Irrigation Water Quality Standards and Salinity Management Strategies Irrigation Water Quality Standards and Salinity Management

Total Page:16

File Type:pdf, Size:1020Kb

Irrigation Water Quality Standards and Salinity Management Strategies Irrigation Water Quality Standards and Salinity Management B-1667 4-03 Irrigation Water Quality Standards and Salinity Management Strategies Irrigation Water Quality Standards and Salinity Management Guy Fipps* Nearly all waters contain dis - Generally, “salt” is thought of as Water Analysis: solved salts and trace elements, ordinary table salt (sodium chlo - many of which result from the ride). How-ever, many types of Units, Terms and natural weathering of the earth’s salts exist and are commonly Sampling surface. In addition, drainage found in Texas waters (Table 1). waters from irrigated lands and Most salinity problems in agricul - Numerous parameters are used to effluent from city sewage and ture result directly from the salts define irrigation water quality, to industrial waste water can impact carried in the irrigation water. assess salinity hazards, and to water quality. In most irrigation The process at work is illustrated determine appropriate management situations, the primary water qual - in Figure 1, which shows a strategies. A complete water quali - ity concern is salinity levels, since beaker of water containing a salt ty analysis will include the deter - salts can affect both the soil struc - concentration of 1 percent. As mination of: ture and crop yield. However, a water evaporates, the dissolved number of trace elements are salts remain, resulting in a solu - 1) the total concentration of solu - found in water which can limit its tion with a higher concentration ble salts, use for irrigation. of salt. The same process occurs 2) the relative proportion of sodi - in soils. Salts as well as other dis - um to the other cations, solved substances begin to accu - 3) the bicarbonate concentration as *Associate Professor and Extension mulate as water evaporates from Agricultural Engineer, Department of related to the concentration of Agricultural Engineering, The Texas A&M the surface and as crops withdraw calcium and magnesium, and System, College Station, Texas 77843-2117. water. Table 1. Kinds of salts normally found in irrigation waters, with chemical symbols and approxi- mate proportions of each salt. 1 (Longenecker and Lyerly, 1994) Chemical name Chemical symbol Approximate proportion of total salt content Sodium chloride NaCl Moderate to large Sodium sulfate Na 2SO 4 Moderate to large Calcium chloride CaCl 2 Moderate Calcium sulfate (gypsum) CaSO 4 2H 2O Moderate to small Magnesium chloride MgCl 2 Moderate Magnesium sulfate MgS0 4 Moderate to small Potassium chloride KCl Small Potassium sulfate K2SO 4 Small Sodium bicarbonate NaHCO 3 Small Calcium carbonate CaCO 3 Very Small Sodium carbonate Na 2CO 3 Trace to none Borates BO -3 Trace to none Nitrates NO -3 Small to none 1Waters vary greatly in amounts and kinds of dissolved salts. This water typifies many used for irrigation in Texas. 3 Figure 1. Effect of water evaporation on the concentration of salts in solution. A liter is 1.057 quarts. Ten grams is .035 ounces or about 1 teaspoonful. 4) the concentrations of specific Two Types of Salt the TDS (total dissolved solids) or elements and compounds. Problems the EC (electric conductivity). The amounts and combinations of TDS is sometimes referred to as these substances define the suit - the total salinity and is measured ability of water for irrigation and Two types of salt problems exist or expressed in parts per million the potential for plant toxicity. which are very different: those (ppm) or in the equivalent units of Table 2 defines common parame - associated with the total salinity milligrams per liter (mg/L). and those associated with sodium. ters for analyzing the suitability of EC is actually a measurement of Soils may be affected only by water for irrigation and provides electric current and is reported in salinity or by a combination of some useful conversions. one of three possible units as both salinity and sodium. When taking water samples for given in Table 2. Subscripts are laboratory analysis, keep in mind Salinity Hazard used with the symbol EC to iden - that water from the same source tify the source of the sample. can vary in quality with time. Water with high salinity is toxic EC iw is the electric conductivity Therefore, samples should be test - to plants and poses a salinity haz - of the irrigation water. EC e is the ed at intervals throughout the ard . Soils with high levels of electric conductivity of the soil as year, particularly during the total salinity are call saline soils . measured in a soil sample (satu - potential irrigation period. The High concentrations of salt in the rated extract) taken from the root Soil and Water Testing Lab at soil can result in a “physiologi - zone. EC d is the soil salinity of Texas A&M University can do a cal” drought condition. That is, the saturated extract taken from complete salinity analysis of irri - even though the field appears to below the root zone. EC d is used gation water and soil samples, and have plenty of moisture, the to determine the salinity of the will provide a detailed computer plants wilt because the roots are drainage water which leaches printout on the interpretation of unable to absorb the water. Water below the root zone. the results. Contact your county salinity is usually measured by Extension agent for forms and information or contact the Lab at Types of Salinity Problems (979) 845-4816. affects can lead to salinity plants saline soil hazard condition affects can lead to sodium soils sodic soil condition 4 Table 2. Terms, units, and useful conversions for understanding ingly impervious to water pene - water quality analysis reports. tration. Fine textured soils, espe - cially those high in clay, are most Symbol Meaning Units subject to this action. Certain Total Salinity amendments may be required to a. EC electric conductivity mmhos/cm maintain soils under high SARs. µmhos/cm Calcium and magnesium, if pre - dS/m sent in the soil in large enough b. TDS total dissolved solids mg/L quantities, will counter the effects ppm of the sodium and help maintain Sodium Hazard good soil properties. a. SAR sodium adsorption ratio — Soluble sodium per cent (SSP) is b. ESP exchangeable sodium percentage — also used to evaluate sodium haz - ard. SSP is defined as the ration Determination Symbol Unit of measure Atomic weight of sodium in epm (equivalents per Constituents million) to the total cation epm (1) cations 3 multiplied by 100. A water with a calcium Ca mol/m 40.1 SSP greater than 60 per cent may magnesium Mg mol/m 3 24.3 3 result in sodium accumulations sodium Na mol/m 23.0 that will cause a breakdown in the potassium K mol/m 3 39.1 soil’s physical properties. (2) anions bicarbonate HCO mol/m 3 61.0 3 3 Ions, Trace Elements sulphate SO 4 mol/m 96.1 chloride Cl mol/m 3 35.5 and Other Problems 3 carbonate CO 3 mol/m 60.0 nitrate NO mg/L 62.0 A number of other substances 3 may be found in irrigation water Trace Elements and can cause toxic reactions in boron B mg/L 10.8 plants (Table 3). After sodium, Conversions chloride and boron are of most 1 dS/m = 1 mmhos/cm = 1000 µmhos/cm concern. In certain areas of Texas, 1 mg/L = 1 ppm boron concentrations are exces - TDS (mg/L) ≈ EC (dS/m) x 640 for EC < 5 dS/m sively high and render water TDS (mg/L ≈ EC (dS/m) x 800 for EC > 5 dS/m unsuitable for irrigations. Boron TDS (lbs/ac-ft) ≈ TDS (mg/L) x 2.72 can also accumulate in the soil. Concentration (ppm) = Concentration (mol/m3) times the atomic weight Crops grown on soils having an Sum of cations/anions imbalance of calcium and magne - (meq/L) ≈ EC (dS/m) x 10 sium may also exhibit toxic Key symptoms. Sulfate salts affect mg/L = milligrams per liter sensitive crops by limiting the ppm = parts per million uptake of calcium and increasing dS/m = deci Siemens per meter at 25° C the adsorption of sodium and potassium, resulting in a distur - Sodium Hazard effects of sodium. For waters con - bance in the cationic balance taining significant amounts of within the plant. The bicarbonate Irrigation water containing large bicarbonate, the adjusted sodium ion in soil solution harms the amounts of sodium is of special adsorption ratio (SAR adj ) is some - mineral nutrition of the plant concern due to sodium’s effects times used. through its effects on the uptake on the soil and poses a sodium Continued use of water having a and metabolism of nutrients. High hazard . Sodium hazard is usually concentrations of potassium may expressed in terms of SAR or the high SAR leads to a breakdown in the physical structure of the introduce a magnesium deficiency sodium adsorption ratio . SAR is and iron chlorosis. An imbalance calculated from the ratio of sodi - soil. Sodium is adsorbed and becomes attached to soil particles. of magnesium and potassium may um to calcium and magnesium. be toxic, but the effects of both The latter two ions are important The soil then becomes hard and compact when dry and increas - can be reduced by high calcium since they tend to counter the levels. 5 Table 3. Recommended limits for constituents in reclaimed water for irrigation. (Adapted from Rowe and Abdel-Magid, 1995) Constituent Long-term Short-term Remarks use (mg/L) use (mg/L) Aluminum (Al) 5.0 20 Can cause nonproductivity in acid soils, but soils at pH 5.5 to 8.0 will precipitate the ion and eliminate toxicity. Arsenic (As) 0.10 2.0 Toxicity to plants varies widely, ranging from 12 mg/L for Sudan grass to less than 0.05 mg/L for rice.
Recommended publications
  • World Bank Document
    WATER GLOBAL PRACTICE QUALITY UNKNOWN BACKGROUND PAPER Public Disclosure Authorized Determinants of Public Disclosure Authorized Essayas Ayana Declining Water Quality Public Disclosure Authorized Public Disclosure Authorized About the Water Global Practice Launched in 2014, the World Bank Group’s Water Global Practice brings together financing, knowledge, and implementation in one platform. By combining the Bank’s global knowledge with country investments, this model generates more firepower for transformational solutions to help countries grow sustainably. Please visit us at www.worldbank.org/water or follow us on Twitter at @WorldBankWater. About GWSP This publication received the support of the Global Water Security & Sanitation Partnership (GWSP). GWSP is a multidonor trust fund administered by the World Bank’s Water Global Practice and supported by Australia’s Department of Foreign Affairs and Trade, the Bill & Melinda Gates Foundation, the Netherlands’ Ministry of Foreign Affairs, Norway’s Ministry of Foreign Affairs, the Rockefeller Foundation, the Swedish International Development Cooperation Agency, Switzerland’s State Secretariat for Economic Affairs, the Swiss Agency for Development and Cooperation, U.K. Department for International Development, and the U.S. Agency for International Development. Please visit us at www.worldbank.org/gwsp or follow us on Twitter #gwsp. Determinants of Declining Water Quality Essayas Ayana © 2019 International Bank for Reconstruction and Development / The World Bank 1818 H Street NW, Washington, DC 20433 Telephone: 202-473-1000; Internet: www.worldbank.org This work is a product of the staff of The World Bank with external contributions. The findings, interpretations, and conclusions expressed in this work do not necessarily reflect the views of The World Bank, its Board of Executive Directors, or the governments they represent.
    [Show full text]
  • Sediment Transport Model for a Surface Irrigation System
    Hindawi Publishing Corporation Applied and Environmental Soil Science Volume 2013, Article ID 957956, 10 pages http://dx.doi.org/10.1155/2013/957956 Research Article Sediment Transport Model for a Surface Irrigation System Damodhara R. Mailapalli,1 Narendra S. Raghuwanshi,2 and Rajendra Singh2 1 BiologicalSystemsEngineering,UniversityofWisconsin,Madison,WI53706,USA 2 Agricultural and Food Engineering Department, Indian Institute of Technology, Kharagpur 721302, India Correspondence should be addressed to Damodhara R. Mailapalli; [email protected] Received 16 March 2013; Revised 25 June 2013; Accepted 11 July 2013 Academic Editor: Keith Smettem Copyright © 2013 Damodhara R. Mailapalli et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Controlling irrigation-induced soil erosion is one of the important issues of irrigation management and surface water impairment. Irrigation models are useful in managing the irrigation and the associated ill effects on agricultural environment. In this paper, a physically based surface irrigation model was developed to predict sediment transport in irrigated furrows by integrating an irrigation hydraulic model with a quasi-steady state sediment transport model to predict sediment load in furrow irrigation. The irrigation hydraulic model simulates flow in a furrow irrigation system using the analytically solved zero-inertial overland flow equations and 1D-Green-Ampt, 2D-Fok, and Kostiakov-Lewis infiltration equations. Performance of the sediment transport model wasevaluatedforbareandcroppedfurrowfields.Theresultsindicated that the sediment transport model can predict the initial sediment rate adequately, but the simulated sediment rate was less accurate for the later part of the irrigation event.
    [Show full text]
  • Subsurface Drip Irrigation (Sdi) Systems
    NETAFIM USA SUBSURFACE DRIP IRRIGATION (SDI) SYSTEMS ADVANCED DRIP/MICRO IRRIGATION TECHNOLOGIES SUBSURFACE DRIP IRRIGATION QUALITY AND DEPENDABILITY FROM THE LEADERS IN DRIP IRRIGATION For over 50 years, growers world-wide have counted on Netafim for the most reliable, cost-effective and efficient ways to deliver water, nutrients and chemicals to their crops. This tradition continues with subsurface drip irrigation (SDI), the most advanced method for irrigating agricultural crops. With proper management of water and nutrients, a subsurface drip irrigation system can deliver maximum yields and optimal water use efficiencies. Drip irrigation, whether surface or subsurface, often results in increased production and yields as well as increased quality and uniformity. It provides more efficient use of the applied water resulting in substantial water savings. The flexibility of drip irrigation increases a grower’s ability to farm marginal land. WHAT IS SUBSURFACE DRIP IRRIGATION (SDI)? Subsurface drip irrigation is a variation on traditional drip irrigation where the dripline (tubing and drippers) is buried beneath the soil surface, rather than laid on the ground, supplying water directly to the roots. The depth and distance the dripline is placed depends on the soil type and the plant’s root structure. SDI is more than an irrigation system, it is a root zone management tool. Fertilizer can be applied to the root zone in a quantity when it will be most beneficial - resulting in greater use efficiencies and better crop performance. SUBSURFACE DRIP IRRIGATION (SDI) ADVANTAGES The key benefit of a surface micro-irrigation system is to apply low volumes of water and nutrients uniformly to every plant across the entire field.
    [Show full text]
  • Plants in Constructed Wetlands Help to Treat Agricultural Processing Wastewater
    UC Agriculture & Natural Resources California Agriculture Title Plants in constructed wetlands help to treat agricultural processing wastewater Permalink https://escholarship.org/uc/item/67s9p4z8 Journal California Agriculture, 65(2) ISSN 0008-0845 Authors Grismer, Mark E Shepherd, Heather L Publication Date 2011 Peer reviewed eScholarship.org Powered by the California Digital Library University of California ReseaRch aRticle ▼ Plants in constructed wetlands help to treat agricultural processing wastewater by Mark E. Grismer and Heather L. Shepherd Over the past three decades, winer- ies in the western United States and sugarcane processing for ethanol in Central and South America have experienced problems related to the treatment and disposal of pro- cess wastewater. Both winery and sugarcane (molasses) wastewaters are characterized by large organic loadings that change seasonally and are detrimental to aquatic life. We examined the role of plants for treating these wastewaters in constructed wetlands. In the green- house, subsurface-flow flumes with agricultural processing wastewaters may have high concentrations of organic matter that volcanic rock substrates and plants contaminate surface waters when discharged downstream. at imagery estate Winery in Glen ellen, constructed wetlands with plants were tested for their ability to remove pollutants. steadily removed approximately 80% of organic-loading oxygen demand Shepherd et al. (2001) described the sugarcane and winery wastewater from sugarcane process wastewater negative impacts of winery wastewater Sugarcane, food-processing, winery after about 3 weeks of plant growth; downstream, which led to requirements and other distilleries generate waste- for its control and on-site treatment. waters from processing and equipment unplanted flumes removed about Similarly, downstream degradation wash-down.
    [Show full text]
  • Great Salt Lake Brine Chemistry Database, 1966–2011
    GREAT SALT LAKE BRINE CHEMISTRY DATABASE, 1966–2011 by Andrew Rupke and Ammon McDonald OPEN-FILE REPORT 596 UTAH GEOLOGICAL SURVEY a division of UTAH DEPARTMENT OF NATURAL RESOURCES 2012 GREAT SALT LAKE BRINE CHEMISTRY DATABASE, 1966–2011 by Andrew Rupke and Ammon McDonald Cover photo: The Southern Pacific Railroad rock causeway. The view is to the east, and the north arm of Great Salt Lake is on the left. OPEN-FILE REPORT 596 UTAH GEOLOGICAL SURVEY a division of UTAH DEPARTMENT OF NATURAL RESOURCES 2012 STATE OF UTAH Gary R. Herbert, Governor DEPARTMENT OF NATURAL RESOURCES Michael Styler, Executive Director UTAH GEOLOGICAL SURVEY Richard G. Allis, Director PUBLICATIONS contact Natural Resources Map & Bookstore 1594 W. North Temple Salt Lake City, UT 84116 telephone: 801-537-3320 toll-free: 1-888-UTAH MAP website: mapstore.utah.gov email: [email protected] UTAH GEOLOGICAL SURVEY contact 1594 W. North Temple, Suite 3110 Salt Lake City, UT 84116 telephone: 801-537-3300 website: geology.utah.gov This open-file release makes information available to the public that may not conform to UGS technical, edito- rial, or policy standards; this should be considered by an individual or group planning to take action based on the contents of this report. Although this product represents the work of professional scientists, the Utah Department of Natural Resources, Utah Geological Survey, makes no warranty, expressed or implied, regarding its suitability for a particular use. The Utah Department of Natural Resources, Utah Geological Survey, shall not be liable under any circumstances for any direct, indirect, special, incidental, or consequential damages with respect to claims by users of this product.
    [Show full text]
  • 4. Drainage of Irrigated Lands
    ARBA MINCH UNIVERSITY Water Technology Institute Faculty of Meteorology and Hydrology Course Name:-Irrigated Lands Hydrology Course Code:- MHH1403 CHAPTER FOUR DRAINAGE OF IRRIGATED LANDS Prepared by: Tegegn T.(MSc.) Hydrology Objectives of the chapter • By the end of the session, the student will able to: – Understand what we mean by Agricultural drainage – Understand causes of excess water in agricultural lands – Know Problems and effects of poor drainage – Understand need of drainage – Know different types of drainage 4/21/2020 2 4.1 Definition of Drainage • Good water management of an irrigation scheme not only requires proper water application but also a proper drainage system. • Agricultural drainage can be defined as the removal of excess surface water and/or the lowering of the groundwater table below the root zone in order to improve plant growth. 4/21/2020 3 Cont… Class activity • Be in group and discuss on following topics – Causes of excess water or rise of water table – What are the effects of poor drainage – Why drainage is needed? 4/21/2020 4 Causes of excess water or rise of WT: • Natural Causes: – Poor natural drainage of the subsoil – Submergence under floods – Deep percolation from rainfall – Drainage water coming from adjacent areas. • Artificial Causes: – High intensity of irrigated agriculture irrespective of the soil or subsoil – Heavy seepage losses from unlined canals – Enclosing irrigated fields with embankments – Non-maintenance of natural drainages or blocking of natural drainages channels by roads. – the extra water applied for the flushing away of 4/21/2020 salts from the root zone. 5 4.2 Problems and effects of poor drainage • Drainage problem could be: – Surface drainage problem ---- when excess water builds up the water table and reaches to the ground level (i.e.
    [Show full text]
  • Surface Water and Groundwater Interactions in Traditionally Irrigated Fields in Northern New Mexico, U.S.A
    water Article Surface Water and Groundwater Interactions in Traditionally Irrigated Fields in Northern New Mexico, U.S.A. Karina Y. Gutiérrez-Jurado 1, Alexander G. Fernald 2, Steven J. Guldan 3 and Carlos G. Ochoa 4,* 1 School of the Environment, Flinders University, Bedford Park, SA 5042, Australia; karina.gutierrez@flinders.edu.au 2 Water Resources Research Institute, New Mexico State University, Las Cruces, NM 88003, USA; [email protected] 3 Sustainable Agriculture Science Center, New Mexico State University, Alcalde, NM 87511, USA; [email protected] 4 Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA * Correspondence: [email protected]; Tel.: +1-541-737-0933 Academic Editor: Ashok K. Chapagain Received: 18 December 2016; Accepted: 3 February 2017; Published: 10 February 2017 Abstract: Better understanding of surface water (SW) and groundwater (GW) interactions and water balances has become indispensable for water management decisions. This study sought to characterize SW-GW interactions in three crop fields located in three different irrigated valleys in northern New Mexico by (1) estimating deep percolation (DP) below the root zone in flood-irrigated crop fields; and (2) characterizing shallow aquifer response to inputs from DP associated with irrigation. Detailed measurements of irrigation water application, soil water content fluctuations, crop field runoff, and weather data were used in the water budget calculations for each field. Shallow wells were used to monitor groundwater level response to DP inputs. The amount of DP was positively and significantly related to the total amount of irrigation water applied for the Rio Hondo and Alcalde sites, but not for the El Rito site.
    [Show full text]
  • Irrigation Management with Saline Water
    IRRIGATION MANAGEMENT WITH SALINE WATER Dana O. Porter, P.E. Thomas Marek, P.E. Associate Professor and Extension Senior Research Engineer & Agricultural Engineering Specialist Superintendent, North Research Field, Texas Cooperative Extension and Etter Texas Agricultural Experiment Station Texas Agricultural Experiment Station Texas A&M University Agricultural Texas A&M University Agricultural Research and Extension Center Research and Extension Center 1102 E. FM 1294 6500 Amarillo Blvd W. Lubbock, Texas 79403 Amarillo, TX 79106 Voice: 806-746-6101 Voice: (806) 677-5600 Fax: 806-746-4057 Fax: (806) 677-5644 E-mail: [email protected] E-mail: [email protected] INTRODUCTION One of the most common water quality concerns for irrigated agriculture is salinity. Recommendations for effective management of irrigation water salinity depend upon local soil properties, climate, and water quality; options of crops and rotations; and irrigation and farm management capabilities. What Is Salinity? All major irrigation water sources contain dissolved salts. These salts include a variety of natural occurring dissolved minerals, which can vary with location, time, and water source. Many of these mineral salts are micronutrients, having beneficial effects. However, excessive total salt concentration or excessive levels of some potentially toxic elements can have detrimental effects on plant health and/or soil conditions. The term “salinity” is used to describe the concentration of (ionic) salt species, generally including: calcium (Ca2+ ), magnesium (Mg2+ ), sodium (Na+ ), potassium + - - 2- 2- (K ), chloride (Cl ), bicarbonate (HCO3 ), carbonate(CO3 ), sulfate (SO4 ) and others. Salinity is expressed in terms of electrical conductivity (EC), in units of millimhos per centimeter (mmhos/cm), micromhos per centimeter (µmhos/cm), or deciSiemens per meter (dS/m).
    [Show full text]
  • Salinity Distribution and Variation with Freshwater Inflow and Tide, And
    Salinity Distribution and Variation with Freshwater Inflow and Tide, and Potential Changes in Salinity due to Altered Freshwater Inflow in the Charlotte Harbor Estuarine System, Florida By Yvonne E. Stoker U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 92-4062 Prepared in cooperation with the FLORIDA DEPARTMENT OF ENVIRONMENTAL REGULATION Tallahassee, Florida 1992 U.S. DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary U.S. GEOLOGICAL SURVEY DALLAS L. PECK, Director For additional information, Copies of this report may be write to: purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Books and Open-File Reports Section Suite 3015 Federal Center 227 North Bronough Street Box 25425 Tallahassee, Florida 32301 Denver, Colorado 80225 CONTENTS Abstract 1 Introduction 1 Purpose and scope 3 Previous studies 4 Acknowledgments 4 Description of the study area and factors affecting salinity variation Freshwater inflow 4 Tide 7 Water density 8 Study methods 8 Salinity distribution in Charlotte Harbor 9 Salinity variations with freshwater inflow and tide 13 Variations with freshwater inflow 14 Tidal Caloosahatchee River 14 Upper Charlotte Harbor 17 Lower Charlotte Harbor 23 Variations with tide 23 Potential salinity changes due to altered freshwater inflow 24 Summary and conclusions 28 Selected references 29 Figure 1. Map showing study area and drainage basins 2 2. Map showing Charlotte Harbor and subarea boundaries 3 3. Map showing depth of the Charlotte Harbor estuarine system 5 4. Graphs showing daily mean discharge and monthly rainfall in the Peace, Myakka, and Caloosahatchee River basins, June 1982 to May 1987 6 5. Sketch showing generalization of highly stratified, partially mixed, and well-mixed salinity patterns in an estuary 8 6.
    [Show full text]
  • Selecting an Irrigation System, You Need to Consider Both the Initial System Cost and the Op- Erating Costs of the System
    Sprinkler Irrigation Surface Irrigation Irrigation can be expensive. Before you install an irrigation system, it is very important to Sprinkler irrigation is a high pressure and high determine that increased yield and better crop flow irrigation system. Water is pumped and dis- quality will result in sufficient increase in income tributed through laterals and sprinkler heads. to offset the cost of installing and operating the This system is often used on small farms be- irrigation system. This starts with choosing the cause it is adaptable to a wide range of soil and right system. field conditions. Irrigation systems can be divided into four classes: Surface, Sprinkler, Drip and Subsurface. Before deciding what method of irrigation to use, it is important to know how much and the quality of water is available, the soil type and slope of your crop fields and what crops you plan to irrigate. Surface Irrigation, water is applied by flowing across the field in furrows. This is usually done where field slopes are flatter and the soils less sandy. The water must make it across the field without over-watering the up- per portions and without causing erosion. Sprinkler Irrigation Costs: When selecting an irrigation system, you need to consider both the initial system cost and the op- erating costs of the system. The exact cost can only be determined once a system is designed, but the following table can act as a guide: Well and Pump $5,000 to 10,000 each Traveling Gun $1,000 to $8,000/ ac Hand Move System: $2,000 to $3,000/ ac Drip System $2,000 to $4000/ ac Solid Set System: $4,000 to $8,000/ ac Subsurface $3,000 to $6,000/ ac Selecting an Irrigation System Selecting a System.
    [Show full text]
  • Soil Salinity in Agricultural Systems: the Basics
    Soil Salinity in Agricultural Systems: The Basics Jeffrey L. Ullman Agricultural & Biological Engineering University of Florida Strategies for Minimizing Salinity Problems and Optimizing Crop Production In-Service Training, Hastings, FL March 26, 2013 What is salt? What is Salt? . Salts are more than just sodium chloride (NaCl) . Salts consist of anions and cations . In terms of soil and irrigation water these generally include: Cations Anions Sodium Na+ Chlorides Cl- 2+ 2- Magnesium Mg Sulfates SO4 2+ 2- Calcium Ca Carbonates CO3 - Bicarbonates HCO3 What is Salt? . Other salts in agriculture + Potassium (K ) - Nitrate (NO3 ) Boron (B) • Often as boric acid (H3BO3, often written as B(OH)3) • Can form salts such as sodium borate (borax; Na2B4O7) Photo: Georgia Agriculture What is Salt? H O(l) NaCl(s) 2 Na+(aq) + Cl-(aq) (aq) indicates that Na+ and Cl- are hydrated ions Sodium sulfate Magnesium carbonate Source: Averill and Eldredge (2007) Types of Salts Some common salts NaCl Sodium chloride Table salt (halite) CO 2- 3 KCl Potassium chloride Muriate of potash Na+ 2- NaHCO3 Sodium bicarbonate Baking soda (nahcolite) SO4 - Cl CaSO4 Calcium sulfate Gypsum + K CaCO3 Calcium carbonate Calcite 2+ Ca MgSO Magnesium sulfate Epsom salt (epsomite) Mg2+ 4 K2SO4 Potassium sulfate Sulfate of potash (arcanite) HCO - 3 Glauber’s salt (thenardite Na SO Sodium sulfate 2 4 and mirabilite) Gypsum Calcite Thenardite Sources of Salt . Dissolution of parent rock material . Irrigation water . Saline groundwater . Fertilizers . Manure . Seawater intrusion Photo: J. Ullman Saline Soils . Accumulation of salts known as salination . Can occur in diverse types of soil with different physical, chemical and hydrologic properties Photo: USDA-NRCS Saline Soils .
    [Show full text]
  • Effects of Saline Water and Exogenous Application of Hydrogen Peroxide (H2O2) on Soursop (Annona Muricata L.) at Vegetative Stage
    AJCS 13(03):472-479 (2019) ISSN:1835-2707 doi: 10.21475/ajcs.19.13.03.p1583 Effects of saline water and exogenous application of hydrogen peroxide (H2O2) on Soursop (Annona muricata L.) at vegetative stage Luana Lucas de Sá Almeida Veloso1, Carlos Alberto Vieira de Azevedo1, André Alisson Rodrigues da Silva1, Geovani Soares de Lima1*, Hans Raj Gheyi2, Raul Araújo da Nóbrega1, Francisco Wesley Alves Pinheiro1, Rômulo Carantino Moreira Lucena1 1Federal University of Campina Grande, Academic Unit of Agricultural Engineering, Campina Grande, 58.109-970, Paraíba, Brazil 2Federal University of Recôncavo of Bahia, Nucleus of Soil and Water Engineering, Cruz das Almas, 44.380-000, Bahia, Brazil *Corresponding author: [email protected] Abstract Soursop is a fruit of great socioeconomic importance for the northeastern region of Brazil. However, the quantitative and qualitative limitation of the water resources of this region has reduced its production. The objective of this study was to evaluate the growth of ‘Morada Nova’ soursop plants irrigated with saline water and subjected to exogenous application of hydrogen peroxide through seed immersion and foliar spray. The study was conducted in plastic pots adapted as lysimeters, using a eutrophic Regolithic Neosol with sandy loam texture under greenhouse conditions. Treatments were distributed in randomized blocks, in a 4 x 4 factorial arrangement, corresponding to four levels of irrigation water electrical conductivity – ECw (0.7; 1.7; 2.7 and 3.7 dS m-1) and four concentrations of hydrogen peroxide – H2O2 (0, 25, 50 and 75 µM), with three replicates and one plant per plot. Foliar applications of H2O2 began 15 days after transplanting (DAT) and were carried out every 15 days at 17:00 h, after the sunset, by manually spraying the H2O2 solutions with a sprayer in such a way to completely wet the leaves (spraying the abaxial and adaxial faces).
    [Show full text]