-range radio- navigation aids at the end of the Second World War; and knowing the exact value of the speed of light was as important as precise time measurement for determining the location of an aircraft, ship or submarine. Essen worked at the National Physical Laboratory, Teddington, UK (NPL) during the war and his experience with radar and microwave devices, especially the cavity resonator, enabled him to develop a non-optical method of measuring the speed of light. In 1946, he published a new value of the speed of light in vacuum (299,792 ± 3 km/ s) that was 16 km/s higher than the then accepted value. His findings caused a great deal of controversy at the time and were not accepted for several years. I have reproduced a part of my father-in-law’s memoirs below in which he describes how he came to be involved in measuring the speed of light. Ray Essen Memoirs of Louis Essen The exact value of the speed of light was needed during the Second World War for microwave applications such as radar and aircraft radio-navigation systems. NPL (Britain’s national measurement institute) occasionally received enquiries from people working on radar who were concerned about the best value to use and the telephone operators usually directed the callers to me. At first, I gave the textbook value of 299,800 km/s or, if a higher accuracy seemed appropriate, 299,776 ± 4 km/s, which was the value that Raymond Birge at the University of California in Berkeley had derived in 1941 from a statistical appraisal of earlier optical determinations. These enquiries set me thinking about the speed of light and how accurately it was actually known. My work with cavity wavemeters led me to believe that I could measure its value with a higher accuracy than could be determined by optical methods. Albert A Michelson The accepted value for the speed of light before the Second World War was based largely on the results of Michelson and his co-workers in the USA, and particularly on his last experiment made in 1935. This was performed with the encouragement and support of international bodies; it was costly and widely publicised. One feature which made it costly, and was thought to be in its favour, was that the light path was confined in an evacuated pipe 1.6-km long to eliminate the effect of the refractive index of the air which reduces the speed by about 0.03 percent. Previous measurements had all been made in air and corrected for refractive index, which was calculated from the atmospheric conditions at the time. The reviewers’ faith in the result was strengthened by the fact that four subsequent determinations made by different scientists in different countries were in close agreement with it. A study of the original papers convinced me that the value was not nearly so well established as was thought. The actual precision of measurement was low and the results were an average of many, sometimes thousands, of individual measurements, always an unsatisfactory procedure. The authors of these papers made no great claims for the accuracy of their results and pointed out that unexplained discrepancies were present. Cavity Resonator Method My experience made me confident that the speed of light could be obtained far more accurately as well as far more simply by measuring the dimensions and resonant frequency of a specially constructed microwave cavity wavemeter. The setting to resonance is so precise that a single measurement would be more accurate than the average of the large numbers taken in the optical determinations and the high precision would make it possible to investigate and eliminate the effect of small systematic errors. In view of its importance in radio navigation I started a more systematic study of the speed of light as a side-line to my normal duties. At the end of the Second World War, NPL already had a full programme of work intended to assist in the recovery of Britain’s industry and a new determination of the speed of light was not considered to be of high priority. Consequently, I was initially obliged to undertake this work in my spare time and no objections were raised. I devised an experimental method that enabled me to assemble most of the necessary apparatus from old pieces of war- surplus equipment. A visitor from the USA mentioned that William Webster (‘Bill’) Hansen at Stanford University was contemplating a similar measurement. But it is no bad thing to duplicate work of this kind and, although Hansen was one of the pioneers of cavity resonator theory, NPL was better equipped on the technical side. We had then the best frequency standards and microwave measuring experience in the world, a splendid workshop where the resonator could be made and a metrology department where its dimensions could be measured. All these facilities were situated in the same grounds and collaboration between the staff was encouraged. This last point proved to be most important. There was a slight discrepancy between some of the metrological measurements which were discussed with the head of the department. In the course of the discussions it occurred to him that there might also be a systematic error. The internal diameter had been measured by their standard method in which two small balls at the ends of the arms of a feeler gauge slide over the curved surface. The pressure of the balls on the surface causes a slight depression that must be corrected for, and as the gauges usually tested are all made from steel a standard correction is included in the calculations. But our resonator was made of copper, a softer metal, and a larger correction should be applied. His suspicions were correct and a small but significant error was avoided through the close relationship between our departments. The frequency measurements were made with the help of Albert Gordon-Smith, a skilled and meticulously careful experimenter. Our result, published in 1946, was 16 km/s higher than the accepted value, which was much more interesting than if it had been confirmed. It did not surprise us but everyone else was very sceptical, even our Director, who, while congratulating us on the work, suggested that we would no doubt get the correct result when we had perfected the technique. The radar establishments in the UK and the USA, who were the people most concerned, continued to use the old value for several years showing that scientists can get fixed ideas on poor evidence and refused to relinquish them. No result had been published from Stanford but a report in a popular journal suggested that the result was going to confirm the optical value. I was planning a visit to the USA at that time so our Director suggested that I should go and see them. Unfortunately, I found that Hansen was in hospital with pneumonia which proved fatal. His colleagues were not in a position to give a value but later when it was published in a short note it was quite near to the NPL result, being 3 km/s lower. Revised Method of Measurement There was now a post-war reshuffle of staff and I moved back to the Electricity Division where, in 1950, I was able to repeat the speed-of-light measurement with a different form of resonator. The weakest point of the first experiment seemed to be the measurement of the dimensions. Apart from the metrological difficulty, it was known that the electric and magnetic fields penetrated the surfaces of the cavity resonator which increased the effective size of the metal cylinder. The penetration is zero for perfect conductors but it is not negligible for copper (used in the first experiment) despite it being one of the best conductors we have. I calculated the correction factor from transmission-line theory but the computer genius, Alan Turing who was then working at NPL, repeated the calculation elegantly and rigorously for me from waveguide theory. I found later that it had been calculated and published in a French journal. In any case, I managed to eliminate most of the correction by a suitable design of cavity resonator. The length could be altered by a piston and the wavelength found by the distance between two successive resonances, thus eliminating the effect of penetration in the end faces. Then, by using a number of different frequencies and different modes of resonance, it was possible to eliminate the diameter from the calculations or, expressed differently, to measure the diameter in terms of length and frequency. It was clearly a more complicated and difficult experiment than before and I was fortunate in securing the help of our excellent workshops and of Eric Hope, another skilled electronic expert to replace Gordon- Smith, whom I had lost in the move.
Recommended publications
  • Project GREAT PTTI-2006 PPT-PDF
    Project GREAT (2005) General Relativity Einstein / Essen Anniversary Test Tom Van Baak [email protected] PTTI 2006 Washington DC Introduction • Project GREAT in 2005 – Attempt to prove the theory of relativity – Take cesium clocks up a mountain – Do clocks really speed up or slow down? • Celebrate 100th anniversary of 1905 – Albert Einstein’s “Annus Mirabilis” • Celebrate 50th anniversary of 1955 – Louis Essen’s NPL cesium clock 06-Dec-2006 Project GREAT 2 Albert Einstein • Who was Einstein? – Need I say more… – Theory of relativity – Time is not absolute – SR, GR, space-time – Bold predictions – Later confirmed – Enormous influence 06-Dec-2006 Project GREAT 3 Einstein and 2005 •100th anniversary of relativity: books, magazines, radio, TV, web sites, “Physics Year”, lectures… 06-Dec-2006 Project GREAT 4 Louis Essen • Who was Essen? –First Cesium Clock – Joint NPL USNO project to calibrate atomic time against astronomical time – 9 192 631 770 Hz – Book: “Famous for a second” 06-Dec-2006 Project GREAT 5 Essen and 2005 •50th anniversary of atomic time •NPL Caesium Jack Parry and Louis Essen Photo from www.npl.co.uk/essen/ 06-Dec-2006 Project GREAT 6 Cs Second • 1954…1958 •How long is a second? 06-Dec-2006 Project GREAT 7 Louis Essen •10 years later … • Essen at NPL with a HP 5060A “Flying Clock” 06-Dec-2006 Project GREAT 8 Flying Clocks in the 1960’s • Starting in 1964 with HP 5060A • Portable transistorized cesium clock • Hundreds of clock trips • Remote synchronization to µs levels • See HP Journals: 1964, 65, 66, 67 • 1965 world-wide time synchronization • Paved the way for flying clock relativity experiments in the 1970’s 06-Dec-2006 Project GREAT 9 Relativity and Clocks • High-level summary: – Clocks run slower if they move at high velocity (SR) – Clocks run slower in the presence of greater gravity (GR) – Clocks lose time traveling East (Sagnac) •This implies: – According to general relativity, stationary clocks on mountains run faster.
    [Show full text]
  • It's About Time Transcript
    It’s about time Transcript Date: Thursday, 19 March 2009 - 1:00PM Location: Staple Inn Hall IT'S ABOUT TIME Professor Ian Morison "Time is nature's way of preventing everything happening at once." -John Wheeler Let us first discuss how astronomers measured the passage of time until the 1960's. Local Solar Time For centuries, the time of day was directly linked to the Sun's passage across the sky, with 24 hours being the time between one transit of the Sun across the meridian (the line across the sky from north to south) and that on the following day. This time standard is called 'Local Solar Time' and is the time indicated on a sundial. The time such clocks would show would thus vary across the United Kingdom, as Noon is later in the west. It is surprising the difference this makes. In total, the United Kingdom stretches 9.55 degrees in longitude from Lowestoft in the east to Mangor Beg in County Fermanagh, Northern Ireland in the west. As 15 degrees is equivalent to 1 hour, this is a time difference of just over 38 minutes! Greenwich Mean Time As the railways progressed across the UK, this difference became an embarrassment and so London or 'Greenwich' time was applied across the whole of the UK. A further problem had become apparent as clocks became more accurate: due to the fact that, as the Earth's orbit is elliptical, the length of the day varies slightly. Thus 24 hours, as measured by clocks, was defined to be the average length of the day over one year.
    [Show full text]
  • RELATIVITY- Joke Or Swindle? Louis Essen Re-States His View That Einstein's Theory of Relativity Contains Basic and Fatal Flaws L
    RELATIVITY- joke or swindle? Louis Essen re-states his view that Einstein's theory of relativity contains basic and fatal flaws L. ESSEN ome of your contributors find it diffi- denoted by the symbol c, and the earth is would be a movement of the fringes. fro~n cult to accept my contention (WW travelling through space with a velocity v, it which the velocity of the earth could he SOctober, 1978) that Einstein's theory should be possible to measurev by an optical calculated, but no change at all was of relativity is invalidated by its internal experiment carried out in the laboratory. observed. errors. Butlerfield for example (EWW, Michelson and Morley designed and used an Fitzgerald and Lorentz pointed out that Rbruaty, 1987) denies that there is any interferometer for this purpose. A beam of this result would be obtained if the arm of duplication of units or any harm in obtain- light was split into two parts which were the interferometer which was mwing pr- ing results from thought-experiments. directed along the two arms of the instm- allel with the earth was, in consequence of Moreover. if my contention is correct, the ment at right angles to each other, the two this movement, reduced in length by the new experimental work described by Aspden beams being reflected back to recombine amount (I-V~/C~)~.Such an arbitrary (EWW, August, 1987) is not required to and form interference fringes. The instru- assumption did not constitute a satisfadory disprove the theory, although it might con- ment was turned through a right angle so explanation and scientists tried to think ofa firm that his assumptions were wrong.
    [Show full text]
  • Economic Benefits of the Global Positioning System (GPS)
    June 2019 Economic Benefits of the Global Positioning System (GPS) Final Report Sponsored by National Institute of Standards and Technology 100 Bureau Drive Gaithersburg, MD 20899 Prepared by RTI International Alan C. O’Connor Michael P. Gallaher Kyle Clark-Sutton Daniel Lapidus Zack T. Oliver Troy J. Scott Dallas W. Wood Manuel A. Gonzalez Elizabeth G. Brown Joshua Fletcher 3040 E. Cornwallis Road Research Triangle Park, NC 27709 RTI Project Number 0215471 ECONOMIC BENEFITS OF THE GLOBAL POSITIONING SYSTEM (GPS) FINAL REPORT by Alan C. O’Connor Michael P. Gallaher Kyle Clark-Sutton Daniel Lapidus Zack T. Oliver Troy J. Scott Dallas W. Wood Manuel A. Gonzalez Elizabeth G. Brown Joshua Fletcher Recommended citation: O’Connor, A.C., Gallaher, M.P., Clark-Sutton, K., Lapidus, D., Oliver, Z.T., Scott, T.J., Wood, D.W., Gonzalez, M.A., Brown, E.G., and Fletcher, J. 2019, June. Economic Benefits of the Global Positioning System (GPS). RTI Report Number 0215471. Sponsored by the National Institute of Standards and Technology. Research Triangle Park, NC: RTI International. _________________________________ RTI International is a registered trademark and a trade name of Research Triangle Institute. Contents Section Page Acknowledgments xiii Executive Summary ES-1 ES.1 Background ......................................................................................................................... ES-1 ES.2 Analysis Scope and Overview ............................................................................................ ES-1 ES.3 Economic
    [Show full text]
  • An Instant in Time How the Atomic Clock Revolutionized Time-Keeping
    book reviews An instant in time How the atomic clock revolutionized time-keeping. Splitting the Second: The Story of NPL Atomic Time by Tony Jones Institute of Physics: 2000. 199 pp. £14.99, $19.99 Daniel Kleppner By the mid-1950s astronomical timekeep- ing had achieved unprecedented accuracy, based on a deepened understanding of planetary and terrestrial dynamics and the development of the quartz crystal clock. In 1952 the International Astronomical Union introduced a new timescale — ephemeris time, based on the motions of the planets — and in 1956 it redefined the second in terms of the length of a solar year. But the 1950s also saw the start of a revolution in timekeeping that in a single decade wrested the second from the astronomers and made ephemeris time obsolete. The revolution was precipitated by the creation of the atomic clock, a device so unclock-like in appearance and operation that it was every bit as unpalatable to astronomers in the 1950s as John Harrison’s Clocking on: Parry (left) and Essen with their caesium atomic frequency standard. mechanical chronometer was in the eighteenth century. Splitting the Second and cars to measuring the drift of continents. dards. The system is cumbersome but the recounts the events of this revolution, the Accurate time is useless unless it can be timescale is accurate and reliable. subsequent progress in atomic clocks and the disseminated, and Splitting the Second Jones recounts the historical events that many applications of timekeeping, few of describes time dissemination in some detail. underlie contemporary timekeeping and which were dreamed of when atomic clocks The echoes of history can still be heard, for provides vignettes of the human factors were created.
    [Show full text]
  • History of Measurements of the Velocity of Light
    Paul Avery PHY 3400 Aug. 26, 1998 History of Measurements of the Velocity of Light The Greeks The Greeks were not unanimous on whether light moved at a finite or infinite velocity (see text p. 2). Galileo's attempt Galileo used lanterns between two hilltops. Saw essentially no travel time. If the distance were, say 2 miles, then the sound distance would be about 10 seconds. He had no reason to believe that the velocity of light was significantly faster than that of sound. Astronomical measurements In 1676 Rømer made careful measurements of the times at which satellites of Jupiter were eclipsed by the planet. The times observed did not agree with those calculated on the assumptions of a constant period of rotation and of instantaneous transmission of light. Starting at a time when the Earth was at its nearest to Jupiter, the apparent period increased and the eclipses became increasingly later than the calculated times as Note: This is not true. the Earth receded from Jupiter. Similarly, the period Roemer never made a shortened when the Earth was moving toward Jupiter. measurement from his The observed times were consistent with a finite obervations. He observed velocity of light such that the time for it to transverse a deviation of either 11 the Earth's orbit is about 1,000 seconds. Taken with minutes or 22 minutes, not modern values of the size of the Earth's orbit, the the 17 reported here. derived value of the velocity is 298,000 kilometres per second. It is remarkable that this first measurement was even of the correct order; the most important conclusion was that the velocity of light is finite.
    [Show full text]
  • How Does One Arrive at the Exact Number of Cycles of Radiation a Cesium-133 Atom Makes in Order to Define One Second?
    Scientific American Article: Ask the Experts Page 1 of 2 December 17, 2002 go Ask the Experts: Physics enter email Advanced Search How does one arrive at the exact number of TODAY'S NEWS cycles of radiation a cesium-133 atom makes in EXPLORE order to define one second? G. Flynn ASK THE EXPERTS London, U.K. QUICK POLL FEATURE ARTICLES TECHBIZ Donald B. Sullivan, a physicist and chief of the time and frequency NANOTECHNOLOGY division of the National Institute of Standards and Technology, explains. When the cesium second was defined in 1967, it was based on a measurement of the number of cycles of the radiation from a particular cesium-133 transition with reference to the second commonly used in civilian timekeeping, which at that time was based on astronomical observations. The objective was to improve the stability of timekeeping in a manner that would be invisible to the general population. The decision to redefine the second was ultimately that of the International Committee of Weights and Measures, an organization that works to standardize and CURRENT ISSUE coordinate measurements. At its 13th official meeting in 1967, the UPCOMING ISSUE committee adopted the following definition: "The second is the duration of 9,192,631,770 periods of the radiation corresponding to the transition PAST ISSUES between the two hyperfine levels of the ground state of the caesium-133 atom." In making this decision, the committee relied primarily on a measurement first reported in 1958 that compared the cesium transition frequency to the second of ephemeris time, which is defined by the orbital motion of the earth about the sun.
    [Show full text]
  • Quantum Times: Physics, Philosophy, and Time in the Postwar United States
    Quantum Times: Physics, Philosophy, and Time in the Postwar United States The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Crystal, Lisa. 2013. Quantum Times: Physics, Philosophy, and Time in the Postwar United States. Doctoral dissertation, Harvard University. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:11051191 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Quantum Times: Physics, Philosophy, and Time in the Postwar United States A dissertation presented by Lisa Crystal to The Department of the History of Science In partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of History of Science Harvard University Cambridge, Massachusetts April, 2013 © 2013 Lisa Crystal All Rights Reserved. Dissertation Advisor: Professor Peter Galison Lisa Crystal Quantum Times: Physics, Philosophy, and Time in the Postwar United States Abstract The concept of time in physics underwent significant changes in the decades following World War II. This dissertation considers several ways in which American physicists grappled with these changes, analyzing the extent to which philosophical methods and questions played a role in physicists’ engagement with time. Two lines of questioning run through the dissertation. The first asks about the professional identities of postwar American physicists in relation to philosophy, as exemplified by their engagement with the concept of time.
    [Show full text]
  • EINSTEIN's TERRIBLE TWINS and Other Tales of Relativistic Woe
    1 EINSTEIN'S TERRIBLE TWINS and Other Tales of Relativistic Woe Jeremy Fiennes ([email protected]) (rev: 04/10/2019) Dedicated to Dayton Miller Abstract Einstein's Special Relativity is based on two fundamental assumptions, the so- called 'Einstein postulates'. The second 'constant speed of light' postulate predicts that two inertial observers – for instance two twins in spaceships free- floating in outer space – will each see the other's clock running slower than his own. The first 'relativity' postulate says that both their perceptions are equally valid, effectively correct. The logical incoherence of this makes a nonsense of the postulates, and by extension of Special Relativity itself. The positive 1887 Michelson-Morley result confirms this experimentally, falsifying both Einstein's postulates. In spite of which, more than a century later Special Relativity is still an official scientific doctrine , and Einstein a scientific genius. The article derives the technical aspects of Relativity; and then looks at the historical, political, social and personal factors that led up to the present situation. The approach is conceptual and 98% non-mathematical. Companion articles look at the related topics of the aether and spacetime. CONTENTS INTRODUCTION Inertial/gravitational General p.2 mass p.33 MOTIONS Photons, gravity (1) p.33 Inertial motion p.3 Photons, gravity (2) p.34 Relative motion p.3 Photons, gravity 32) p.35 SPECIAL RELATIVITY Eclipse show (1) p.36 Galileo p.5 EINSTEIN Einstein Postulates (1) p.5 Plagiarist p.38 Clock slowing (1) p.6 Mileva effect p.41 Clock absurdity (1) p.8 Eclipse Show (2) p.43 "Paradox" p.10 Zionism p.44 Clock absurdity (2) p.10 USA visit p.44 Twin absurdity p.11 Great Relativity Battle p.46 Twin "explanations" p.11 2+2=5 p.49 Naturewissenschaften p.12 The mind p.50 In spite of ..
    [Show full text]
  • Dstl.Gov.Uk 1 Final Version 14/02/2014 UNCONTROLLED DSTL/PUB75620 UK UNCLASSIFIED
    UK UNCLASSIFIED UK Quantum Technology Landscape 2014 Dr. Jonathan Pritchard Dr. Stephen Till Defence Science and Technology Laboratory, Porton Down [email protected] 1 Final Version 14/02/2014 UNCONTROLLED DSTL/PUB75620 UK UNCLASSIFIED UK Quantum Technology Landscape 2014 Contents 1. Executive summary ......................................................................................................................... 7 2. Introduction .................................................................................................................................. 10 3. Overview of quantum technologies .............................................................................................. 11 3.1. Quantum physics .................................................................................................................. 11 3.2. Quantum technology ............................................................................................................ 12 4. Technology areas .......................................................................................................................... 12 4.1. Introduction .......................................................................................................................... 12 4.2. Quantum timing and clocks .................................................................................................. 13 4.2.1. Introduction .................................................................................................................. 13 4.2.2. Technology
    [Show full text]
  • Good Practice Guide No. 118 a Beginner's Guide to Measurement
    Good Practice Guide No. 118 A Beginner’s Guide to Measurement National Physical Laboratory Teddington, Middlesex, United Kingdom, TW11 0LW For more information, or for help with measurement problems, please visit: www.npl.co.uk ISSN: 1368-6550 © Queen’s Printer and Controller of HMSO, 2010. NPL wishes to acknowledge the support of NMO, LGC and NEL in the production of this guide. i A Beginner’s Guide to Measurement Version 3 Mike Goldsmith This Beginner’s Guide explains the fundamental concepts and basic facts about measurement, and in particular accurate measurement. It includes brief accounts of the role of measurement in modern and historical societies and explains the SI system, its base units and their relation to other units. The various organisations involved in measurement are introduced and their roles in linking all measurements to the SI base units through traceability chains explained. It includes general guidance about practical issues that affect the making of measurements, gives the meanings of key measurement terms, and explains the significance of such fundamental concepts as measurement traceability and calibration. ii Messen ist Wissen (Measurement is knowledge) Georg Simon Ohm (1789-1854) iii Foreword This beginner’s guide is intended for people with little or no experience of making accurate measurements but who wish to find out more about them, either because they intend to make or use accurate measurements themselves or to work with those who do. It may be of use to those starting careers in metrology or engineering, and to managers, research scientists, teachers, university students and those involved in the sale or marketing of measuring instruments.
    [Show full text]
  • Essen and the National Physical Laboratory's Atomic Clock
    INSTITUTE OF PHYSICS PUBLISHING METROLOGIA Metrologia 42 (2005) S4–S9 doi:10.1088/0026-1394/42/3/S02 Essen and the National Physical Laboratory’s atomic clock Dale Henderson National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, UK Received 11 April 2005 Published 7 June 2005 Online at stacks.iop.org/Met/42/S4 Abstract To commemorate the fiftieth anniversary of the development of the first atomic frequency standard, we present some notes about the work of Louis Essen at the National Physical Laboratory. In addition, we publish below some personal recollections of Essen on his work, which have previously been available only on the Internet (http://www.btinternet.com/∼time.lord/TheAtomicClock.htm). Louis Essen joined the National Physical Laboratory (NPL) and the effect of background gases; and he set an upper limit in 1928, having graduated with first class honours from on the bias due to the Millman effect. Essen’s publications University College, Nottingham. He worked withDWDye show that, by quantifying all the known biases, he had indeed on ‘tuning fork’ clocks, eventually focusing on the use of constructed what has come to be known as a primary frequency quartz oscillators and designing the quartz ring resonator. standard. Of course, the second being defined at that time in The impetus given to radio frequency techniques during the astronomical terms, the apparatus could not officially be known war years enabled Essen to become an expert in microwave as such. synthesis and resonators, leading to his work in determining The decades leading up to the atomic frequency standard the speed of light [1].
    [Show full text]